JPH0567360B2 - - Google Patents

Info

Publication number
JPH0567360B2
JPH0567360B2 JP14927290A JP14927290A JPH0567360B2 JP H0567360 B2 JPH0567360 B2 JP H0567360B2 JP 14927290 A JP14927290 A JP 14927290A JP 14927290 A JP14927290 A JP 14927290A JP H0567360 B2 JPH0567360 B2 JP H0567360B2
Authority
JP
Japan
Prior art keywords
separation
sludge
reaction
temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14927290A
Other languages
Japanese (ja)
Other versions
JPH0463200A (en
Inventor
Shinya Yokoyama
Tomoko Ogi
Tomoaki Minowa
Yutaka Tsuchide
Tadashi Nakamura
Akira Suzuki
Shinji Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Organo Corp filed Critical Agency of Industrial Science and Technology
Priority to JP14927290A priority Critical patent/JPH0463200A/en
Publication of JPH0463200A publication Critical patent/JPH0463200A/en
Publication of JPH0567360B2 publication Critical patent/JPH0567360B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Coke Industry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明は、有機性廃水の生物処理装置から発生
する余剰汚泥等の有機性汚泥を高温高圧の条件下
で熱化学的に反応させて得られる汚泥油化反応物
から油状物質を分離回収する方法に関するもので
ある。 〔従来技術及びその問題点〕 代表的な有機性汚泥である下水汚泥は、全国で
年間約5000万m3(含水率98%)という莫大な量で
あり、年々増加の傾向にある。従来、このような
下水汚泥の処理に関しては、その80%前後が脱水
後、埋立処分されているが、しかし、この場合に
は埋立地確保の問題があり、都市化の発展によ
り、その埋立地確保は年々困難になつてきてい
る。また、下水汚泥は焼却処理することも可能で
あり、この方法は、その処理生成物が被処理原料
である下水汚泥の量に比して著しく減容化された
焼却灰であり、被処理原料の減容化という点から
は非常に有効な方法である。しかしながら、この
方法の場合、下水汚泥中の水分の蒸発に多大の熱
エネルギーを要するために、ランニングコストが
高く、経済的でないという問題を有している。こ
のような現状に対し、本発明者らは、特開昭62−
136299において、下水汚泥の液化処理方法を提案
している。この方法は、下水汚泥中の有機物をア
ルカリ性条件下、反応温度250〜350℃において、
該反応温度の飽和水蒸気圧以上の加圧下で反応処
理した後、得られた反応処理生成物を冷却処理
し、該反応処理生成物を始めに水相とスラリー相
とに分離し、次いで分離されたたスラリー相をさ
らに油状物質と残渣固形物とに分離するというも
のである。しかしながら、この方法では、分離さ
れたスラリー相から機械的に油状物質だけを取り
出すことは非常に困難であり、この為には、抽出
処理や蒸留操作がさらに必要となる。従つて、油
化処理全体としてのプロセスは未だ効率的でな
く、実用上、多くの問題を有している。 〔発明の課題〕 本発明は、従来の下水汚泥等の有機性汚泥処理
に見られる前記問題を解決し、汚泥油化反応物か
ら油状物質を効率的に分離回収する方法を提供す
ることをその課題とする。 〔発明を解決するための手段〕 本発明者らは、前記課題を解決すべく鋭意研究
を重ねた結果、本発明を完成するに至つた。 即ち、本発明によれば、含水状態の有機性汚泥
を、高温高圧の条件下で熱化学的に反応させ、該
反応物から油状物質を得る方法において、反応
後、当該反応物を250℃以上の高温高圧状態のま
まで密度差分離することにより、軽液として油状
物質を分離することを特徴とする汚泥油化反応物
から油状物質の回収方法が提供される。 本発明において被処理原料として用いる有機性
汚泥としては、通常の下水処理場から排出される
下水汚泥や各種の有機性廃水の生物処理装置から
排出される余剰汚泥等が包含されるが、有機性の
汚泥であれば特に制約されない。ただし、有機性
汚泥にあまり多量の水分が含まれていると、熱化
学的反応に必要な温度の形成までに多量の熱エネ
ルギーを消費するので、含水率85%以下にまで脱
水することが望ましい。 本発明の方法を実施するには、有機性汚泥を高
温高圧に保持して熱化学的反応を行わせた後、
250℃以上の温度において、単に密度差分離を行
えばよい。必要に応じて反応を促進させる為に、
有機性汚泥をアルカリ性条件とすることも可能で
ある。この場合、アルカリ性条件の形成には、通
常、アルカリ性物質が用いられるが、アルカリ性
物質としては、例えば、水酸化ナトリウム、水酸
化カリウム、炭酸ナトリウム、炭酸カリウム、炭
酸水素ナトリウム、炭酸水素カリウム、ギ酸ナト
リウム、ギ酸カリウム等のアルカリ金属化合物
や、酸化カルシウム、水酸化カルシウム、水酸化
マグネシウム等のアルカリ土類金属化合物等があ
げられる。 本発明における反応処理は高温高圧下で実施さ
れるが、この場合、反応温度は一般には250〜350
℃、好ましくは300〜320℃であり、反応圧力は、
その反応温度における飽和水蒸気圧以上、例え
ば、250℃の場合、41Kg/cm2abs、300℃の場合、
88Kg/cm2abs以上であればよい。この時、反応温
度での保持時間(反応時間)は、250℃の場合、
60分以上、300℃の場合、5分以上であれば良い
が、水相に移行する有機物量を減らすためには、
なるべく高い温度で長時間反応させることが望ま
しい。但し、反応温度を高くすることや、長い時
間反応を行わせるということは、イニシヤルコス
トの増大をまねくので、反応温度は300℃以下、
保持時間は60分以下が妥当である。 本発明において、油化反応後、反応物は250℃
以上の温度において、好ましくは、300℃前後で
密度差分離されるが、その方法は、重力沈降また
は遠心沈降に基づくものであればよく、特に限定
されない。代表的な方法としては、重力沈降に対
しては、静置分離法が、遠心沈降に対しては、液
体サイクロン等の採用が可能である。このように
して分離された軽液は、油状物質と水性相の混合
状態で得られるが、この混合物からの油状物質の
分離処理には、通常の油水分離手段が適用され
る。一般には、油状物質相と水性相との間の密度
差を利用した分離手段、例えば、静置による重力
分離や遠心分離等を、或いは、コアレス効果を利
用した分離手段等を採用することができる。 また、本発明において、圧力は、下水汚泥から
の水蒸気による自己発生圧を利用することができ
るが、必要に応じ、例えば、窒素ガス、炭酸ガ
ス、アルゴンガス等を用いて加圧することもでき
る。 本発明において、得られた油状物質は、熱化学
的反応において生成された油状物質の低密度成分
だけであり、発熱量が高く、かつ粘度が低いので
燃料油として充分に使用可能である。 次に、本発明の好ましい実施態様について、第
1図にそのフローシートを示す。第1図におい
て、1は反応装置予熱部、2は反応装置反応部、
3は高温高圧分離装置、4は第1冷却器、5は第
1減圧装置、6は固液分離装置、7は焼却装置、
8は廃熱ボイラ、9は第2冷却器、10は第2減
圧装置、11は油水分離装置を各示す。 含水率85%以下、通常70〜80%に脱水された有
機性汚泥はライン12を通つて反応装置予熱部1
に導入される。この反応装置予熱部は熱交換型反
応装置であり、加熱媒体がライン24から導入さ
れ、反応装置内の有機性汚泥を予熱する。ここで
使われる加熱媒体は、後段の第1冷却器4での回
収熱量とすることが望ましい。予熱汚泥はライン
13を通つて、反応部2に導入、加熱され、熱化
学的反応により、油状物質を生成する。この時の
条件は、反応温度が、250〜350℃、好ましくは、
300〜320℃、反応圧力は、反応温度における飽和
水蒸気圧以上であればよい。反応時間は、通常5
〜180分である。ここで採用される反応器の形式
は、掻面式熱交換器が好ましいが、特に制約され
ない。第1図においては、予熱部1と反応部2が
分けられているが、一体型の反応器とすることも
可能である。反応物はライン14を通つて、高温
高圧分離装置3に導入され、重液(密度が水より
大きい油状物質と残渣固形物と水分の混合物)
と、軽液(密度が水より小さい油状物質と水分の
混合物)とに分離される。分離中の温度は、250
℃以上であればよい。ここでの分離装置として
は、駆動部を必要としない重力沈降槽や液体サイ
クロンなどが好ましいが、特に制約されない。重
液はライン15を通つて第1冷却器4に導入さ
れ、熱媒体に熱を与えて100℃以下まで冷却され、
その熱媒体はライン24を通つて予熱部1を加熱
する。冷却器の形式は、薄膜流下式熱交換器が好
ましいが、特に制約されない。冷却後の重液はラ
イン16を経て第1減圧装置5で大気圧まで減圧
された後、ライン17を通つて固液分離装置6に
導入される。ここで、重液は、水分を除去され低
含水率の残渣物ケーキとなり、ライン19を経て
焼却装置7に投入される。一方、分離された水分
は、ライン18,31を通つて水処理系に返送さ
れる。焼却装置7では、残渣物ケーキと、ライン
20より導入された燃焼用空気とが混合され、補
助燃料を加えることなく焼却される。焼却後、発
生した灰分はライン21より系外に排出され、高
温度の燃焼排ガスはライン22を通つて廃熱ボイ
ラ8に導入される。ここで、排ガスは、保有熱量
を熱媒体に与え、ライン23を経て大気に放散さ
れる。この時、必要に応じて、集塵や洗煙等の廃
ガス処理装置を設置することもある。廃熱ボイラ
で加熱された熱媒体は、反応部2の熱源として利
用される。 一方、高温高圧分離装置3で分離された軽液は
ライン26を通つて第2冷却器9に導入され、
100℃以下まで冷やされた後、ライン27を経由
して第2減圧装置10で大気圧まで減圧される。
ここでも、冷却器としては、薄膜流下式熱交換器
の採用が好ましい。その後、軽液はライン28に
より油水分離装置11に導入され、水性相と油状
物質とに分離される。この油水分離装置として
は、密度差を利用した分離手段、例えば、静置に
よる重力分離や遠心分離等を、或いは、コアレス
効果を利用した分離手段等を採用することができ
る。油水分離装置で分離されたた水性相は、ライ
ン29,31を通つて水処理系に返送される。油
状物質はライン30を通つて回収され、余剰油と
して他に利用される。 〔発明の効果〕 以上説明したごとく本発明によれば、従来産業
廃棄物として取り扱われていた下水汚泥を、高発
熱量(8500kcal/Kg以上)、低粘度(50℃で
200cP以下)の液体燃料として有用な油状物質に
変換させることができる。この場合、油状物質の
収率は、乾燥有機物基準で10〜20%程度であり、
熱化学的反応で生成された全油状物質量の20〜40
%に相当する。しかしながら、生成された全油状
物質の50%以上は、反応のために消費されること
を考慮すると、特別な抽出工程や蒸留操作を行わ
ないで、余剰分として、グレードの高い油状物質
が得られる本発明法は非常に有利な方法である。
それ故、本発明の有機性汚泥の油化処理方法は、
技術的、経済的に非常に有利な方法であるという
ことができる。 〔実施例〕 次に、本発明を実施例によりさらに詳細に説明
する。 実施例 1 有機性汚泥として下水汚泥を選択し、標準活性
汚泥法の処理場から排出された混合生汚泥の脱水
ケーキを試験に用いた。この汚泥は高分子凝集剤
を添加された後、ベルトプレスにて脱水されたも
のである。その代表的な性状は表−1の通りであ
る。
[Technical field] The present invention is directed to the production of oily substances from the sludge oil reaction product obtained by thermochemically reacting organic sludge such as surplus sludge generated from organic wastewater biological treatment equipment under high temperature and high pressure conditions. This relates to a method of separation and recovery. [Prior art and its problems] The amount of sewage sludge, which is a typical organic sludge, is approximately 50 million m 3 (moisture content: 98%) annually nationwide, and the amount is increasing year by year. Conventionally, in the treatment of sewage sludge, around 80% of it is dehydrated and then disposed of in a landfill.However, in this case, there is a problem in securing a landfill, and with the development of urbanization, the landfill is becoming more and more Securing it is becoming more difficult every year. In addition, sewage sludge can also be incinerated, and in this method, the treated product is incinerated ash whose volume is significantly reduced compared to the amount of sewage sludge that is the raw material to be treated, This is a very effective method in terms of volume reduction. However, this method has the problem that it requires a large amount of thermal energy to evaporate water in the sewage sludge, resulting in high running costs and being uneconomical. In response to this current situation, the inventors of the present invention have proposed
136299, proposed a liquefaction treatment method for sewage sludge. This method collects organic matter in sewage sludge under alkaline conditions at a reaction temperature of 250 to 350°C.
After reaction treatment under pressure equal to or higher than the saturated water vapor pressure at the reaction temperature, the obtained reaction treatment product is cooled, and the reaction treatment product is first separated into an aqueous phase and a slurry phase, and then separated. The dried slurry phase is further separated into an oily substance and a residual solid. However, in this method, it is very difficult to mechanically extract only the oily substance from the separated slurry phase, and for this purpose, extraction treatment and distillation operation are additionally required. Therefore, the overall oil conversion process is still not efficient and has many practical problems. [Problems to be solved by the invention] The present invention aims to solve the above-mentioned problems encountered in the conventional treatment of organic sludge such as sewage sludge, and to provide a method for efficiently separating and recovering oily substances from sludge oil conversion reaction products. Take it as a challenge. [Means for Solving the Invention] The present inventors have completed the present invention as a result of intensive research to solve the above problems. That is, according to the present invention, in a method for thermochemically reacting water-containing organic sludge under high temperature and high pressure conditions to obtain an oily substance from the reactant, after the reaction, the reactant is heated at 250°C or higher. Provided is a method for recovering oily substances from a sludge-oiling reaction product, characterized in that the oily substances are separated as a light liquid by density difference separation while maintaining the high temperature and high pressure state. In the present invention, the organic sludge used as the raw material to be treated includes sewage sludge discharged from ordinary sewage treatment plants, surplus sludge discharged from various organic wastewater biological treatment equipment, etc. There are no particular restrictions as long as it is sludge. However, if organic sludge contains too much moisture, it will consume a large amount of thermal energy to reach the temperature required for thermochemical reactions, so it is desirable to dehydrate the organic sludge to a moisture content of 85% or less. . To carry out the method of the present invention, organic sludge is held at high temperature and pressure to perform a thermochemical reaction, and then
At a temperature of 250° C. or higher, it is sufficient to simply perform density difference separation. In order to accelerate the reaction as necessary,
It is also possible to subject the organic sludge to alkaline conditions. In this case, alkaline substances are usually used to form alkaline conditions, examples of which include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium formate. , alkali metal compounds such as potassium formate, and alkaline earth metal compounds such as calcium oxide, calcium hydroxide, and magnesium hydroxide. The reaction treatment in the present invention is carried out at high temperature and pressure, and in this case, the reaction temperature is generally 250 to 350°C.
℃, preferably 300-320℃, and the reaction pressure is
Above the saturated water vapor pressure at the reaction temperature, for example, at 250℃, 41Kg/cm 2 abs, at 300℃,
It is sufficient if it is 88Kg/cm 2 abs or more. At this time, the holding time (reaction time) at the reaction temperature is 250℃,
At least 60 minutes, or at least 5 minutes at 300°C, is fine, but in order to reduce the amount of organic matter transferred to the aqueous phase,
It is desirable to carry out the reaction at as high a temperature as possible for a long time. However, increasing the reaction temperature or conducting the reaction for a long time will increase the initial cost, so the reaction temperature should be 300℃ or less.
A holding time of 60 minutes or less is appropriate. In the present invention, after the oil conversion reaction, the reactant is heated to 250°C.
At the above temperature, preferably around 300°C, density difference separation is carried out, but the method is not particularly limited as long as it is based on gravity sedimentation or centrifugal sedimentation. As typical methods, a static separation method can be used for gravity sedimentation, and a hydrocyclone or the like can be used for centrifugal sedimentation. The light liquid thus separated is obtained in a mixed state of an oily substance and an aqueous phase, and ordinary oil-water separation means are applied to separate the oily substance from this mixture. In general, separation means that utilize the density difference between the oily substance phase and the aqueous phase, such as gravity separation or centrifugal separation by standing still, or separation means that utilizes the coreless effect, etc. can be adopted. . Further, in the present invention, the pressure can be generated by using self-generated pressure due to water vapor from sewage sludge, but if necessary, it can also be pressurized using, for example, nitrogen gas, carbon dioxide gas, argon gas, etc. In the present invention, the oily substance obtained is only a low-density component of the oily substance produced in a thermochemical reaction, has a high calorific value, and has a low viscosity, so it can be used satisfactorily as a fuel oil. Next, FIG. 1 shows a flow sheet of a preferred embodiment of the present invention. In FIG. 1, 1 is a reactor preheating section, 2 is a reactor reaction section,
3 is a high temperature and high pressure separation device, 4 is a first cooler, 5 is a first pressure reduction device, 6 is a solid-liquid separation device, 7 is an incinerator,
8 is a waste heat boiler, 9 is a second cooler, 10 is a second pressure reducing device, and 11 is an oil-water separator. Organic sludge dehydrated to a moisture content of 85% or less, usually 70 to 80%, passes through line 12 to reactor preheating section 1.
will be introduced in This reactor preheating section is a heat exchange type reactor, and a heating medium is introduced from line 24 to preheat the organic sludge in the reactor. The heating medium used here is desirably the amount of heat recovered by the first cooler 4 in the latter stage. The preheated sludge is introduced into the reaction section 2 through the line 13, heated, and produces an oily substance through a thermochemical reaction. The conditions at this time are that the reaction temperature is 250 to 350°C, preferably
The reaction pressure may be 300 to 320°C as long as it is equal to or higher than the saturated water vapor pressure at the reaction temperature. The reaction time is usually 5
~180 minutes. The type of reactor employed here is preferably a scratched surface heat exchanger, but is not particularly limited. In FIG. 1, the preheating section 1 and the reaction section 2 are separated, but it is also possible to form an integrated reactor. The reactants are introduced into the high temperature and high pressure separator 3 through line 14, where they are separated into a heavy liquid (a mixture of oily substances with a density greater than that of water, residual solids and water).
and a light liquid (a mixture of oily substances and water with a density lower than that of water). The temperature during separation is 250
It is sufficient if the temperature is above ℃. The separation device here is preferably a gravity settling tank or a hydrocyclone that does not require a drive unit, but is not particularly limited. The heavy liquid is introduced into the first cooler 4 through the line 15, and is cooled to below 100°C by applying heat to the heat medium.
The heat medium passes through line 24 and heats preheating section 1 . The type of cooler is preferably a thin film falling heat exchanger, but is not particularly limited. The cooled heavy liquid passes through line 16 and is reduced in pressure to atmospheric pressure by first pressure reducing device 5, and then introduced into solid-liquid separation device 6 through line 17. Here, the heavy liquid is dehydrated to become a residue cake with a low moisture content, and is fed into the incinerator 7 via a line 19. On the other hand, the separated water is returned to the water treatment system through lines 18 and 31. In the incinerator 7, the residue cake and combustion air introduced from the line 20 are mixed and incinerated without adding auxiliary fuel. After incineration, the generated ash is discharged from the system through line 21, and high-temperature combustion exhaust gas is introduced into waste heat boiler 8 through line 22. Here, the exhaust gas imparts its retained heat to the heat medium and is dissipated into the atmosphere through the line 23. At this time, waste gas processing equipment such as dust collection and smoke cleaning may be installed as necessary. The heat medium heated by the waste heat boiler is used as a heat source for the reaction section 2. On the other hand, the light liquid separated by the high-temperature and high-pressure separator 3 is introduced into the second cooler 9 through the line 26,
After being cooled to 100° C. or lower, the pressure is reduced to atmospheric pressure via the line 27 in the second pressure reducing device 10.
Here again, it is preferable to employ a thin film falling type heat exchanger as the cooler. Thereafter, the light liquid is introduced into the oil/water separator 11 via line 28 and separated into an aqueous phase and an oily substance. As this oil/water separator, it is possible to adopt a separation means that utilizes a density difference, such as gravity separation or centrifugal separation by standing still, or a separation means that utilizes a coreless effect. The aqueous phase separated in the oil-water separator is returned to the water treatment system through lines 29 and 31. The oily material is recovered through line 30 and used as excess oil. [Effects of the Invention] As explained above, according to the present invention, sewage sludge, which was conventionally treated as industrial waste, can be treated with high calorific value (more than 8500 kcal/Kg) and low viscosity (at 50°C).
(200cP or less), it can be converted into an oily substance useful as a liquid fuel. In this case, the yield of oily substances is about 10 to 20% based on dry organic matter,
20-40 of the total amount of oily substances produced in thermochemical reactions
Corresponds to %. However, considering that more than 50% of the total oil produced is consumed for reaction, high-grade oil can be obtained as a surplus without special extraction or distillation operations. The method of the invention is a very advantageous method.
Therefore, the method for treating organic sludge into oil according to the present invention,
It can be said that this method is technically and economically very advantageous. [Example] Next, the present invention will be explained in more detail with reference to Examples. Example 1 Sewage sludge was selected as the organic sludge, and a dehydrated cake of mixed raw sludge discharged from a treatment plant using the standard activated sludge method was used in the test. This sludge was dehydrated using a belt press after adding a polymer flocculant. Its typical properties are shown in Table-1.

【表】 実験装置には、高圧オートクレーブ型の装置を
用いた。この装置は、電気加熱炉内に配設された
オートクレーブ(内容積300ml)と、それとは別
にオートクレーブに配設された密閉型の分離管
(内容積1000ml)とから構成される。オートクレ
ーブ内には、攪拌器と、先端がU字形に屈曲され
た細管が垂直に配設されている。この細管は、U
字形に屈曲された先端の開口部がオートクレーブ
の底部から一定距離の高さに保持され、オートク
レーブ内の一定レベル以上の内容物をその細管を
通して外部に排出し得るようになつている。この
細管の他方の先端はオートクレーブの蓋体を通つ
て外部に導出された連結管を接続し、この連結管
は冷却器及びバルブを経由して分離管に接続して
いる。 分離管内の圧力を90Kg/cm2Gまで窒素ガスで予
備加圧した後、上記脱水汚泥約170gを、内容量
300mlのオートクレーブに充填・密閉し、窒素ガ
スで充分にパージを行ない、30Kg/cm2Gまで加圧
した。次いで、攪拌を開始し、同時に加熱を始め
た。オートクレーブ内の温度が300℃に到達した
直後に、攪拌を停止し、300℃で120分間内容物の
静置を行つた。この時、オートクレーブ内の圧力
は、132Kg/cm2Gまで上昇した。ここで、オート
クレーブと分離管の間に位置するバルブを徐々に
開くと、オートクレーブと分離管との間の圧力差
により、オートクレーブ内のプロダクトの上部の
軽液が細管を通つて押出され、冷却器で冷却さ
れ、分離管に移行した。ここで得られた約40gの
軽液を一昼夜静置すると、上部の灰色の油状物質
と、下部の濃褐色透明の水相とに分離した。オー
トクレーブ内に残存した重液と分離管内に移行し
た軽液をそれぞれ採取し、各々を塩化メチレンを
用いた溶媒抽出法で、油状物質、残渣固形物及び
水性相の三相に分離し、表−2に示すような分離
結果を得た。
[Table] A high-pressure autoclave-type device was used as the experimental device. This device consists of an autoclave (inner volume: 300 ml) placed inside an electric heating furnace, and a sealed separation tube (inner volume: 1000 ml) placed separately in the autoclave. Inside the autoclave, a stirrer and a thin tube with a U-shaped tip are vertically disposed. This tubule is U
An opening at the bent tip is held at a height of a certain distance from the bottom of the autoclave, so that the contents of the autoclave above a certain level can be discharged to the outside through the thin tube. The other end of this thin tube is connected to a connecting tube led out to the outside through the lid of the autoclave, and this connecting tube is connected to a separation tube via a cooler and a valve. After pre-pressurizing the inside of the separation tube to 90Kg/cm 2 G with nitrogen gas, approximately 170g of the dehydrated sludge was
A 300 ml autoclave was filled and sealed, thoroughly purged with nitrogen gas, and pressurized to 30 Kg/cm 2 G. Next, stirring was started and heating was started at the same time. Immediately after the temperature inside the autoclave reached 300°C, stirring was stopped, and the contents were allowed to stand at 300°C for 120 minutes. At this time, the pressure inside the autoclave rose to 132Kg/cm 2 G. Here, when the valve located between the autoclave and the separation tube is gradually opened, the upper light liquid of the product in the autoclave is pushed out through the thin tube due to the pressure difference between the autoclave and the separation tube, and the cooler The mixture was cooled and transferred to a separation tube. When about 40 g of the light liquid obtained here was allowed to stand for a day and night, it separated into an upper gray oily substance and a lower dark brown transparent aqueous phase. The heavy liquid remaining in the autoclave and the light liquid transferred to the separation tube were collected, and each was separated into three phases, an oily substance, a residual solid substance, and an aqueous phase, by a solvent extraction method using methylene chloride. The separation results shown in 2 were obtained.

【表】 表−2より明らかなように、分離管内に移行し
た油状物質の量は、乾燥有機物基準で約17%、全
生成油状物質の32%であつたが、発熱量、流動性
ともオートクレーブ内に残存した油状物質を上回
る良好な結果であつた。さらに、残渣固形物と油
状物質の比で表される分離指標(単位重量当りの
油状物質にどの位の残渣固形物が付随しているの
かを示す数値)は、オートクレーブ側が0.78であ
るのに対し、分離管側では0.09と低く、分離管側
の軽液には、残渣固形物が殆んど付随しない、非
常に良好な分離結果が得られた。 実施例 2 実施例1と同一の汚泥、油化条件で実験を行つ
た。ただし、300℃到達後、攪拌を行いながらそ
の温度を60分間保持した。その後、加熱を停止
し、フアンで250℃以下まで急冷、再び加熱を開
始し、250℃に制御した。温度が安定しした後、
攪拌を停止し、その温度で120分内容物を静置し
た。その後の操作は実施例1と同様である。実験
結果を表−3に示す。 分離管内に移行した油状物質の量は、乾燥有機
基準で約15.0%、全生成油状物質の28.6%であ
り、実施例1と比べ低い値を示したが、分離指標
は、オートクレーブ側が0.77であるのに対し、分
離管側では約0.1と良好であつた。発熱量、流動
性は、ともにオートクレーブ内に残存した油状物
質を上回る良好な結果であつた。
[Table] As is clear from Table 2, the amount of oily substances that migrated into the separation tube was approximately 17% on a dry organic matter basis and 32% of the total produced oily substances, but both in calorific value and fluidity. This was a better result than the oily substance remaining in the liquid. Furthermore, the separation index expressed as the ratio of residual solids to oily substances (a value that indicates how much residual solids are attached to oily substances per unit weight) was 0.78 on the autoclave side, whereas , on the separation tube side, was as low as 0.09, and very good separation results were obtained, with almost no residual solid matter accompanying the light liquid on the separation tube side. Example 2 An experiment was conducted using the same sludge and oiling conditions as in Example 1. However, after reaching 300°C, that temperature was maintained for 60 minutes while stirring. Thereafter, heating was stopped, and the temperature was rapidly cooled to below 250°C using a fan, and heating was started again to control the temperature at 250°C. After the temperature stabilizes,
Stirring was stopped and the contents were allowed to stand at that temperature for 120 minutes. The subsequent operations are the same as in Example 1. The experimental results are shown in Table 3. The amount of oily substances that migrated into the separation tube was approximately 15.0% on a dry organic basis and 28.6% of the total produced oily substances, which was lower than in Example 1, but the separation index was 0.77 on the autoclave side. On the other hand, the separation tube side had a good value of about 0.1. The calorific value and fluidity were both better than the oily substance remaining in the autoclave.

【表】 比較例 1 実施例1と同一の汚泥、油化条件で実験を行つ
た。ただし、300℃到達後、攪拌を行いながらそ
の温度を60分間保持した。その後、加熱を停止
し、フアンで200℃以下まで急冷、再び加熱を開
始し200℃に制御した。温度が安定した後、攪拌
を停止し、その温度で120分内容物を静置した。
その後の操作は実施例1と同様である。実験結果
を表−4に示す。
[Table] Comparative Example 1 An experiment was conducted using the same sludge and oiling conditions as in Example 1. However, after reaching 300°C, that temperature was maintained for 60 minutes while stirring. Thereafter, heating was stopped, and the temperature was rapidly cooled to below 200°C using a fan, and heating was started again to control the temperature at 200°C. After the temperature stabilized, stirring was stopped and the contents were allowed to stand at that temperature for 120 minutes.
The subsequent operations are the same as in Example 1. The experimental results are shown in Table 4.

【表】 分離管内に移行した油状物質の量は、乾燥有機
物基準で約14.3%、全生成油状物質の26.8%であ
り、実施例1及び2と比べそれほど変化していな
いが、分離指標に関しては、分離温度が200℃と
低いために、オートクレーブ側の値0.72に対し分
離管側の値(0.25)が近づいてきており、油状物
質と残渣固形物との分離は、あまり良好と言えな
い。 比較例 2 実施例と同一の汚泥、油化条件で実験を行つ
た。ただし、300℃到達後、攪拌を行いながらそ
の温度を60分間保持した後、加熱を停止し、フア
ンで室温まで急冷した。減圧後、オートクレーブ
内の液状物を採取し、一昼夜静置すると、上部の
濃褐色透明の水相と、下部の黒色の沈殿物相とに
分離した。水相の上部表面には、いかなる油状物
質も観察されず、塩化メチレンによる溶媒抽出の
結果、ほぼ全量の油状物質が、下部の沈殿物に含
まれていることが明らかとなつた。
[Table] The amount of oily substances that migrated into the separation tube was approximately 14.3% on a dry organic matter basis, and 26.8% of the total produced oily substances, which was not much changed compared to Examples 1 and 2, but in terms of separation index. Since the separation temperature is as low as 200°C, the value on the separation tube side (0.25) is approaching the value on the autoclave side (0.72), and the separation of oily substances and residual solids cannot be said to be very good. Comparative Example 2 An experiment was conducted using the same sludge and oiling conditions as in the example. However, after reaching 300°C, the temperature was maintained for 60 minutes while stirring, then heating was stopped and the mixture was rapidly cooled to room temperature using a fan. After the pressure was reduced, the liquid in the autoclave was collected and allowed to stand for a day and night, whereupon it was separated into an upper dark brown transparent aqueous phase and a lower black precipitate phase. No oily substance was observed on the upper surface of the aqueous phase, and solvent extraction with methylene chloride revealed that almost all of the oily substance was contained in the lower precipitate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の好ましい実施態様についての
フローシートを示す。 1……反応装置予熱部、2……反応装置反応
部、3……高温高圧分離装置、4……第1冷却
器、5……第1減圧装置、6……固液分離装置、
7……焼却装置、8……廃熱ボイラ、9……第2
冷却器、10……第2減圧装置、11……油水分
離装置。
FIG. 1 shows a flow sheet for a preferred embodiment of the invention. 1... Reactor preheating section, 2... Reactor reaction section, 3... High temperature and high pressure separation device, 4... First cooler, 5... First pressure reducing device, 6... Solid-liquid separation device,
7...Incinerator, 8...Waste heat boiler, 9...Second
Cooler, 10...second pressure reducing device, 11...oil/water separation device.

Claims (1)

【特許請求の範囲】 1 含水状態の有機性汚泥を、高温高圧の条件下
で熱化学的に反応させ、得られた反応物から油状
物質を得る方法において、反応後、当該反応物を
250℃以上の高温高圧状態のままで密度差分離す
ることにより、軽液として油状物質を分離するこ
とを特徴とする汚泥油化反応物からの油状物質の
回収方法。 2 密度差分離法として重力沈降を行い、浮上相
として油状物質を分離する請求項1の方法。
[Claims] 1. A method for thermochemically reacting water-containing organic sludge under high temperature and high pressure conditions to obtain an oily substance from the resulting reactant, in which the reactant is reacted after the reaction.
A method for recovering oily substances from a sludge-oiling reaction product, which is characterized by separating oily substances as a light liquid by performing density difference separation under high temperature and high pressure conditions of 250°C or higher. 2. The method according to claim 1, wherein gravity sedimentation is performed as the density difference separation method, and the oily substance is separated as a floating phase.
JP14927290A 1990-06-07 1990-06-07 Method for recovering oily matter from reaction product produced by converting sludge into oil Granted JPH0463200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14927290A JPH0463200A (en) 1990-06-07 1990-06-07 Method for recovering oily matter from reaction product produced by converting sludge into oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14927290A JPH0463200A (en) 1990-06-07 1990-06-07 Method for recovering oily matter from reaction product produced by converting sludge into oil

Publications (2)

Publication Number Publication Date
JPH0463200A JPH0463200A (en) 1992-02-28
JPH0567360B2 true JPH0567360B2 (en) 1993-09-24

Family

ID=15471599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14927290A Granted JPH0463200A (en) 1990-06-07 1990-06-07 Method for recovering oily matter from reaction product produced by converting sludge into oil

Country Status (1)

Country Link
JP (1) JPH0463200A (en)

Also Published As

Publication number Publication date
JPH0463200A (en) 1992-02-28

Similar Documents

Publication Publication Date Title
Yokoyama et al. Liquid fuel production from sewage sludge by catalytic conversion using sodium carbonate
CA1313591C (en) Method for obtaining utilizable gas from garbage
US4010098A (en) Resource recovery from disposal of solid waste and sewage sludge
US4344770A (en) Method and apparatus for converting solid organic material to fuel oil and gas
US4013516A (en) Apparatus and process for the pyrolysis of waste solids concentrates
CN101189190B (en) Organic waste disposal facility and method of disposal
US5188740A (en) Process for producing pumpable fuel slurry of sewage sludge and low grade solid carbonaceous fuel
EP0607644B1 (en) Partial oxidation of sewage sludge
US20140309475A1 (en) Waste to Energy By Way of Hydrothermal Decomposition and Resource Recycling
US4251227A (en) Method for producing SNG or SYN-gas from wet solid waste and low grade fuels
JPH09257234A (en) Supplying method of waste into boiler
EP0545683B1 (en) Disposal of sewage sludge
JPH055560B2 (en)
JPH0567360B2 (en)
Suzuki et al. A new treatment of sewage sludge by direct thermochemical liquefaction
JPH0685920B2 (en) Oil treatment method for organic sludge
JPH09316467A (en) Improvement of slurry produced by reaction
JP2905864B2 (en) Oil treatment of organic sludge
JPS6054119B2 (en) Method for recovering resources from treated solid waste and sewage sludge
JPH0780000B2 (en) Sludge oiling device
CN104001708A (en) Method for production of carbonized solids and soluble liquid from food waste and device for production of same
KR20010067332A (en) Process and plant for processing liquid and/or solid organic waste substances
JPH0525276B2 (en)
JPS6054798A (en) Dehydrating method of sludge
JPH02102798A (en) Treatment of sludge of industrial waste water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term