JPS62136044A - Manufacture of three-dimensional integrated circuit - Google Patents

Manufacture of three-dimensional integrated circuit

Info

Publication number
JPS62136044A
JPS62136044A JP27745685A JP27745685A JPS62136044A JP S62136044 A JPS62136044 A JP S62136044A JP 27745685 A JP27745685 A JP 27745685A JP 27745685 A JP27745685 A JP 27745685A JP S62136044 A JPS62136044 A JP S62136044A
Authority
JP
Japan
Prior art keywords
film
single crystal
silicon
active region
al2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27745685A
Other languages
Japanese (ja)
Inventor
Toshio Komori
古森 敏夫
Misao Saga
佐賀 操
Akinori Shimizu
了典 清水
Masato Nishizawa
正人 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP27745685A priority Critical patent/JPS62136044A/en
Publication of JPS62136044A publication Critical patent/JPS62136044A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a uniform interlayer insulating film at low temperature, by putting an Al film on a lower layer having an active region, irradiating it under an oxygen atmosphere to be converted into Al2O3, and thereon producing a single crystal silicon layer to form an active region on an upper layer. CONSTITUTION:An Al film 6 is formed all over the surface of a gate oxide film 5 piled on a field oxide film 4. Then, O2 gas is ionized on a substrate surface with far ultraviolet rays of high density by scanning beams of synchro tron radiating beam 14 and O ions are accelerated to strike on the Al film 6 by impressing a DC bias between electrode plates 8 ad 9, to oxidize Al from the surface. Polycrystal silicon is piled on an Al2O3 film 61 and the surface is irradiated with laser beam to be annealed, so that solid phase epitaxy is generated to obtain a silicon single crystal layer 16. Opening parts are made on the oxidizing film 4 and Al2O3 film 6, to provide an upper layer wiring 32 being in contact with a lower layer wiring 31 and to cover it with a passivation film 17 so that a three-dimensional integrated circuit of two-layered structure can be obtained. Hence, a uniform insulating film can be obtained at low temperature.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、シリコン単結晶の活性領域を絶縁物を介して
多層に積み重ねた、いわゆるSol構造の三次元集積回
路の製造方法に関する。
The present invention relates to a method for manufacturing a three-dimensional integrated circuit having a so-called Sol structure in which silicon single crystal active regions are stacked in multiple layers with an insulator interposed therebetween.

【従来技術とその問題点】[Prior art and its problems]

集積回路の集積1度の増大のために活性領域を多層に形
成して三次元化を図ることが行われる。従来の三次元集
積回路は、活性領域を形成したシリコン単結晶の上にシ
リコン酸化膜を介して多結晶シリコンを積層し、レーザ
アニールして単結晶化し、そのシリコン単結晶に活性g
城を形成する方法によって製造されていた。しかしこの
方法では、多結晶シリコンの単結晶化の際の熱影響によ
り既に形成された活性領域の特性の害されるおそれがあ
り、またシリコン酸化膜とその上の単結晶シリコンの付
着強度が十分でなく、機械的にも問題があった。
In order to increase the degree of integration of integrated circuits, active regions are formed in multiple layers to achieve three-dimensionality. In conventional three-dimensional integrated circuits, polycrystalline silicon is laminated via a silicon oxide film on a silicon single crystal that has formed an active region, and the silicon single crystal is made into a single crystal by laser annealing.
It was manufactured by the method of forming a castle. However, with this method, there is a risk that the characteristics of the active region that has already been formed may be damaged due to thermal effects during single crystallization of polycrystalline silicon, and the adhesion strength between the silicon oxide film and the single crystal silicon on it may not be sufficient. There were also mechanical problems.

【発明の目的】[Purpose of the invention]

本発明は、上述の問題を解決して上層の単結晶シリコン
と絶縁物とのなじみがよく、また単結晶化のために高い
熱量を必要としない三次元集積回路の製造方法を提供す
ることを目的とする。
The present invention solves the above-mentioned problems and provides a method for manufacturing a three-dimensional integrated circuit in which the upper layer of single crystal silicon and an insulator are compatible with each other, and which does not require a high amount of heat for single crystallization. purpose.

【発明の要点】[Key points of the invention]

本発明は、活性領域を有する下層の上にM膜を被着し、
酸素雰囲気下で光を照射してA7 、O,に変換し、そ
の上に単結晶シリコン層を生成して上層の活性領域を形
成することにより、シリコンと馴染みがよく、堆積シリ
コンが単結晶化しゃすいM2O,膜が絶縁膜として容易
に生成でき、上述の目的が達成される。
The present invention deposits an M film on a lower layer having an active region,
By irradiating light in an oxygen atmosphere and converting it into A7, O, and forming a single crystal silicon layer on top of it to form an upper active region, it becomes compatible with silicon and the deposited silicon becomes single crystal. A transparent M2O film can be easily produced as an insulating film, and the above objectives are achieved.

【発明の実施例】[Embodiments of the invention]

第1図は本発明の一実施例を示し、シリコン基板1に1
層目の素子として、例えばMOS F ET21あるい
は配線31を形成したのち、フィールド酸化膜4の上に
積層したゲート酸化膜5の上に全面に1Inaの厚さの
アルミニウム膜6をバイアススペック法により形成した
状態が第1図(A)である。次いでこのような基板を第
2図に示す反応槽7内の陰極板8に対向する陽極板9の
上にセットし、ヒータ10で加熱する。まず反応槽7内
を真空ポンプ11により0.0ITorr以下の真空に
し、マスフロー12により0!ガス13を導入して0.
1 Torr程度にしたのち、波長800〜900人に
選択されたシンクロトロン放射光(SOR光)14をレ
ンズ15によって基板1の表面上のり膜6にて焦点を結
ぶようにして入射させる。SOR光14のビームを走査
して高密度遠紫外光により基板面上で02ガスをイオン
化し、電極板8,9間に直流バイアスを電1II15に
より印加して0イオンを加速してM膜6に当て、表面よ
りMを酸化してい(、さらに第1図山)に示すように、
生じたA7.O,膜61の上に減圧CVD法により多結
晶シリコンを堆積させ、その表面にレーザ光を照射して
アニールすることにより固相エピタキシャルを発生させ
、シリコン単結晶N16を得る。 この単結晶1516とCVD法によるSiO□膜5を利
用して従来方法によりMO3FET22を作り込み、別
に酸化膜4およびAI、O,膜6に開口部を開けて下層
配線31に接触する上層配線32を設けたのちバ7シベ
ーシッン膜17で被覆して2N構造の三次元集積回路を
得る。同様にしてさらに多層の三次元集積回路を得るこ
とも可能である。
FIG. 1 shows an embodiment of the present invention, in which one
After forming, for example, a MOS FET 21 or wiring 31 as a layer element, an aluminum film 6 with a thickness of 1 Ina is formed on the entire surface of the gate oxide film 5 laminated on the field oxide film 4 by the bias spec method. This state is shown in FIG. 1(A). Next, such a substrate is set on an anode plate 9 facing a cathode plate 8 in a reaction tank 7 shown in FIG. 2, and heated with a heater 10. First, the inside of the reaction tank 7 is brought to a vacuum of 0.0 ITorr or less by the vacuum pump 11, and the mass flow 12 is used to make the inside of the reaction vessel 7 a vacuum of 0.0 ITorr or less. Gas 13 is introduced and 0.
After setting the temperature to approximately 1 Torr, synchrotron radiation light (SOR light) 14 having a wavelength of 800 to 900 is made incident through a lens 15 so as to be focused on the film 6 on the surface of the substrate 1 . The beam of the SOR light 14 is scanned to ionize the 02 gas on the substrate surface using high-density deep ultraviolet light, and a direct current bias is applied between the electrode plates 8 and 9 by the electric current 1II15 to accelerate the 0 ions to form the M film 6. As shown in Fig. 1, the M is oxidized from the surface.
The resulting A7. Polycrystalline silicon is deposited on the O, film 61 by a low pressure CVD method, and its surface is irradiated with laser light for annealing to generate solid phase epitaxial growth, thereby obtaining a silicon single crystal N16. Using this single crystal 1516 and the SiO □ film 5 formed by the CVD method, a MO3FET 22 is fabricated by a conventional method, and an opening is separately made in the oxide film 4 and the AI, O, film 6 to form an upper layer wiring 32 in contact with the lower layer wiring 31. After that, it is covered with a bassine film 17 to obtain a three-dimensional integrated circuit with a 2N structure. Similarly, it is also possible to obtain a three-dimensional integrated circuit with more layers.

【発明の効果】【Effect of the invention】

本発明は、眉間絶縁膜として、下層上に被着したり膜を
酸素雰囲気下で光照射により変換して生じたAI、O,
膜を用い、その上に多結晶シリコン層を被着し、固相エ
ピタキシャルによって単結晶シリコンを生成し、この単
結晶シリコンを利用して上層活性領域を形成するもので
、次のような利点を有する。 1、スパッタ法にょろり膜を利用して低温で均一な層間
絶縁膜を得ることができる。 2、A7.03上に堆積する多結晶シリコンは馴染みや
すく付着強度が高い。 3、Alzo3上の多結晶シリコンを単結晶化するとS
O8技術で知られるように結晶方位が揃いやすく、単結
晶化に要するエネルギーが小さくて済むため、下層の活
性領域に熱影響を与えることかない。
The present invention uses AI, O,
This method uses a polycrystalline silicon film, deposits a polycrystalline silicon layer on top of it, produces single crystal silicon by solid phase epitaxy, and uses this single crystal silicon to form the upper active region.It has the following advantages. have 1. A uniform interlayer insulating film can be obtained at low temperature by using a sputtering film. 2. Polycrystalline silicon deposited on A7.03 is easy to adhere to and has high adhesion strength. 3. When polycrystalline silicon on Alzo3 is made into a single crystal, S
As is known from O8 technology, the crystal orientation is easily aligned and the energy required for single crystallization is small, so there is no thermal effect on the underlying active region.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の工程を順次示す断面図、第
2図は本発明の一実施例に用いるM膜酸化装置の断面図
である。 l:シリコン基板、21.22:MOSFET、5:5
iflI化膜、6:A/膜、6t : u tax膜、
7:反応槽、13 : Oxガス、14:SOR光、1
6:単結晶Si層。 第1図
FIG. 1 is a cross-sectional view sequentially showing the steps of an embodiment of the present invention, and FIG. 2 is a cross-sectional view of an M film oxidation apparatus used in an embodiment of the present invention. l: silicon substrate, 21.22: MOSFET, 5:5
iflI membrane, 6: A/membrane, 6t: u tax membrane,
7: Reaction tank, 13: Ox gas, 14: SOR light, 1
6: Single crystal Si layer. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1)シリコン単結晶の活性領域を絶縁物を介して複数層
に積層する際に、活性領域を有する下層の上にアルミニ
ウム膜を被着し、酸素雰囲気下で光を照射して酸化アル
ミニウム膜に変換し、その上に単結晶シリコン層を生成
して上層の活性領域を形成することを特徴とする三次元
集積回路製造方法。
1) When stacking active regions of silicon single crystals in multiple layers via an insulator, an aluminum film is deposited on the lower layer containing the active region, and the layer is irradiated with light in an oxygen atmosphere to form an aluminum oxide film. 1. A method for manufacturing a three-dimensional integrated circuit, characterized in that a single crystal silicon layer is formed thereon to form an upper active region.
JP27745685A 1985-12-10 1985-12-10 Manufacture of three-dimensional integrated circuit Pending JPS62136044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27745685A JPS62136044A (en) 1985-12-10 1985-12-10 Manufacture of three-dimensional integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27745685A JPS62136044A (en) 1985-12-10 1985-12-10 Manufacture of three-dimensional integrated circuit

Publications (1)

Publication Number Publication Date
JPS62136044A true JPS62136044A (en) 1987-06-19

Family

ID=17583836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27745685A Pending JPS62136044A (en) 1985-12-10 1985-12-10 Manufacture of three-dimensional integrated circuit

Country Status (1)

Country Link
JP (1) JPS62136044A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287821A (en) * 2006-04-14 2007-11-01 Jsr Corp Method of forming alumina film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287821A (en) * 2006-04-14 2007-11-01 Jsr Corp Method of forming alumina film
JP4706544B2 (en) * 2006-04-14 2011-06-22 Jsr株式会社 Alumina film forming method

Similar Documents

Publication Publication Date Title
JPS6392012A (en) Laminated article and manufacture of the same
JPS59169121A (en) Method of producing semiconductor device
JPS62136044A (en) Manufacture of three-dimensional integrated circuit
JPS635913B2 (en)
JPS5818976A (en) Manufacture of optoelectric transducer
JPH029450B2 (en)
JPS6037724A (en) Manufacture of thin film semiconductor device
JPS5861641A (en) Manufacture of semiconductor device
JPS5885520A (en) Manufacture of semiconductor device
JP3136764B2 (en) Method for producing chalcopyrite thin film
JPS58135645A (en) Manufacture of semiconductor device
JPS5837934A (en) Manufacture of semiconductor device
JPS5853824A (en) Manufacture of semiconductor device
JPS5943549A (en) Method of forming aluminum wiring layer
JPH0635360B2 (en) Method for manufacturing single crystal aluminum nitride film
JPS5979531A (en) Forming method of thin-film
JPS58175844A (en) Manufacture of semiconductor device
JPS5954218A (en) Manufacture of semiconductor substrate
JPS63152177A (en) Manufacture of solar cell
JPS60161396A (en) Manufacture of silicon thin film
JPH0680663B2 (en) Method for manufacturing semiconductor device
JPS6265480A (en) Thin film solar battery
JP2718450B2 (en) Method for manufacturing semiconductor device
JP2623633B2 (en) Method for manufacturing semiconductor device
JPH04234177A (en) Photovoltaic device