JPS62134220A - Manufacture of powder for ceramic material - Google Patents

Manufacture of powder for ceramic material

Info

Publication number
JPS62134220A
JPS62134220A JP60275668A JP27566885A JPS62134220A JP S62134220 A JPS62134220 A JP S62134220A JP 60275668 A JP60275668 A JP 60275668A JP 27566885 A JP27566885 A JP 27566885A JP S62134220 A JPS62134220 A JP S62134220A
Authority
JP
Japan
Prior art keywords
solution
reaction tank
ceramic
powder
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60275668A
Other languages
Japanese (ja)
Other versions
JPH0733292B2 (en
Inventor
加藤 義治
昌造 児島
薫 杉田
岡部 参省
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP60275668A priority Critical patent/JPH0733292B2/en
Publication of JPS62134220A publication Critical patent/JPS62134220A/en
Publication of JPH0733292B2 publication Critical patent/JPH0733292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は庖子セラミックに用1へられるセラミック原
料用粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing ceramic raw material powder used for making ceramics.

(従来の技術) 湿式合成法によシ微粉末のセラミック原料粉末を得る方
法とじC1発明者等はたとえば特1−ji昭59−12
8263号公報に記載した内容のものを提案した。
(Prior art) A method for obtaining a fine ceramic raw material powder by a wet synthesis method.
We proposed the content described in Publication No. 8263.

このセラミック原料粉末の製造方法は次のような工穐か
らなる。
The method for producing this ceramic raw material powder consists of the following steps.

つまり、第1の槽にお亀へC1構成元素としC少なくと
もBa、Sr、Ca、M9の1種を含む硝酸塩または塩
化物の水溶液に、炭酸ガス、または炭酸ソーダ、炭酸ア
ンモンなどの可溶性炭酸塩水溶液を加えCX)Hを7〜
10に調整し、炭酸塩としC沈澱させ、 第2の槽におlQC%構成元素とし〔少なくともTi、
Zr、8n、Pbの1曙を含む硝酸塩または塩化物の水
溶液に苛性ソーダ、水酸化アンモニウムなどの可溶性水
酸化物水溶液を加えCpH値を7〜10に−J4差し、
水酸化物としC沈澱させる第1の工程と、 8g1の工程によつC得られた各沈諏吻を含むスラリー
を混合し、濾過したのち水洗、乾燥する第2の工程と、 得られた粉末を仮焼、粉砕する第3の工程と、からなる
方法である。
That is, in the first tank, carbon dioxide gas or a soluble carbonate such as soda carbonate or ammonium carbonate is added to an aqueous solution of nitrate or chloride containing at least one of Ba, Sr, Ca, and M9 as the C1 constituent element. Add aqueous solution and adjust CX)H to 7~
10, precipitated carbonate, and placed it in a second tank as 1QC% constituent elements [at least Ti,
Add a soluble hydroxide aqueous solution such as caustic soda or ammonium hydroxide to an aqueous solution of nitrate or chloride containing Zr, 8n, and Pb and adjust the CpH value to 7 to 10 by adding -J4.
A first step of precipitating C as a hydroxide, a second step of mixing 8 g of slurry containing each precipitate obtained in the step, filtration, washing with water, and drying, and mixing the resulting powder with water. This method consists of a third step of calcining and pulverizing.

この他に、#開昭59−195574号公報、特開昭5
9−195575号公報、#開+iiH59−1955
76号公報等におIQ(、湿式合成法によるセラミック
原料粉末の製造方法を提案しくlへる。
In addition, #Kokai No. 59-195574, JP-A No. 5
Publication No. 9-195575, #open+iiH59-1955
Publication No. 76, etc. proposes a method for producing ceramic raw material powder using a wet synthesis method.

上記した1へずれの方法も、たとえばB、にっ−へCは
、Baの塩化物の溶液に炭1浚ソーダなどの沈澱剤を含
む溶液を加え〔PHj直を7〜10にtJI4長し炭酸
塩とじ〔沈澱する工程を含んだものである。
For example, in method B and C, a solution containing a precipitant such as charcoal and soda is added to a solution of Ba chloride [PHj is adjusted to 7 to 10 and tJI is increased by 4]. Carbonate precipitation [includes a step of precipitation]

(発明が解決しようとする問題) 上記した工、程におIQご、セラミック材料の構成成分
を含む溶液に沈澱剤を含む溶液を接触させる際、沈澱剤
を含む溶液がセラミック材料の構成成分を含む溶液の全
容、横に対し〔占める割合は少な層。したかつC1沈澱
剤を含む溶液と接触した場合、セラミック材料の構成成
分を含む溶液の該接触部分のpH値が非常に高くなり、
接触し〔1八な1^部分のpH値はそのままの直を示し
た状態となシ、局部的にpH値が大きく相違することに
々る。
(Problem to be Solved by the Invention) In the above steps, when a solution containing a precipitant is brought into contact with a solution containing a component of a ceramic material, the solution containing a precipitant is brought into contact with a solution containing a component of a ceramic material. A layer that occupies a small proportion of the total volume and width of the solution it contains. When contacted with a solution containing a C1 precipitant and a C1 precipitant, the pH value of the contacting part of the solution containing the constituent components of the ceramic material becomes very high;
The pH value of the contact area remains the same, but the pH value may vary greatly locally.

また、沈澱剤を含む溶液をセラミック材料となる構成成
分を含む溶液に加えるに従つC1反応槽内のpkl値が
徐々に変化し〔ゆくことになる。反応の段階では時系列
的に各生成物、つ′まり前駆体−中間化合物−セラミッ
ク化合物が生成されCゆくが、初期の段階で生成された
生成物と後の段階で生成された生成物との粉体特性が異
なる点で好ましいものではなかった。さらに各生成物の
中に辻むの化学種自身が安定に存在するpH値のi囲、
りtあり、そのpH値の範囲を外れると再溶解するかあ
る1^は構成比の異なる化学種が生成されることになる
Further, as the solution containing the precipitant is added to the solution containing the constituent components of the ceramic material, the pkl value in the C1 reaction tank gradually changes. In the reaction stage, each product, that is, precursor, intermediate compound, and ceramic compound, is produced in chronological order, but the products produced in the early stages and those produced in the later stages are It was not preferable in that the powder properties of the two were different. Furthermore, the pH range at which the chemical species itself stably exists in each product,
If the pH value falls outside of that range, it may re-dissolve or chemical species with different composition ratios will be produced.

このように、沈澱剤を含む溶液をセラミック構成成分を
含む溶液に加える段階で、相互に接触する部分のpH値
が大幅に違つCくるため、一旦生成された生成物の再溶
解、ある骨へは構成比ズレの生じた生成物の再生成を起
こすことになる。
In this way, when a solution containing a precipitant is added to a solution containing ceramic constituents, the pH values of the parts that come into contact with each other vary greatly, resulting in the re-dissolution of the product once formed and the possibility of some bone formation. This will result in the regeneration of a product with a mismatched composition ratio.

(発明の目的) この発明はセラミック原料粉末を生成するに際し、反応
過程中での生成物の再溶解や、構成比のズした生成物が
再生成されることのな1八製造方法を提供することを目
的とする。
(Objective of the Invention) The present invention provides a method for producing ceramic raw material powder that does not cause re-dissolution of the product during the reaction process or re-generation of products with a different composition ratio. The purpose is to

(発明の構成) すなわち、この発明を要約すれば、反応槽に少なくとも
1種以上のセラミック構成成分を含む第1の溶液と、沈
澱剤を含む第2の溶液を導入するに際し、 反応槽内での沈殿条件に適したpH値になるように、前
記第1の溶液と前記第2の溶液を同一の反応槽内にeれ
ぞれ別々の経路から送り込み、前記第1の溶液と第2の
溶液を前記反応槽内に送り込んだ段階で接触反応と攪拌
混合とを行Iへ、この発明方法を実施するだめの装置例
を第1図もとづ1へ°〔説明する。
(Structure of the Invention) That is, to summarize the present invention, when introducing a first solution containing at least one ceramic component and a second solution containing a precipitant into a reaction tank, in the reaction tank: The first solution and the second solution are fed into the same reaction tank through separate routes so that the pH value is suitable for the precipitation conditions of the first solution and the second solution. At the stage where the solution is sent into the reaction tank, contact reaction and stirring and mixing are carried out in line I, and an example of an apparatus for carrying out the method of the present invention is explained in line 1 based on FIG.

第1図にお拳へ(,1,2はされそれ、少なくとも1m
以上のセラミック構成成分を含む第1の溶液、沈澱剤を
含む溶液を貯めC1へる貯蔵槽であり、各貯R槽1,2
にはパイプ3.4が接続されCおり、定量送入ポンプ5
.6によシ結合パイプ7から前記第1の溶液と第2の溶
液とが反応槽8に送シ込まれ、この段階で接触が図られ
る。図示した状態では、反応槽dの手前、つまり結合パ
イプ7中で第1の溶液と第2の溶液との接触が行なわれ
るが、定量送入ポンプ5.6で定J送られC1^るため
、接触反応時のpH値のバラツキは問題にならな1^こ
とは明らかである。反応槽8に送り込まれた第1の溶液
と第2の溶液はモータ10に卓結しC層る1毫拌羽眼9
により攪拌混合が行われる。
Figure 1 shows the fist (, 1, 2 are at least 1 m away)
This is a storage tank for storing a first solution containing the above ceramic constituents and a solution containing a precipitant and leading to C1, and each storage tank 1, 2
A pipe 3.4 is connected to C, and a metering pump 5
.. 6, the first solution and the second solution are fed into the reaction tank 8 from the coupling pipe 7, and at this stage they are brought into contact. In the illustrated state, the first solution and the second solution are brought into contact in front of the reaction tank d, that is, in the coupling pipe 7, but since they are fed at a constant rate of J by the metering pump 5.6, C1 It is clear that the variation in pH value during the catalytic reaction is not a problem1^. The first solution and the second solution fed into the reaction tank 8 are connected to a motor 10, and a 1-stroke stirring mechanism 9 is connected to the motor 10.
Stirring and mixing are performed by.

この攪拌羽根9は煮視的にみると均一な混合作用をもた
らし、大きくみれば対流循環をもたらす。
This stirring blade 9 brings about a uniform mixing effect when viewed from a boiling point, and brings about convection circulation when viewed from a broader perspective.

攪拌羽根9により4分171〜54gの流速で(乏拌混
合される。攪拌混合が行なわれた第1の溶液と第2の溶
液は時系列的に前1駆体−中間生成物一七ラミック化合
物と1^う段階を経ながら、攪拌羽根9の作用で矢印Y
の方向に送られ、さらに矢印X方向に送られC1送り出
しパイプ11から放出される。バイアf11内では生成
比IA4kを含むスラリーが送り出され〔lQる。
The stirring blade 9 mixes at a flow rate of 171 to 54 g for 4 minutes (sparsely stirring). The first solution and the second solution that have been stirred and mixed are chronologically divided into the precursor 1 precursor - intermediate product 17 ramic. While passing through the steps of 1^ with the compound, the arrow Y is moved by the action of the stirring blade 9.
It is further sent in the direction of arrow X and discharged from the C1 delivery pipe 11. A slurry containing a production ratio IA4k is sent out within the via f11.

得られた生成比!吻は濾過、洗浄工程を経〔収集される
。むし°〔、このような生成沈澱物は、たとえば第2図
に示すように、第1図の装萱を使用しC作成しCお1へ
た2種の生成沈殿物Aと生成沈澱物Bとをそれぞれ準備
し、各沈殿物ム、Bを所定比率で混合し、これを仮焼す
ることによシ複合酸化′吻セラミックとし〔得ることが
できる。この段階で得られた複合酸化物セラミックとし
〔は、たとえばチタン酸バリウム系、チタン酸ストロン
チウム系、チタン酸マグネシウム系、チタン酸ジルコン
【唆鉛系など各種のものが挙げられる。したがつC1得
ようとする複合酸化物セラミックに適応しC生成沈澱物
を準備すればよ1^ことになる。
Obtained production ratio! The snout is collected after a filtration and washing process. For example, as shown in FIG. 2, such a precipitate is prepared by using the equipment shown in FIG. A composite oxide ceramic can be obtained by preparing each precipitate, B, and B in a predetermined ratio, and calcining the mixture. The composite oxide ceramics obtained at this stage include various ceramics such as barium titanate, strontium titanate, magnesium titanate, and zirconium titanate. Therefore, it is necessary to prepare a C-generating precipitate suitable for the composite oxide ceramic from which C1 is to be obtained.

(効 果) この発明方法によれば、少なくとも1種以上のセラミッ
ク構成成分を含む第1の溶液と、沈澱剤を含む第2の溶
液を沈澱条件に適したpH値となるように定量反応槽へ
別々に送り込み、接触させると同時に攪拌混合を行うと
1^う処理により生成比1ifI吻を得るものであるた
め、一定の流れの中で接触段階で次々に生成反応が行な
われることになシ、pH値ズレの発生がなく、反応過徨
中での生成物の再溶解が起こる恐れがなく、したがつ〔
溝成比にズレのな1^生成物が得られると1へう効果を
有する。
(Effects) According to the method of the present invention, a first solution containing at least one ceramic component and a second solution containing a precipitant are mixed in a quantitative reaction tank so that the pH value is suitable for the precipitation conditions. Since the production ratio of 1ifI is obtained by feeding the components separately and stirring and mixing them at the same time as they are brought into contact with each other, the production reaction occurs one after another in the contact stage in a constant flow. , there is no pH value deviation, and there is no risk of re-dissolution of the product during the reaction process.
If a 1^ product with no deviation in the groove ratio is obtained, it will have a 1^ effect.

(実 施 PJ ) 以下、この発明を実施例に従つ〔詳細に説明する。(Implementation PJ) Hereinafter, this invention will be described in detail according to examples.

実施例1゜ まず、塩化バリウム、硝涜バリウムなどのoJ溶性のバ
リウム塩2.000−uルを補水10eに溶解した溶、
夜へを作り、Ha、Co、またシま(NH4)ICo、
からなる沈澱剤7モルを補水101に溶解した溶液Bを
作った。
Example 1: First, 2.000 μl of OJ-soluble barium salt such as barium chloride or barium nitrate was dissolved in 10 e of replenishing water.
Make the night, Ha, Co, Matashima (NH4) ICo,
A solution B was prepared by dissolving 7 moles of a precipitant consisting of 10 parts of replenishing water.

各溶液A、Bを各貯、吠瘤に入れcおき、定量送入ボ/
プを用(へC反応槽内でのpH値が&5〜19.5の範
囲になるように制御しながら反応槽に別々に送り込み、
溶液A、Bを接触反応させると同時に反応槽内で攪拌混
合した。この段階で溶液A、Bd反応を起しCバリウム
を含む沈殿カニが生成された。
Pour each solution A and B into each reservoir and tubercle, and place them at intervals of 30 minutes, and then
Pumps are separately fed into the reaction tank while controlling the pH value in the reaction tank to be in the range of &5 to 19.5.
Solutions A and B were brought into contact reaction and simultaneously mixed by stirring in a reaction tank. At this stage, solution A and Bd reacted to produce a precipitate containing barium C.

一方、Ti1J、からなる可溶性のチタン塩2.000
モルとE鵞0t5JOuCt−純水5t’に溶解した溶
液Cを作り、NaOH,NH4OH,KOHなどの沈澱
剤10モルを純水5gに溶解したJs液りを作った。
On the other hand, 2.000 soluble titanium salts consisting of Ti1J
A solution C was prepared by dissolving 0t5JOuCt in 5t' of pure water, and a Js liquid was prepared by dissolving 10 moles of a precipitant such as NaOH, NH4OH, or KOH in 5g of pure water.

各溶液C,Dを各貯Id!、漕に入れCおき、走破送入
ポンプを用1^C反応槽内でのp)i It:6t s
、s〜1つ。
Each solution C, D is stored in each storage Id! , put it in a tank and use a running inlet pump.p)i It:6ts in the reaction tank
, s ~ one.

5の範囲になるように制御しながら反応槽に別々に送り
込み、Jmc、Dを接触反応させると同時に反応槽内で
攪拌混合した。この段階で溶液C8Dは反応を起しCチ
タンを含む沈殿物πが生成された。
They were separately fed into a reaction tank while controlling the temperature to be within the range of 5, and were stirred and mixed in the reaction tank at the same time as Jmc and D were brought into contact reaction. At this stage, the solution C8D caused a reaction and a precipitate π containing C titanium was generated.

このようにしC得られた2櫨頌の沈澱ウニpよび沈殿物
■を混合し、ce−″が残存しなくなるまで洗浄、脱水
を繰シ返した。この工程で得られた粉末を乾燥し、90
0″Cで仮焼した。この仮焼粉末を粉砕し“Cチタン酸
バリウム(BaTiO*パルラミック粉末を得た。
In this way, the precipitated sea urchin p of the 2-layer C and the precipitate ■ were mixed, and the washing and dehydration were repeated until no ce-'' remained.The powder obtained in this step was dried, 90
It was calcined at 0''C. This calcined powder was pulverized to obtain barium titanate (BaTiO*parramic powder).

得られたセラミック粉末につ1イC1透過型分析電子顕
aWlにより1μmのスポット径で10(r!A所を適
当に選択しCF:の点におけるモル比と分析した。第1
表はその比の測定結果を示したものである。
The obtained ceramic powder was analyzed using a C1 transmission analytical electron microscope aWl with a spot diameter of 1 μm and the molar ratio at the point of 10 (r!A) was selected appropriately.
The table shows the measurement results of the ratio.

第1表 第1表から明らかなように、この実捲列によれば得られ
たセラミック原料用粉末につ(八′C1はとんどモル比
のズレのなIへものが潜られ(1へる。
Table 1 As is clear from Table 1, according to this actual winding process, the powder for ceramic raw materials obtained (8'C1 is almost always mixed with I without any deviation in molar ratio). decrease.

以上の実施列ではチタン酸バリウム(BaTiO,)に
つ1へ〔説明した。が、Baの他、Sr、Ca、mnな
どの1橿または2種以上を含有することもaT能である
。また、T1の他、Zn、 S n、 C8,L%、’
 l)eMnなどの14または2種以上を含有させるこ
ともoT能である。なお、Mnにツlへ’ (はBa1
11.Ti−の1へずれか一方ある1八は双方に含有さ
せCもよ1へことを付記しCおく。
In the above implementation series, barium titanate (BaTiO,) was explained first. However, it is also possible to contain one or more of Sr, Ca, mn, etc. in addition to Ba. In addition to T1, Zn, Sn, C8, L%,'
l) It is also possible to include 14 or 2 or more species such as eMn. In addition, Mn to Tsul' (is Ba1
11. It is noted that 18, which is present on either side of Ti-, is included in both, and C is also added to 1.

実施例と まず、塩化バリウム、硝酸バリウムなどの可溶性のパリ
ウ・ム塩2.000モルを純水10t!に溶解した溶液
Eを作シ、Na!Go、または(NH,)l cosか
らなる沈謔剤7モルを純水10&’に溶解した溶液Fを
作った。
Example First, 2.000 moles of soluble pallium salts such as barium chloride and barium nitrate were added to 10 tons of pure water! Prepare solution E dissolved in Na! A solution F was prepared by dissolving 7 moles of a precipitating agent consisting of Go or (NH,)l cos in 10&' of pure water.

各溶液ル、Pを各貯蔵槽に入れC2き、定量送入ポンプ
を用1QC反応槽内でのpH値が13.5〜19゜5の
範囲になるように制御しながら反応槽に別々に送シ込み
、溶液ffi、Pを接触反応させると同時に反応槽内で
1拌混合した。この段階で溶液A。
Put each solution and P into each storage tank and add them to the reaction tank separately using a metering pump. The solutions ffi and P were brought into contact and reacted, and at the same time, they were stirred and mixed in the reaction tank. Solution A at this stage.

?は反応を起しCバリウムをきり沈殿物■が生成された
? A reaction occurred and barium C was removed, and a precipitate (2) was produced.

一方、TlCl4.Zr0C1,?9H,O,5nC1
,。
On the other hand, TlCl4. Zr0C1,? 9H,O,5nC1
,.

Bi(No、)、−5H,Oの塩の1!31:2.00
4モルとH,O。
Bi(No, ), -5H,O salt 1!31:2.00
4 moles and H,O.

5ooccを純水1o gVca41.り溶液Gを作り
、NaOH,NH4OH,KOHなどの沈殿剤1モルを
1趨水511Ca傅した溶液Hを作った。
5oocc of pure water 1ogVca41. A solution G was prepared, and a solution H was prepared by adding 1 mole of a precipitant such as NaOH, NH4OH, or KOH to 511 Ca of water.

各溶液G、Hを各戸RWIに入れCおき、定量送入ポン
プを用1/−%C反応槽内でのpH値が&5@’)、5
のa!囲になるように制御しながら反応槽に別々に送シ
込み、溶液G、Hを接触させると同時に反応槽内で攪拌
混合した。この段階で溶液G、Hは反応を起しくTi、
 Zr、 an、 Biを含む沈11J、HIB Nが
生成された。
Put each solution G and H into each RWI and place C, and use a metering pump to make the pH value in the reaction tank 1/-% C
a! The solutions were separately pumped into the reaction tank while being controlled so that the solution G and H were brought into contact with each other, and at the same time, they were stirred and mixed in the reaction tank. At this stage, solutions G and H start to react and Ti,
Precipitate 11J and HIBN containing Zr, an, and Bi were produced.

9 ”、 N a Of(、N B 40 H、l−O
Hなどの沈殿剤1モルを純水11&C溶噂した溶液Jを
作った。
9”, N a Of(, N B 40 H, l-O
A solution J was prepared by dissolving 1 mol of a precipitant such as H in pure water 11&C.

各溶液工、Jを各戸!1..lI!に入れCおき、定量
送入ポンプ奢用+4 (反応槽内でのp’H値、が8.
5〜1 ’1.5の範囲になるように制御しなから反応
槽に別々に送り込み、溶液工、Jを接触させると同時に
反応槽内で4拌混合した。この段階で?81夜工、Jは
反応を起こしくPl)を含む沈澱kVが生成された。
Each solution engineering, J to each house! 1. .. lI! Put it in the tank and set it at C, and the metering pump is equipped with +4 (the p'H value in the reaction tank is 8.
The mixture was controlled to be in the range of 5 to 1'1.5, and then sent separately to the reaction tank, and at the same time as the solution and J were brought into contact with each other, they were stirred and mixed in the reaction tank for 4 hours. At this stage? After 81 hours of operation, a precipitate kV containing J (Pl), which caused the reaction, was produced.

このようにし〔得られた3種類の沈澱物m 、llv。In this way, three types of precipitates were obtained.

Vを混合し、CIEE残存しなくなるまで洗浄、脱水を
繰り返した。この王権を経〔得られた粉末を乾燥し、q
oar: で仮焼した。この仮焼粉末を粉砕しくZr、
 Sn、 Bi、 Pbを含むチタン酸バリウム(B 
a T i O、)のセラミック粉末を得た。
V was mixed, and washing and dehydration were repeated until no CIEE remained. After this royal power, dry the powder obtained and
oar: Temporarily fired. This calcined powder is crushed with Zr,
Barium titanate (B) containing Sn, Bi, Pb
A ceramic powder of a T i O,) was obtained.

得られたセラミック粉末につ一^〔、透A型分析1子顕
微諺によi)1μmのスポット径で11011i所をA
当に選択しCUの点におけるモル比を分析した。第2表
はモル比の測定結果を示したものである。
The obtained ceramic powder was subjected to A-type analysis at 11011i locations with a spot diameter of 1 μm.
The molar ratio in terms of CU was selected and analyzed. Table 2 shows the results of measuring molar ratios.

第2表 第2表から明らかなように、この実施例によれば得られ
たセラミック原料用粉末につ1つ〔、はとんどモル比の
ズレのな1^ものが得られ〔−へる。
Table 2 As is clear from Table 2, according to this example, ceramic raw material powders with almost no deviation in molar ratio were obtained. Ru.

以上の実施例では3種類の沈殿物を混合、仮焼すること
によりセラミック原料用粉末を1整したものであるが、
3s類以上の沈澱物を生成し、これらを混合、仮焼し〔
セラミック原料用粉末を得ることも可能である。
In the above example, the ceramic raw material powder was prepared by mixing and calcining three types of precipitates.
Precipitates of 3s or higher are generated, mixed and calcined [
It is also possible to obtain powder for ceramic raw materials.

実施例3 まず、チタンの塩化、mであるTi(J4からなる可溶
性の塩2.000モルとHzOx500CCとを14水
5#に!4した溶液Kを作り、Na0j(、KOH,N
H4OHなどの沈澱剤10モルを純水5eに溶解したI
溶液りを作った。
Example 3 First, a solution K was prepared by mixing 2.000 moles of a soluble salt consisting of Ti(J4) and HzOx500CC in 14 water (5#4!4) for titanium chloride, and Na0j(, KOH, N
I in which 10 mol of a precipitant such as H4OH was dissolved in pure water 5e
I made a solution.

各、@夜f、Lを各戸R4に入れCおき、走通送入ポン
プを用1^C反応槽内でのpH11iが8.5〜1つ。
At night, put F and L in each house R4 and place C, and use a running feed pump.The pH in the reaction tank is 8.5 to 1.

5の範囲になるように制御しながら反応槽に別々に送り
込み、溶液に、Lを接触させると同時に反応槽内で4拌
混合した。この段階で溶液に、Lは沈澱反応と起しCチ
タンをきむ沈謔物五が生成された。
They were separately fed into a reaction tank while controlling the temperature to be within the range of 5, and at the same time as the L was brought into contact with the solution, they were stirred and mixed in the reaction tank for 4 times. At this stage, a precipitate 5 was produced in the solution, in which L was subjected to a precipitation reaction and C was removed from titanium.

一方、塩化バリウム、硝酸バリウムなどの可溶性のバリ
ウム、rJ[2,000モルを純水10gに溶、弄シた
溶iMを作り、Na、Cosまたは(NHa )雪CO
sからなる沈澱剤7モルを純水101 K溶解した溶液
Nを作った。
On the other hand, soluble barium such as barium chloride or barium nitrate, rJ [2,000 mol, was dissolved in 10 g of pure water to make a molten iM, and Na, Cos or (NHa) snow CO
A solution N was prepared by dissolving 7 moles of a precipitant consisting of S in 101 K of pure water.

各溶液M、Nを各貯蔵槽に入れcおき、定量送入ポンプ
を用1八C反応槽内でのpH値が8.シ99.5の範囲
になるように+tllJJI Lながら反応槽に別々に
送り込む一方、先に生成したチタンを含む沈澱物■のス
ラリーを走通送入ポンプを用1へご反応槽に送り込む。
Put each solution M and N into each storage tank, and use a metering pump until the pH value in the 18C reaction tank is 8. The slurry of the precipitate (2) containing titanium produced earlier is fed into the reaction tank through the running feed pump (1).

このとき反応、1内にお1^(、W液Mと溶液Nとが接
触するとともに同時に反応槽内でづ1拌混合される一方
、チタンを含む沈澱物五のスラリーも同時に反応1内に
送り込まれC攪拌混合される。チタンを含む沈澱物■の
スラリーは溶液M、Nの沈澱反応が終了する時点と一致
し〔供給が終了するように反応槽に送り込まれる。この
段階でバリウムとチタンを含む沈澱物■が生成される。
At this time, in the reaction 1, the W solution M and the solution N come into contact and are simultaneously stirred and mixed in the reaction tank, while the slurry of the precipitate 5 containing titanium also enters the reaction 1 at the same time. The slurry of precipitate (2) containing titanium is fed into the reaction tank so that the supply ends at the same time as the precipitation reaction of solutions M and N ends.At this stage, barium and titanium are A precipitate (■) containing is formed.

このようにし°C得られた沈澱物題をC4−がなくなる
まで洗浄、脱水を繰り返した。この工程を経°C得られ
た粉末を乾撮し、900でで仮焼した。
The precipitate thus obtained at °C was washed and dehydrated repeatedly until C4- was eliminated. After this process was carried out, the resulting powder was photographed and calcined at 900°C.

この仮焼粉末を粉砕し°Cチタン酸バリウム(BaTi
e、)のセラミック粉末を得た。
This calcined powder was pulverized at °C to obtain barium titanate (BaTi).
e,) ceramic powder was obtained.

得られたセラミック粉末につ層C1透過型分析電子顕微
鏡により1μmのスポット径で10個所を適当に選択し
Cその点におけるモル比を分析した。
The obtained ceramic powder was analyzed using a C1 transmission analytical electron microscope at 10 appropriately selected locations with a spot diameter of 1 μm, and the molar ratio at those points was analyzed.

第3表は・eのモル化の測定結果を示したものである。Table 3 shows the results of measuring the molarization of .e.

第3表 第5表から明らかなように、この実施例によれば得られ
たセラミック原料用粉末につ1へC1はとんど外モル比
のズレのなI^ものが得られ゛〔1^る。
As is clear from Table 3 and Table 5, according to this example, the obtained ceramic raw material powder had almost no deviation in the molar ratio of C1 to C1. ^ru.

この実施例ではチタン酸バリウム(BaTiO,)につ
亀へC説明したが、Baの他、Sr、Ca、Mnなどの
1f!!i−1たけ2種以上を含有させCもよく、また
T1εの他、Zn、an、Ce、La、Nb、Mn な
どを含有させCもよ1へ。
In this example, the explanation was given for barium titanate (BaTiO,), but in addition to Ba, 1f! ! C is good by containing two or more types of i-1, and C is also good by containing Zn, an, Ce, La, Nb, Mn, etc. in addition to T1ε.

この実施例を要約すれば、反応槽内での沈澱条件に適し
たpH値となるように、少なくとも1種以上のセラミッ
ク構成成分を含む第1の溶液と、沈澱剤を含む第2の溶
液を同一の反応槽内にbれぞれ別々の経路から送り込み
、前記第1の溶液と第2の溶液を反応槽に送る段階で接
触反応と攪拌混合とを行つ°〔セラミックの沈護物を作
つ〔おく工程を第1の工程とし、次1^で、前記第1の
溶液に含まれるセラミック構成成分と異なるセラミック
構成成分を少なくとも1種以上含む第3の溶液と、沈澱
剤を含む第4の溶液を前記第1の工程と同様にし゛〔処
理するが、第5の溶液と第4の溶液を反応槽に送シ込ん
で接触反応と1拌混合を行う段階で第1の工程で冴られ
たセラミックの化S物を含むスラリーを反応槽に送り込
み、第3の溶液と第4の溶液との沈澱反応が終了する時
点と一致し〔供給が終了するように送り込まれる工程か
らなるものである。
To summarize this example, a first solution containing at least one ceramic component and a second solution containing a precipitant are mixed at a pH value suitable for the precipitation conditions in the reaction vessel. B are sent into the same reaction tank through separate routes, and contact reaction and stirring mixing are performed at the step of sending the first solution and the second solution to the reaction tank. The first step is to prepare the solution, and in the next step, a third solution containing at least one ceramic constituent different from the ceramic constituent contained in the first solution and a third solution containing a precipitant are added. The solution in step 4 is treated in the same manner as in the first step, except that the step in which the fifth solution and the fourth solution are fed into the reaction tank and subjected to contact reaction and mixing by stirring is carried out in the first step. A step consisting of feeding a slurry containing a refined ceramic compound into a reaction tank so that the supply ends at the same time as the precipitation reaction between the third solution and the fourth solution ends. It is.

比較例 まず、第1の槽にお1へ(、BaC#iの水溶液に炭酸
アンモン((NH4)、Goりを滴下しCpH値を9〜
9.5に調整し、BaCO5としC沈澱させた。
Comparative Example: First, ammonium carbonate ((NH4) and gourd were added dropwise to an aqueous solution of BaC#i in the first tank to bring the CpH value to 9~9.
The temperature was adjusted to 9.5, and BaCO5 was used to precipitate C.

また、第2の槽にお1^(、TiCl4の水溶液に安定
剤である30チ過酸化水素水15mt!を滴下しさらに
水酸化アンモニウム(NH40H)をaTし°CpHを
9〜9.5に調整し、T1を含む沈澱・吻を得た。
In addition, 15 mt of 30% hydrogen peroxide solution, which is a stabilizer, was added dropwise to the aqueous solution of TiCl4 in the second tank, and then ammonium hydroxide (NH40H) was added at °C to adjust the pH to 9 to 9.5. The precipitate and proboscis containing T1 were obtained.

各沈澱物のスラリーを混合し、濾過したのち水洗した。The slurries of each precipitate were mixed, filtered, and washed with water.

この水洗原料をボールミルで混合し、ひきつづき−過、
乾燥し、さらに900Cの温^で1時間仮焼しCチタン
酸バリウム(BaTiO,)の仮焼粉、末を得た。
The water-washed raw materials are mixed in a ball mill, followed by filtration,
It was dried and further calcined for 1 hour at a temperature of 900C to obtain a calcined powder of barium titanate (BaTiO,).

この仮焼粉末につ1へ°C透過型分析電子顕微鏡によシ
1μmのスポット径で10@所を適当に選択し°Cその
点におけるモル比を分析した。44表はモル比の測定結
果を示したものである。
This calcined powder was analyzed using a transmission analytical electron microscope at 1°C at 10 points with a spot diameter of 1 μm, and the molar ratio at that point was analyzed. Table 44 shows the results of measuring molar ratios.

第4表 第4表からこの比較列によれば各分析地点におけるモル
比のズレが大きく、理、r*値に近1ヘセラミック粉末
が得られ〔−へなIへ。これは接触反応段階でのpH値
が局部的に大きく相違することによるものと判断できる
Table 4 According to this comparison column from Table 4, the molar ratio at each analysis point varied greatly, and ceramic powder was obtained near the r* value of 1. This can be considered to be due to large local differences in pH values at the contact reaction stage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明方法ら実施するための装置例の概略
図である。 第2図は、この発明方法により得られたセラミックの構
成成分を含む生成沈澱物を用1へ゛(4合、仮焼に至る
までの工、囚図である。 1・2は貯蔵漕、3.4はパイプ%5.6は定遣送入ポ
ンプ、7は結合パイプ、81ま反応槽、9は攪拌羽根、
10はモータ。
FIG. 1 is a schematic diagram of an example of an apparatus for carrying out the method of the present invention. Fig. 2 shows the process of using the produced precipitate containing the constituent components of the ceramic obtained by the method of the present invention to 1 (4 cases) and calcination. 1 and 2 are storage vessels, 3 .4 is the pipe% 5.6 is the constant feeding pump, 7 is the coupling pipe, 81 is the reaction tank, 9 is the stirring blade,
10 is a motor.

Claims (2)

【特許請求の範囲】[Claims] (1)反応槽に、少なくとも1粒以上のセラミック構成
成分を含む第1の溶液と、沈澱剤を含む第2の溶液を導
入するに際し、 反応槽内での沈澱条件に適したpH値となるように、前
記第1の溶液と前記第2の溶液を同一の反応槽内にそれ
ぞれ別々の経路から送り込み、前記第1の溶液と第2の
溶液を前記反応槽に送り込んだ段階で接触反応と攪拌混
合とを行い、セラミックの沈澱物を得ることを特徴とす
るセラミック原料用粉末の製造方法。
(1) When introducing the first solution containing at least one ceramic component and the second solution containing a precipitant into the reaction tank, the pH value is suitable for the precipitation conditions in the reaction tank. As shown in FIG. 1. A method for producing powder for ceramic raw material, which comprises stirring and mixing to obtain a ceramic precipitate.
(2)前記工程にもとづいて得られたセラミック原料用
粉末を2種以上作り、これらの各セラミック原料用粉末
を所定比率で混合したのち仮焼することを特徴とする特
許請求の範囲第(1)項記載のセラミック原料用粉末の
製造方法。
(2) Two or more types of ceramic raw material powder obtained based on the above process are prepared, and each of these ceramic raw material powders is mixed in a predetermined ratio and then calcined. ) A method for producing a powder for ceramic raw materials as described in item 2.
JP60275668A 1985-12-06 1985-12-06 Method for producing powder for ceramic raw material Expired - Lifetime JPH0733292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60275668A JPH0733292B2 (en) 1985-12-06 1985-12-06 Method for producing powder for ceramic raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60275668A JPH0733292B2 (en) 1985-12-06 1985-12-06 Method for producing powder for ceramic raw material

Publications (2)

Publication Number Publication Date
JPS62134220A true JPS62134220A (en) 1987-06-17
JPH0733292B2 JPH0733292B2 (en) 1995-04-12

Family

ID=17558682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60275668A Expired - Lifetime JPH0733292B2 (en) 1985-12-06 1985-12-06 Method for producing powder for ceramic raw material

Country Status (1)

Country Link
JP (1) JPH0733292B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1200348A4 (en) * 1999-04-28 2005-12-07 Isoray Llc Method of separation of cesium-131 from barium
US7791859B2 (en) 2005-03-29 2010-09-07 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing dielectric ceramic powder, and multilayer ceramic capacitor obtained by using the ceramic powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127874A (en) * 1974-08-31 1976-03-09 Matsushita Electric Ind Co Ltd FUNSHASUINETSUHANNOHOHO OYOBI SOCHI
JPS57145031A (en) * 1981-09-16 1982-09-07 Onahama Sakai Kagaku Kk Preparation of barium sulfate
JPS59128263A (en) * 1983-01-12 1984-07-24 株式会社村田製作所 Manufacture of ceramic raw material powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127874A (en) * 1974-08-31 1976-03-09 Matsushita Electric Ind Co Ltd FUNSHASUINETSUHANNOHOHO OYOBI SOCHI
JPS57145031A (en) * 1981-09-16 1982-09-07 Onahama Sakai Kagaku Kk Preparation of barium sulfate
JPS59128263A (en) * 1983-01-12 1984-07-24 株式会社村田製作所 Manufacture of ceramic raw material powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1200348A4 (en) * 1999-04-28 2005-12-07 Isoray Llc Method of separation of cesium-131 from barium
US7791859B2 (en) 2005-03-29 2010-09-07 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing dielectric ceramic powder, and multilayer ceramic capacitor obtained by using the ceramic powder

Also Published As

Publication number Publication date
JPH0733292B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
US4839339A (en) Superconductor precursor mixtures made by precipitation method
JPH0517112A (en) Production of crystalline zirconium phosphate compound
Yoshimura et al. Low‐Temperature Synthesis of Cubic and Rhombohedral Y6WO12 by a Polymerized Complex Method
JPS6214490B2 (en)
JPH10216522A (en) Catalyst for methanol synthesis
JPS62134220A (en) Manufacture of powder for ceramic material
JPS61500834A (en) Manufacturing method of powder suitable for fritting
JPS61186219A (en) Production of lead-containing fine powder
JPH0159967B2 (en)
JPS6153113A (en) Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
JPS623005A (en) Production of easily sintering perovskite raw material powder by powder dispersing
JPS623004A (en) Production of easily sintering perovskite raw material powder by wet method
JP2547007B2 (en) Method for producing perovskite type oxide fine powder
JP2001261611A (en) Method for producing compound metal oxide and its precursor and method for producing water-soluble organometallic compound to be used for production of the precursor
JP3240643B2 (en) Manufacturing method of ceramic raw material fine powder
JP2981553B1 (en) Spinel manufacturing method
JPS61163118A (en) Process for preparing raw material powder of easily sinterable perovskite by wet powder dispersion process
JPH013019A (en) Method for producing perovskite ceramic fine powder
RU2193014C1 (en) Process of spherical nickel hydroxide production
Pathak et al. A Versatile Coprecipitation Route for the Preparation of Mixed Oxide Powders
JPH0331647B2 (en)
JPS63231907A (en) Manufacture of ceramic composition
JPH0556287B2 (en)
JPH0688793B2 (en) Manufacturing method of perovskite raw material powder
JPH0524861B2 (en)