JPH0733292B2 - Method for producing powder for ceramic raw material - Google Patents

Method for producing powder for ceramic raw material

Info

Publication number
JPH0733292B2
JPH0733292B2 JP60275668A JP27566885A JPH0733292B2 JP H0733292 B2 JPH0733292 B2 JP H0733292B2 JP 60275668 A JP60275668 A JP 60275668A JP 27566885 A JP27566885 A JP 27566885A JP H0733292 B2 JPH0733292 B2 JP H0733292B2
Authority
JP
Japan
Prior art keywords
solution
reaction tank
ceramic
raw material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60275668A
Other languages
Japanese (ja)
Other versions
JPS62134220A (en
Inventor
義治 加藤
昌造 児島
薫 杉田
参省 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP60275668A priority Critical patent/JPH0733292B2/en
Publication of JPS62134220A publication Critical patent/JPS62134220A/en
Publication of JPH0733292B2 publication Critical patent/JPH0733292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は電子セラミツクに用いられるセラミツク原料
用粉末の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a ceramic raw material powder used in electronic ceramics.

(従来の技術) 湿式合成法により微粉末のセラミツク原料粉末を得る方
法として、発明者等はたとえば特開昭59−128263号公報
に記載した内容のものを提案した。
(Prior Art) As a method for obtaining a finely divided ceramic raw material powder by a wet synthesis method, the present inventors have proposed, for example, the one described in JP-A-59-128263.

このセラミツク原料粉末の製造方法は次のような工程か
らなる。
The method for producing the ceramic raw material powder comprises the following steps.

つまり、第1の槽において、構成元素として少なくとも
Ba,Sr,Ca,Mgの1種を含む硝酸塩または塩化物の水溶液
に、炭酸ガス、または炭酸ソーダ、炭酸アンモンなどの
可溶性炭酸塩水溶液を加えてpHを7〜10に調整し、炭酸
塩として沈澱させ、 第2の槽において、構成元素として少なくともTi,Zr,S
n,Pbの1種を含む硝酸塩または塩化物の水溶液に苛性ソ
ーダ、水酸化アンモニウムなどの可溶性水酸化物水溶液
を加えてpH値を7〜10に調整し、水酸化物として沈澱さ
せる第1の工程と、 第1の工程によつて得られた各沈殿物を含むスラリーを
混合し、過したのち水洗、乾燥する第2の工程と、 得られた粉末を仮焼、粉砕する第3の工程と、からなる
方法である。
That is, in the first tank, at least as a constituent element
To the aqueous solution of nitrate or chloride containing one of Ba, Sr, Ca and Mg, add carbon dioxide gas or soluble carbonate solution such as sodium carbonate and ammonium carbonate to adjust the pH to 7-10, After precipitation, in the second tank, at least Ti, Zr, S as constituent elements
The first step of adding a soluble hydroxide aqueous solution such as caustic soda or ammonium hydroxide to an aqueous solution of a nitrate or chloride containing one of n and Pb to adjust the pH value to 7 to 10 and precipitating it as a hydroxide And a second step of mixing the slurry containing each precipitate obtained by the first step, washing with water after passing, and drying, and a third step of calcining and crushing the obtained powder. It is a method consisting of.

この他に、特開昭59−195574号公報、特開昭59−195575
号公報、特開昭59−195576号公報等において、湿式合成
法によるセラミツク原料粉末の製造方法を提案してい
る。
In addition to these, JP-A-59-195574 and JP-A-59-195575.
Japanese Patent Laid-Open No. 59-195576 and the like propose a method for producing a ceramic raw material powder by a wet synthesis method.

上記したいずれの方法も、たとえばBaについては、Baの
塩化物の溶液に炭酸ソーダなどの沈澱剤を含む溶液を加
えてPH値を7〜10に調整し、炭酸塩として沈澱する工程
を含んだものである。
Each of the above methods includes, for example, for Ba, a step of adding a solution containing a precipitant such as sodium carbonate to a solution of Ba chloride to adjust the PH value to 7 to 10 and precipitating as a carbonate. It is a thing.

(発明が解決しようとする問題) 上記した工程において、セラミツク材料の構成成分を含
む溶液に沈澱剤を含む溶液を接触させる際、沈澱剤を含
む溶液がセラミツク材料の構成成分を含む溶液の全容積
に対して占める割合は少ない。したがつて、沈澱剤を含
む溶液と接触した場合、セラミツク材料の構成成分を含
む溶液の該接触部分のpH値が非常に高くなり、接触して
いない部分のpH値はそのままの値を示した状態となり、
局部的にpH値が大きく相違することになる。また、沈澱
剤を含む溶液をセラミツク材料となる構成成分を含む溶
液に加えるに従つて、反応槽内のpH値が徐々に変化して
ゆくことになる。反応の段階では時系列的に各生成物、
つまり前駆体→中間化合物→セラミツク化合物が生成さ
れてゆくが、初期の段階で生成された生成物と後の段階
で生成された生成物との粉体特性が異なる点で好ましい
ものではなかつた。さらに各生成物の中には、その化学
種自身が安定に存在するpH値の範囲があり、そのpH値の
範囲を外れると再溶解するかあるいは構成比の異なる化
学種が生成されることになる。
(Problems to be Solved by the Invention) In the above-mentioned step, when the solution containing the precipitant is brought into contact with the solution containing the constituents of the ceramic material, the total volume of the solution containing the constituents of the ceramic material The ratio to Therefore, when contacted with the solution containing the precipitant, the pH value of the contact part of the solution containing the constituent components of the ceramic material became very high, and the pH value of the part not contacted was the same value. State,
There will be a large difference locally in the pH value. Further, as the solution containing the precipitating agent is added to the solution containing the constituents to be the ceramic material, the pH value in the reaction tank gradually changes. At the reaction stage, each product in time series,
That is, the precursor → intermediate compound → ceramic compound is produced, but it is not preferable because the powder properties of the product produced in the initial stage and the product produced in the latter stage are different. Furthermore, each product has a range of pH values in which the chemical species itself exists stably, and if it goes out of the pH value range, it will be redissolved or a chemical species with a different composition ratio will be generated. Become.

このように、沈澱剤を含む溶液をセラミツク構成成分を
含む溶液に加える段階で、相互に接触する部分のpH値が
大幅に違つてくるため、一旦生成された生成物の再溶
解、あるいは構成比ズレの生じた生成物の再生成を起こ
すことになる。
As described above, at the stage of adding the solution containing the precipitant to the solution containing the ceramic constituents, the pH values of the portions in contact with each other are significantly different. This will cause re-generation of the product with the deviation.

(発明の目的) この発明はセラミツク原料粉末を生成するに際し、反応
過程中での生成物の再溶解や、構成比のズレた生成物が
再生成されることのない製造方法を提供することを目的
とする。
(Object of the Invention) The present invention provides a production method in which, when a ceramic raw material powder is produced, the product is not redissolved during the reaction process and a product having a different composition ratio is not regenerated. To aim.

(発明の構成) すなわち、この発明を要約すれば、反応槽に少なくとも
1種以上のセラミツク構成成分を含む第1の溶液と、沈
澱剤を含む第2の溶液を導入するに際し、 反応槽内での沈澱条件に適したpH値になるように、前記
第1の溶液と前記第2の溶液を同一の反応槽内にそれぞ
れ別々の経路から送り込み、 前記第1の溶液と前記第2の溶液を前記反応槽内に送り
込んだ段階で接触反応と撹拌混合とを行い、セラミツク
の沈澱物を得ることを特徴とするセラミツク原料用粉末
の製造方法である。
(Structure of the Invention) That is, to summarize the present invention, when introducing a first solution containing at least one or more ceramic constituents and a second solution containing a precipitant into the reaction vessel, The first solution and the second solution are fed into the same reaction tank from different routes so that the pH value is suitable for the precipitation conditions of 1., and the first solution and the second solution are mixed. A method for producing a powder for a ceramic raw material, which comprises subjecting a ceramic precipitate to a catalytic reaction and stirring and mixing at a stage of being fed into the reaction tank.

この発明方法を実施するための装置例を第1図もとづい
て説明する。
An example of an apparatus for carrying out the method of the present invention will be described with reference to FIG.

第1図において、1,2はそれぞれ、少なくとも1種以上
のセラミツク構成成分を含む第1の溶液、沈澱剤を含む
溶液を貯めている貯蔵槽であり、各貯蔵槽1,2にはパイ
プ3,4が接続されており、定量送入ポンプ5,6により結合
パイプ7から前記第1の溶液と第2の溶液とが反応槽8
に送り込まれ、この段階で接触が図られる。図示した状
態では、反応槽8の手前、つまり結合パイプ7中で第1
の溶液と第2の溶液との接触が行われるが、定量送入ポ
ンプ5,6で定量送られているため、接触反応時のpH値の
バラツキは問題にならないことは明らかである。反応槽
8に送り込まれた第1の溶液と第2の溶液はモータ10に
連結している撹拌羽恨9により撹拌混合が行われる。こ
の撹拌羽根9は微視的にみると均一な混合作用をもたら
し、大きくみれば対流循環をもたらす。撹拌羽根9によ
り毎分17l〜34lの流速で撹拌混合される。撹拌混合が行
なわれた第1の溶液と第2の溶液は時系列的に前駆体→
中間生成物→セラミツク化合物という段階を経ながら、
撹拌羽根9の作用で矢印Yの方向に送られ、さらに矢印
X方向に送られて、送り出しパイプ11から放出される。
パイプ11内では生成沈澱物を含むスラリーが送り出され
ている。
In FIG. 1, 1 and 2 are storage tanks for storing a first solution containing at least one or more ceramic constituents and a solution containing a precipitating agent. , 4 are connected to each other, and the first solution and the second solution are connected from the coupling pipe 7 to the reaction tank 8 by the constant amount pumps 5 and 6.
, And contact is made at this stage. In the state shown in the drawing, the first part is formed in front of the reaction tank 8, that is, in the connecting pipe 7.
The solution of No. 2 and the second solution are brought into contact with each other, but it is clear that the variation in the pH value during the contact reaction does not matter because they are sent by the constant amount pumps 5 and 6. The first solution and the second solution sent to the reaction tank 8 are agitated and mixed by an agitating blade 9 connected to a motor 10. Microscopically, the stirring blade 9 provides a uniform mixing action, and if it is large, it provides convection circulation. The stirring blade 9 stirs and mixes at a flow rate of 17 l to 34 l per minute. The first solution and the second solution, which have been mixed by stirring, are precursors in time series →
While going through the steps of intermediate product → ceramic compound,
By the action of the stirring blade 9, it is sent in the direction of the arrow Y, further sent in the direction of the arrow X, and discharged from the sending pipe 11.
In the pipe 11, a slurry containing the produced precipitate is sent out.

得られた生成沈澱物は過、洗浄工程を経て収集され
る。そして、このような生成沈澱物は、たとえば第2図
に示すように、第1図の装置を使用して作成しておいた
2種の生成沈澱物Aと生成沈澱物Bとをそれぞれ準備
し、各沈澱物A,Bを所定比率で混合し、これを仮焼する
ことにより複合酸化物セラミツクとして得ることができ
る。この段階で得られた複合酸化物セラミツクとして
は、たとえばチタン酸バリウム系、チタン酸ストロンチ
ウム系、チタン酸マグネシウム系、チタン酸ジルコン酸
鉛系など各種のものが挙げられる。したがつて、得よう
とする複合酸化物セラミツクに適応して生成沈澱物を準
備すればよいことになる。
The formed precipitate obtained is collected through a washing process. For such a produced precipitate, for example, as shown in FIG. 2, two kinds of produced precipitate A and produced precipitate B prepared by using the apparatus of FIG. 1 are prepared respectively. By mixing the respective precipitates A and B in a predetermined ratio and calcining them, a composite oxide ceramic can be obtained. Examples of the composite oxide ceramics obtained at this stage include various types such as barium titanate type, strontium titanate type, magnesium titanate type, lead zirconate titanate type. Therefore, it is only necessary to prepare the formed precipitate in conformity with the composite oxide ceramic to be obtained.

(効果) この発明方法によれば、少なくとも1種以上のセラミツ
ク構成成分を含む第1の溶液と、沈澱剤を含む第2の溶
液を沈澱条件に適したpH値となるように定量反応槽へ別
々に送り込み、接触させると同時に撹拌混合を行うとい
う処理により生成沈澱物を得るものであるため、一定の
流れの中で接触段階で次々に生成反応が行なわれること
になり、pH値ズレの発生がなく、反応過程中での生成物
の再溶解が起こる恐れがなく、したがつて構成比にズレ
のない生成物が得られるという効果を有する。
(Effect) According to the method of the present invention, the first solution containing at least one or more ceramic constituents and the second solution containing the precipitating agent are placed in a quantitative reaction tank so that the pH value is suitable for the precipitation conditions. Since the formed precipitates are obtained by the process of separately feeding and contacting and stirring and mixing at the same time, the generation reaction is carried out one after another in the contact stage in a constant flow, and the pH value shift occurs. There is no risk of re-dissolution of the product in the course of the reaction, and therefore, there is an effect that a product having a consistent composition ratio can be obtained.

(実施例) 以下、この発明を実施例に従つて詳細に説明する。(Examples) Hereinafter, the present invention will be described in detail with reference to Examples.

実施例1. まず、塩化バリウム、硝酸バリウムなどの可溶性のバリ
ウム塩2.000モルを純水10lに溶解した溶液Aを作り、NA
2CO3または(NH4)2CO3からなる沈澱剤7モルを純水10lに
溶解した溶液Bを作つた。
Example 1. First, a solution A in which 2.000 mol of a soluble barium salt such as barium chloride or barium nitrate was dissolved in 10 l of pure water was prepared.
A solution B was prepared by dissolving 7 mol of a precipitant consisting of 2 CO 3 or (NH 4 ) 2 CO 3 in 10 l of pure water.

各溶液A,Bを各貯蔵槽に入れておき、定量送入ポンプを
用いて反応槽内でのpH値が8.5〜10.5の範囲になるよう
に制御しながら反応槽に別々に送り込み、溶液A,Bを接
触反応させると同時に反応槽内で撹拌混合した。この段
階で溶液A,Bは反応を起してバリウムを含む沈澱物Iが
生成された。
Put each solution A and B in each storage tank, and send them separately to the reaction tank while controlling the pH value in the reaction tank to be in the range of 8.5 to 10.5 by using the constant volume pump. At the same time, B and B were contact-reacted, and at the same time, they were mixed by stirring in the reaction tank. At this stage, the solutions A and B reacted to produce a precipitate I containing barium.

一方、TiCl4からなる可溶性のチタン塩2.000モルとH2O2
500ccを純水5lに溶解した溶液Cを作り、NaOH,NH4OH,KO
Hなどの沈澱剤10モルを純水5lに溶解した溶液Dを作つ
た。
On the other hand, 2.000 mol of a soluble titanium salt composed of TiCl 4 and H 2 O 2
Make a solution C by dissolving 500 cc in 5 l of pure water, and use NaOH, NH 4 OH, KO
A solution D was prepared by dissolving 10 mol of a precipitant such as H in 5 l of pure water.

各溶液C,Dを各貯蔵槽に入れておき、定量送入ポンプを
用いて反応槽内でのpH値が8.5〜10.5の範囲になるよう
に制御しながら反応槽に別々に送り込み、溶液C,Dを接
触反応させると同時に反応槽内で撹拌混合した。この段
階で溶液C,Dは反応を起してチタンを含む沈澱物IIが生
成された。
Put each solution C and D in each storage tank, and send them separately to the reaction tank while controlling the pH value in the reaction tank to be in the range of 8.5 to 10.5 by using the constant volume pump. , D were contact-reacted, and simultaneously stirred and mixed in the reaction tank. At this stage, the solutions C and D reacted to form a precipitate II containing titanium.

このようにして得られた2種類の沈澱物Iおよび沈澱物
IIを混合し、Cl-が残存しなくなるまで洗浄、脱水を繰
り返した。この工程で得られた粉末を乾燥し、900℃で
仮焼した。この仮焼粉末を粉砕してチタン酸バリウム
(BaTiO3)のセラミツク粉末を得た。
Two kinds of precipitate I and precipitate thus obtained
Mixing II, Cl - washed until no residual was repeated dehydration. The powder obtained in this step was dried and calcined at 900 ° C. The calcined powder was pulverized to obtain barium titanate (BaTiO 3 ) ceramic powder.

得られたセラミツク粉末について、透過型分析電子顕微
鏡により1μmのスポツト径で10個所を適当に選択して
その点におけるモル比を分析した。第1表はその比の測
定結果を示したものである。
With respect to the obtained ceramic powder, 10 positions were appropriately selected with a spot diameter of 1 μm by a transmission analytical electron microscope, and the molar ratio at that point was analyzed. Table 1 shows the measurement results of the ratio.

第1表から明らかなように、この実施例によれば得られ
たセラミツク原料用粉末について、ほとんどモル比のズ
レのないものが得られている。
As is clear from Table 1, according to this example, the ceramic raw material powder obtained has almost no difference in molar ratio.

以上の実施例ではチタン酸バリウム(BaTiO3)について
説明したが、Baの他、Sr,Ca,Mnなどの1種又は2種以上
を含有することも可能である。また、Tiの他、Zn,Sn,C
e,La,Nb,Mnなどの1種または2種以上を含有させること
も可能である。尚、MnについてはBa側,Ti側のいずれか
一方あるいは双方に含有させてもよいことを付記してお
く。
Although barium titanate (BaTiO 3 ) has been described in the above embodiments, it is possible to contain one or more of Sr, Ca, Mn and the like in addition to Ba. In addition to Ti, Zn, Sn, C
It is also possible to contain one kind or two or more kinds such as e, La, Nb and Mn. Note that Mn may be contained in either or both of the Ba side and the Ti side.

実施例2. まず、塩化バリウム、硝酸バリウムなどの可溶性のバリ
ウム塩2.000モルを純水10lに溶解した溶液Eを作り、NA
2CO3または(NH4)2CO3からなる沈澱剤7モルを純水10lに
溶解した溶液Fを作つた。
Example 2. First, a solution E prepared by dissolving 2.000 mol of a soluble barium salt such as barium chloride or barium nitrate in 10 l of pure water was prepared.
A solution F was prepared by dissolving 7 mol of a precipitant consisting of 2 CO 3 or (NH 4 ) 2 CO 3 in 10 l of pure water.

各溶液E,Fを各貯蔵槽に入れておき、定量送入ポンプを
用いて反応槽内でのpH値が8.5〜10.5の範囲になるよう
に制御しながら反応槽に別々に送り込み、溶液E,Fを接
触反応させると同時に反応槽内で撹拌混合した。この段
階で溶液E,Fは反応を起してバリウムを含む沈澱物IIIが
生成された。
Put each solution E and F in each storage tank, and send them separately to the reaction tank while controlling the pH value in the reaction tank to be in the range of 8.5 to 10.5 by using the constant volume pump. , F were reacted with each other at the same time with stirring and mixing in the reactor. At this stage, the solutions E and F reacted to generate a precipitate III containing barium.

一方TiCl4,ZrOCl2・8H2O,SnCl4,Bi(NO3)2・5H2Oの塩
の総量2.004モルとH2O2500ccを純水10lに溶解した溶液
Gを作り、NaOH,NH4OH,KOHなどの沈澱剤10モルを純水5l
に溶解した溶液Hを作つた。
On the other hand, the total amount of the salts of TiCl 4 , ZrOCl 2 · 8H 2 O, SnCl 4 , and Bi (NO 3 ) 2 · 5H 2 O (2.004 mol) and H 2 O 2 500cc were dissolved in 10 l of pure water to prepare a solution G, 10 mol of NH 4 OH, KOH and other precipitants were added to 5 l of pure water.
A solution H dissolved in

各溶液G,Hを各貯蔵槽に入れておき、定量送入ポンプを
用いて反応槽内でのpH値が8.5〜10.5の範囲になるよう
に制御しながら反応槽に別々に送り込み、溶液G,Hを接
触させると同時に反応槽内で撹拌混合した。この段階で
溶液G,Hは反応を起してTi,Zr,Sn,Biを含む沈澱物IVが生
成された。
Put each solution G and H in each storage tank and send them separately to the reaction tank while controlling the pH value in the reaction tank to be in the range of 8.5 to 10.5 by using the constant volume pump. , H were brought into contact with each other, and at the same time, they were mixed by stirring in the reaction tank. At this stage, the solutions G and H reacted and a precipitate IV containing Ti, Zr, Sn and Bi was produced.

更に、硝酸塩、酢酸塩などの可溶性の鉛塩0.016モルとH
2O25ccを純水1に溶解した溶液Iを作り、NaOH,NH4O
H,KOHなどの沈澱剤1モルを純水1に溶解した溶液J
を作つた。
In addition, 0.016 mol of soluble lead salts such as nitrates and acetates and H
Make a solution I of 2 O 2 5 cc dissolved in pure water 1 and add NaOH, NH 4 O
Solution J prepared by dissolving 1 mol of H, KOH or other precipitating agent in 1 pure water
Made.

各溶液I,Jを各貯蔵槽に入れておき、定量送入ポンプを
用いて反応槽内でのpH値が8.5〜10.5の範囲になるよう
に制御しながら反応槽に別々に送り込み、溶液I,Jを接
触させると同時に反応槽内で撹拌混合した。この段階で
溶液I,Jは反応を起こしてPbを含む沈澱物Vが生成され
た。
Put each solution I and J in each storage tank, and send them separately to the reaction tank while controlling the pH value in the reaction tank to be in the range of 8.5 to 10.5 by using the constant volume pump. , J were brought into contact with each other, and at the same time, they were stirred and mixed in the reaction tank. At this stage, the solutions I and J reacted to generate a precipitate V containing Pb.

このようにして得られた3種類の沈澱物III,IV,Vを混合
し、Cl-が残存しなくなるまで洗浄、脱水を繰り返し
た。この工程を経て得られた粉末を乾燥し、900℃で仮
焼した。この仮焼粉末を粉砕してZr,Sn,Bi,Pbを含むチ
タン酸バリウム(BaTiO3)のセラミツク粉末を得た。
Thus three precipitate III was obtained, IV, and V were mixed, Cl - washed until no residual was repeated dehydration. The powder obtained through this step was dried and calcined at 900 ° C. The calcined powder was pulverized to obtain barium titanate (BaTiO 3 ) ceramic powder containing Zr, Sn, Bi and Pb.

得られたセラミツク粉末について、透過型分析電子顕微
鏡により1μmのスポツト径で10個所を適当に選択して
その点におけるモル比を分析した。第2表はモル比の測
定結果を示したものである。
With respect to the obtained ceramic powder, 10 positions were appropriately selected with a spot diameter of 1 μm by a transmission analytical electron microscope, and the molar ratio at that point was analyzed. Table 2 shows the measurement results of the molar ratio.

第2表から明らかなように、この実施例によれば得られ
たセラミツク原料用粉末について、ほとんどモル比のズ
レのないものが得られている。
As is clear from Table 2, according to this example, the powder for ceramic raw material obtained has almost no difference in molar ratio.

以上の実施例では3種類の沈澱物を混合、仮焼すること
によりセラミツク原料用粉末を調整したものであるが、
3種類以上の沈澱物を生成し、これらを混合、仮焼して
セラミツク原料用粉末を得ることも可能である。
In the above examples, the three types of precipitates were mixed and calcined to prepare the ceramic raw material powder.
It is also possible to produce three or more kinds of precipitates, mix these, and calcinate them to obtain a powder for a ceramic raw material.

実施例3 先ず、チタンの塩化物であるTiCl4からなる可溶性の塩
2.000モルとH2O2500ccとを純水5lに溶解した溶液Kを作
り、NaOH,KOH,NH4OHなどの沈澱剤10モルを純水5lに溶解
した溶液Lを作つた。
Example 3 First, a soluble salt composed of TiCl 4 which is a chloride of titanium
A solution K was prepared by dissolving 2.000 mol and 500 cc of H 2 O 2 in 5 l of pure water, and a solution L was prepared by dissolving 10 mol of a precipitating agent such as NaOH, KOH, NH 4 OH in 5 l of pure water.

各溶液K,Lを各貯蔵槽に入れておき、定量送入ポンプを
用いて反応槽内でのpH値が8.5〜10.5の範囲になるよう
に制御しながら反応槽に別々に送り込み、溶液K,Lを接
触させると同時に反応槽内で撹拌混合した。この段階で
溶液K,Lは沈澱反応を起してチタンを含む沈澱物VIが生
成された。
Put each solution K, L in each storage tank and send them separately to the reaction tank while controlling the pH value in the reaction tank to be in the range of 8.5 to 10.5 by using the constant volume pump. , L were brought into contact with each other, and at the same time, they were stirred and mixed in the reaction vessel. At this stage, the solutions K and L caused a precipitation reaction to generate a precipitate VI containing titanium.

一方、塩化バリウム、硝酸バリウムなどの可溶性のバリ
ウム塩2.000モルを純水10lに溶解した溶液Mを作り、Na
2CO3または(NH4)2CO3からなる沈澱剤7モルを純水10lに
溶解した溶液Nを作つた。
On the other hand, a solution M in which 2.000 mol of a soluble barium salt such as barium chloride or barium nitrate is dissolved in 10 l of pure water is prepared.
A solution N was prepared by dissolving 7 mol of a precipitant consisting of 2 CO 3 or (NH 4 ) 2 CO 3 in 10 l of pure water.

各溶液M,Nを各貯蔵槽に入れておき、定量送入ポンプを
用いて反応槽内でのpH値が8.5〜10.5の範囲になるよう
に制御しながら反応槽に別々に送り込む一方、先に生成
したチタンを含む沈澱物VIのスラリーを定量送入ポンプ
を用いて反応槽に送り込む。このとき反応槽内において
溶液Mと溶液Nとが接触するとともに同時に反応槽内で
撹拌混合される一方、チタンを含む沈澱物VIのスラリー
も同時に反応槽内に送り込まれて撹拌混合される。チタ
ンを含む沈澱物VIのスラリーは溶液M,Nの沈澱反応が終
了する時点と一致して供給が終了するように反応槽に送
り込まれる。この段階でバリウムとチタンを含む沈澱物
VIIが生成される。
Put each solution M, N in each storage tank, and send them separately to the reaction tank while controlling the pH value in the reaction tank to be in the range of 8.5 to 10.5 by using a constant volume pump. The slurry of the precipitate VI containing titanium produced in 1 above is fed into the reaction tank using a constant-volume feed pump. At this time, the solution M and the solution N are brought into contact with each other in the reaction tank and simultaneously stirred and mixed in the reaction tank, while the slurry of the precipitate VI containing titanium is also simultaneously sent into the reaction tank and stirred and mixed. The slurry of the precipitate VI containing titanium is sent to the reaction tank so that the supply is completed at the same time as the completion of the precipitation reaction of the solutions M and N. Precipitate containing barium and titanium at this stage
VII is generated.

このようにして得られた沈澱物VIIをCl-がなくなるまで
洗浄、脱水を繰り返した。この工程を経て得られた粉末
を乾燥し、900℃で仮焼した。この仮焼粉末を粉砕して
チタン酸バリウム(BaTiO3)のセラミツク粉末を得た。
The thus precipitate VII obtained Cl - washed until free and repeated dehydration. The powder obtained through this step was dried and calcined at 900 ° C. The calcined powder was pulverized to obtain barium titanate (BaTiO 3 ) ceramic powder.

得られたセラミツク粉末について、透過型分析電子顕微
鏡により1μmのスポツト径で10個所を適当に選択して
その点におけるモル比を分析した。第3表はモル比の測
定結果を示したものである。
With respect to the obtained ceramic powder, 10 positions were appropriately selected with a spot diameter of 1 μm by a transmission analytical electron microscope, and the molar ratio at that point was analyzed. Table 3 shows the measurement results of the molar ratio.

第3表から明らかなように、この実施例によれば得られ
たセラミツク原料用粉末について、ほとんどモル比のズ
レのないものが得られている。
As is clear from Table 3, according to this example, the powder for ceramic raw material obtained has almost no difference in molar ratio.

この実施例ではチタン酸バリウム(BaTiO3)について説
明したが、Baの他、Sr,Ca,Mnなどの1種又は2種以上を
含有させてもよく、またTiその他、Zn,Sn,Ce,La,Nb,Mn
などを含有させてもよい。
In this example, barium titanate (BaTiO 3 ) was described, but in addition to Ba, one or more of Sr, Ca, Mn and the like may be contained, and Ti, Zn, Sn, Ce, La, Nb, Mn
Etc. may be contained.

この実施例を要約すれば、反応槽内での沈澱条件に適し
たpH値となるように、少なくとも1種以上のセラミツク
構成成分を含む第1の溶液と、沈澱剤を含む第2の溶液
を同一の反応槽内にそれぞれ別々の経路から送り込み、
前記第1の溶液と第2の溶液を反応槽に送る段階で接触
反応と撹拌混合とを行つてセラミツクの沈澱物を作つて
おく工程を第1の工程とし、次いで、前記第1の溶液に
含まれるセラミツク構成成分と異なるセラミツク構成成
分を少なくとも1種以上含む第3の溶液と、沈澱剤を含
む第4の溶液を前記第1の工程と同様にして処理する
が、第3の溶液と第4の溶液を反応槽に送り込んで接触
反応と撹拌混合を行う段階で第1の工程で得られたセラ
ミツクの沈澱物を含むスラリーを反応槽に送り込み、第
3の溶液と第4の溶液との沈澱反応が終了する時点と一
致して供給が終了するように送り込まれる工程からなる
ものである。
In summary of this example, a first solution containing at least one or more ceramic constituents and a second solution containing a precipitating agent are provided so that the pH value is suitable for the precipitation conditions in the reaction vessel. Inject into the same reaction tank from different routes,
A step of preparing a ceramic precipitate by carrying out catalytic reaction and stirring and mixing in the step of sending the first solution and the second solution to a reaction tank is a first step, and then the first solution is added. A third solution containing at least one ceramic constituent different from the ceramic constituent contained therein and a fourth solution containing a precipitating agent are treated in the same manner as in the first step. The solution containing the precipitate of the ceramics obtained in the first step is fed into the reaction tank at the stage of feeding the solution of No. 4 into the reaction tank to carry out the catalytic reaction and stirring and mixing, and the third solution and the fourth solution are mixed. It comprises a step of feeding so that the supply is completed at the same time as the completion of the precipitation reaction.

比較例 まず、第1の槽において、BaCl2の水溶液に炭酸アンモ
ン〔(NH4)2CO3〕を滴下してpH値を9〜9.5に調整し、Ba
CO3として沈澱させた。
Comparative Example First, in the first tank, the pH value was adjusted to 9-9.5 by dropwise addition of ammonium carbonate [(NH 4) 2 CO 3] in an aqueous solution of BaCl 2, Ba
Precipitated as CO 3 .

また、第2の槽において、TiCl4の水溶液に安定剤であ
る30%過酸化水素水15mlを滴下し、さらに水酸化アンモ
ニウム(NH4OH)を滴下してpHを9〜9.5に調整し、Tiを
含む沈澱物を得た。
In the second tank, 15 ml of 30% hydrogen peroxide solution, which is a stabilizer, was added dropwise to an aqueous solution of TiCl 4 , and ammonium hydroxide (NH 4 OH) was added dropwise to adjust the pH to 9 to 9.5. A precipitate containing Ti was obtained.

各沈澱物のスラリーを混合し、過したのち水洗した。
この水洗原料をボールミルで混合し、引きつづき過、
乾燥し、さらに900℃の温度で1時間仮焼してチタン酸
バリウム(BaTiO3)の仮焼粉末を得た。
The slurry of each precipitate was mixed, filtered, and washed with water.
Mix the raw materials for washing with a ball mill and continue to
It was dried and further calcined at a temperature of 900 ° C. for 1 hour to obtain a calcined powder of barium titanate (BaTiO 3 ).

この仮焼粉末について透過型分析電子顕微鏡により1μ
mのスポツト径で10個所を適当に選択してその点におけ
るモル比を分析した。第4表はモル比の測定結果を示し
たものである。
1 μm of this calcined powder was observed with a transmission type analytical electron microscope.
10 spots with a spot diameter of m were appropriately selected and the molar ratio at that point was analyzed. Table 4 shows the measurement results of the molar ratio.

第4表からこの比較例によれば各分析地点におけるモル
比のズレが大きく、理論値に近いセラミツク粉末が得ら
れていない。これは接触反応段階でのpH値が局部的に大
きく相違することによるものと判断できる。
From Table 4, according to this comparative example, the deviation of the molar ratio at each analysis point is large, and a ceramic powder close to the theoretical value is not obtained. It can be judged that this is because the pH values at the contact reaction stage are largely different locally.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明方法を実施するための装置例の概略
図である。 第2図は、この発明方法により得られたセラミツクの構
成成分を含む生成沈澱物を用いて混合、仮焼に至るまで
の工程図である。 1,2は貯蔵槽、3,4はパイプ、5,6は定量送入ポンプ、7
は結合パイプ、8は反応槽、9は撹拌羽根、10はモー
タ。
FIG. 1 is a schematic view of an example of an apparatus for carrying out the method of the present invention. FIG. 2 is a process chart up to mixing and calcination using the formed precipitate containing the constituent components of the ceramic obtained by the method of the present invention. 1, 2 are storage tanks, 3 and 4 are pipes, 5 and 6 are metering pumps, 7
Is a connecting pipe, 8 is a reaction tank, 9 is a stirring blade, and 10 is a motor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】反応槽に、少なくとも1種以上のセラミッ
ク構成成分を含む第1の溶液と、沈澱剤を含む第2の溶
液を導入するに際し、 反応槽内での沈澱条件に適したpH値となるように、前記
第1の溶液と前記第2の溶液を同一の反応槽内にそれぞ
れ別々の経路から送り込み、 前記第1の溶液と第2の溶液を前記反応槽に送り込んだ
段階で接触反応と撹拌混合とを行い、セラミックの沈澱
物を得ることを特徴とするセラミック原料用粉末の製造
方法。
1. When introducing a first solution containing at least one or more kinds of ceramic constituents and a second solution containing a precipitating agent into a reaction tank, a pH value suitable for precipitation conditions in the reaction tank. So that the first solution and the second solution are fed into the same reaction tank from different paths, respectively, and contact is made at the stage when the first solution and the second solution are fed into the reaction tank. A method for producing a powder for a ceramic raw material, which comprises reacting and stirring and mixing to obtain a ceramic precipitate.
【請求項2】前記工程にもとづいて得られたセラミック
原料用粉末を2種以上作り、これらの各セラミック原料
用粉末を所定比率で混合したのち仮焼することを特徴と
する特許請求の範囲第(1)項記載のセラミック原料用
粉末の製造方法。
2. The method according to claim 1, wherein two or more kinds of ceramic raw material powders obtained according to the step are prepared, and the respective ceramic raw material powders are mixed at a predetermined ratio and then calcined. A method for producing a powder for a ceramic raw material according to the item (1).
JP60275668A 1985-12-06 1985-12-06 Method for producing powder for ceramic raw material Expired - Lifetime JPH0733292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60275668A JPH0733292B2 (en) 1985-12-06 1985-12-06 Method for producing powder for ceramic raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60275668A JPH0733292B2 (en) 1985-12-06 1985-12-06 Method for producing powder for ceramic raw material

Publications (2)

Publication Number Publication Date
JPS62134220A JPS62134220A (en) 1987-06-17
JPH0733292B2 true JPH0733292B2 (en) 1995-04-12

Family

ID=17558682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60275668A Expired - Lifetime JPH0733292B2 (en) 1985-12-06 1985-12-06 Method for producing powder for ceramic raw material

Country Status (1)

Country Link
JP (1) JPH0733292B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066302A (en) * 1999-04-28 2000-05-23 Bray; Lane A. Method of separation of Cesium-131 from Barium
KR100674846B1 (en) 2005-03-29 2007-01-26 삼성전기주식회사 Method for manufacturing dielectric ceramic powder, and multilayer ceramic capacitor using the seramic powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127874A (en) * 1974-08-31 1976-03-09 Matsushita Electric Ind Co Ltd FUNSHASUINETSUHANNOHOHO OYOBI SOCHI
JPS57145031A (en) * 1981-09-16 1982-09-07 Onahama Sakai Kagaku Kk Preparation of barium sulfate
JPS59128263A (en) * 1983-01-12 1984-07-24 株式会社村田製作所 Manufacture of ceramic raw material powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127874A (en) * 1974-08-31 1976-03-09 Matsushita Electric Ind Co Ltd FUNSHASUINETSUHANNOHOHO OYOBI SOCHI
JPS57145031A (en) * 1981-09-16 1982-09-07 Onahama Sakai Kagaku Kk Preparation of barium sulfate
JPS59128263A (en) * 1983-01-12 1984-07-24 株式会社村田製作所 Manufacture of ceramic raw material powder

Also Published As

Publication number Publication date
JPS62134220A (en) 1987-06-17

Similar Documents

Publication Publication Date Title
CN1137053C (en) Method for producing barium titanate powder
JP2003137550A (en) Manufacturing method for zirconia/ceria-based composite oxide
CN106558695A (en) A kind of nickel cobalt aluminum complex hydroxide, nickel cobalt aluminium composite oxide and preparation method thereof
JPH07291607A (en) Production of ceramic powder
CN100427395C (en) Preparation method of mono dispersion nano-alpha aluminium oxide particle powder
JP2703487B2 (en) Method for producing nickel hydroxide
USRE24324E (en) Method of making stable cupric
JP2004533397A5 (en)
JPH07172826A (en) Cerium carbonate and cerium oxide each having novel shape and their production
JPH0733292B2 (en) Method for producing powder for ceramic raw material
JP4378522B2 (en) Production method of barium carbonate
JPS61186219A (en) Production of lead-containing fine powder
JPH0246531B2 (en)
JP3321902B2 (en) Production method of electronic ceramic raw material powder
US3418073A (en) Production of ammonium zirconyl carbonate
JP2547007B2 (en) Method for producing perovskite type oxide fine powder
JP3240643B2 (en) Manufacturing method of ceramic raw material fine powder
JPS623004A (en) Production of easily sintering perovskite raw material powder by wet method
JP2981553B1 (en) Spinel manufacturing method
RU2193014C1 (en) Process of spherical nickel hydroxide production
JPH0635329B2 (en) Method for producing zirconium oxide powder
JP3681550B2 (en) Rare earth oxide and method for producing the same
JPS61163118A (en) Process for preparing raw material powder of easily sinterable perovskite by wet powder dispersion process
JPH09221318A (en) Production of acicular crystal basic magnesium chloride
JPS63144116A (en) Production of oxide particle