JPS62132509A - Foam removing device - Google Patents

Foam removing device

Info

Publication number
JPS62132509A
JPS62132509A JP27068585A JP27068585A JPS62132509A JP S62132509 A JPS62132509 A JP S62132509A JP 27068585 A JP27068585 A JP 27068585A JP 27068585 A JP27068585 A JP 27068585A JP S62132509 A JPS62132509 A JP S62132509A
Authority
JP
Japan
Prior art keywords
gas
soln
solution
liquid
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27068585A
Other languages
Japanese (ja)
Inventor
Motonori Yanagi
基典 柳
Masaharu Hama
浜 正治
Hiromi Sakurai
桜井 弘美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP27068585A priority Critical patent/JPS62132509A/en
Publication of JPS62132509A publication Critical patent/JPS62132509A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE:To eliminate the need for providing valves to a piping in which liquid passes and to make handling simple by fixing a gas-liquid separating membrane tube forming a flow passage for liquid to be treated so as to inscribe the inside wall surface of a vacuum chamber mounted with a cooler. CONSTITUTION:Cooling water 8 is supplied to cool the entire part of the cooling vacuum chamber 16 and the gas-liquid separating membrane tube 15. A vacuum pump 9 is then operated to evacuate the inside of the cooling vacuum chamber 16 to <=600mmHg vacuum. A soln. 1 is supplied from a soln. supply port 3 to the gas-liquid separating membrane 15 upon ending of the operation. The soln. of a treating agent past the tube 15 is drawn through a soln. discharge pipe 5. The gaseous particles forming foam permeates the gas-liquid separating membrane and are discharged to the outside of the soln. when the soln. 1 pass the tube 15. The gas having a relatively large mol.wt. is cooled with progression of the soln. and is dissolved into the soln., by which the foam is finally removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、溶液あるいは純液中の不純物、ダストの微
量分析に関し、と(VC分析の支障となる気泡の除去可
能な気泡除去装置V(関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to trace analysis of impurities and dust in solutions or pure liquids, and (a bubble removal device V ( related.

〔従来の技術〕[Conventional technology]

第2図は従来の例えば溶液中気泡除去装置を示す断面説
明図であシ、図において、(1)は溶液、(2)はこの
溶液(1)を−担保持し脱気を行うための溶液槽、(3
)は溶液槽(2)に溶液(1)全供給するための溶液供
給配管、(4)は溶液供給用パルプ、(5)は溶液排出
配管、(6)は溶液排出用パルプである。(7)は溶液
槽(2)の側壁に取付けられた冷却器であり、(8)は
冷却を行うための冷水である。(9)は溶液槽(2)内
を防圧にするための真空ポンプ、αOは真空ポンプ(9
)ヲ溶液槽(2)に接続する真空ポンプ用配管、(1υ
は真空ポンプ用パルプ、(1zは真空ポンプ排気口であ
る。(I3)は溶液槽(2)内を陽圧にするために使用
する加圧用ガス配管、(14は加圧用ガスパルプである
FIG. 2 is a cross-sectional explanatory view showing a conventional bubble removal device in a solution, for example, in the figure, (1) is a solution, and (2) is a device for supporting and degassing this solution (1). Solution tank, (3
) is a solution supply pipe for completely supplying the solution (1) to the solution tank (2), (4) is a solution supply pulp, (5) is a solution discharge pipe, and (6) is a solution discharge pulp. (7) is a cooler attached to the side wall of the solution tank (2), and (8) is cold water for cooling. (9) is a vacuum pump to prevent pressure inside the solution tank (2), αO is a vacuum pump (9)
) Vacuum pump piping connected to solution tank (2), (1υ
is pulp for a vacuum pump, (1z is a vacuum pump exhaust port, (I3) is a pressurizing gas pipe used to make the inside of the solution tank (2) positive pressure, (14 is a pressurizing gas pulp).

次に動作について説明する。まず、溶液排出用パルプ(
6)、真空ポンプ用パルプ0υ、加圧用ガスバルブα4
)k閉じてから、溶液供給用パルプ(4)ヲ開け、溶液
(1)を溶液槽(2)に供給する。溶液(1)が溶液槽
(2)内を適度に満たしたら、溶液供給用パルプ(4)
ヲ閉じる。次に、冷却水(8)全供給し、冷却器(力を
作動させ溶液槽(2)内の溶液(1)を冷却し、溶液(
1)中の気泡を溶液(1)中に溶は込ませる。この操作
と同時に、真空ポンプ(9)も作動させ、真空ポンプ用
パルプσυを開き、溶液槽(2)内を防圧にし、溶液(
1)中の気泡を排気により除去する。この状態で、溶液
(1)の容量が500cc乃至1ooocO時、60分
以上放置しておく。
Next, the operation will be explained. First, the pulp for discharging the solution (
6), Pulp 0υ for vacuum pump, gas valve α4 for pressurization
) After closing, open the solution supplying pulp (4) and supply the solution (1) to the solution tank (2). Once the solution (1) has adequately filled the solution tank (2), the solution supply pulp (4)
Close it. Next, fully supply the cooling water (8), operate the cooler (power) to cool the solution (1) in the solution tank (2), and cool the solution (1) in the solution tank (2).
1) Incorporate the air bubbles in the solution (1). At the same time as this operation, the vacuum pump (9) is also activated, the vacuum pump pulp συ is opened, the inside of the solution tank (2) is made pressure-proof, and the solution (
1) Remove the air bubbles inside by exhausting. In this state, when the volume of solution (1) is 500 cc to 100 cc, leave it for 60 minutes or more.

上記手順の終了後に真空ポンプ用バルブαυを閉じ、加
圧用パルプ(14)を開け、溶液槽(2)内を陽圧にす
る。加圧用ガスとしては不活性ガスならば何でもよいが
、例えば乾燥空気であれば圧力6晦夕以上のガスを使用
する。かくしてガス供給後、溶液排出用パルプ(6)を
徐々に開け、溶液(1)全排出して採取する。
After the above procedure is completed, the vacuum pump valve αυ is closed, the pressurizing pulp (14) is opened, and the inside of the solution tank (2) is brought to positive pressure. Any inert gas may be used as the pressurizing gas, but for example, in the case of dry air, a gas with a pressure of 6 liters or more is used. After supplying the gas in this manner, the pulp for discharging the solution (6) is gradually opened, and the solution (1) is completely discharged and collected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように構成されている従来の溶液中気泡除去装置
では溶液の気泡除去操作はバッチ式であシ、溶液を長時
間連続して分析等の目的に使用することができない。例
えばこの装置を応用して、純水中の微粒子の連続モニタ
リングなどが不可能である。捷だ、溶液供給用バルブや
溶液排出用バルブや加圧用ガスパルプからのダスト発生
の影響を溶液が直接受けるため溶液汚染の可能性が大き
い。さらに、加圧用ガスも高純度ガスを用いなければ溶
液が汚染してしまう。このように装置の構成物そのもの
からの汚染がさけられないため、本装置は溶液等の微量
分析を行うための気泡除去装置としては適さないという
問題があった。
In the conventional solution bubble removal apparatus configured as described above, the bubble removal operation from the solution is performed in a batch manner, and the solution cannot be used continuously for long periods of time for purposes such as analysis. For example, it is impossible to continuously monitor fine particles in pure water using this device. However, since the solution is directly affected by dust generated from the solution supply valve, solution discharge valve, and pressurizing gas pulp, there is a high possibility of solution contamination. Furthermore, unless a high-purity gas is used for pressurization, the solution will be contaminated. Since contamination from the components of the device itself cannot be avoided, this device is not suitable as a bubble removal device for performing trace analysis of solutions and the like.

この発明は上記のような問題点を解消するためになされ
たものであり、溶液等の気泡除去操作が連続的に実施可
能であり、さらに装置の各種操作による溶液すなわち試
料の汚染がまったく無く、効率よく気泡除去が可能な気
泡除去装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to continuously perform the operation of removing bubbles from the solution, etc., and there is no contamination of the solution or sample due to various operations of the device. An object of the present invention is to obtain a bubble removing device capable of efficiently removing bubbles.

〔問題点全解決するための手段〕[Means to solve all problems]

この発明に係る気泡除去装置は、冷却器を着設した真空
チャンバと、この真空チェンバの内壁面に内接して局着
され、被処理液の流路を形成する気液分離膜チューブと
を備えたものである。
The bubble removal device according to the present invention includes a vacuum chamber equipped with a cooler, and a gas-liquid separation membrane tube that is inscribed and fixed on the inner wall surface of the vacuum chamber and forms a flow path for a liquid to be treated. It is something that

〔作用〕[Effect]

この発明における気液分離膜チューブは真空チャンバに
内接されており、真空チャンバ内は例えば真空ポンプに
よシ減圧に保持されるから、液が気液分離膜チューブ中
を通過する際に、液中の分子量の小さい気体に対する通
気作用によって、気泡状気体は次第に排気されて気液分
離膜チューブ出口においては気泡は除去される。
The gas-liquid separation membrane tube in this invention is internally enclosed in a vacuum chamber, and the inside of the vacuum chamber is maintained at reduced pressure by, for example, a vacuum pump, so that when the liquid passes through the gas-liquid separation membrane tube, the liquid Due to the aeration effect on the gas with a small molecular weight contained therein, the bubble-like gas is gradually exhausted, and the bubbles are removed at the outlet of the gas-liquid separation membrane tube.

また真空チャンバに着設された冷却器によって気液分離
膜チューブ内の液の冷却効率が上がるとともに、気液分
離膜チューブでは除去されない比較的分子量の大きい液
中の気泡は、吸蔵(occlu−sion )現象によ
って液中に溶かし込まれて吸収される。
In addition, the cooling efficiency of the liquid in the gas-liquid separation membrane tube is increased by the cooler installed in the vacuum chamber, and air bubbles in the liquid with a relatively large molecular weight that are not removed by the gas-liquid separation membrane tube are occluded. ) phenomenon, it is dissolved in the liquid and absorbed.

嘔らに、上記の作用によって液の気泡除去操作が連続的
に可能となっており、このため液流路圧パルプなどを用
いなくともよいため試料すなわち被処理液に対する汚染
の上積みが完全にさけられる。
Moreover, the above-mentioned action makes it possible to continuously remove air bubbles from the liquid, and because there is no need to use pressure pulp in the liquid flow path, it is possible to completely avoid contamination on the sample, that is, the liquid to be treated. It will be done.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、(1)は溶液であるが、分析の立場からは
試料液である。(伺は気液分離膜チューブであり、この
中音溶液(1)が一定流量で通過する。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (1) is a solution, but from an analysis standpoint, it is a sample liquid. (The tube is a gas-liquid separation membrane tube, through which the medium solution (1) passes at a constant flow rate.

(3)は溶液供給配管、(5)は溶液排出配管であり、
気液分離膜チューブ(國に接続されている。(16)は
冷却真空チャンバであり螺旋状の気液分離膜チューブ(
151が、冷却真空チャンバ([(19内壁面に着設さ
れている。(8)は冷却真空チャンバ(lfjIを冷却
器として機能させるための冷水である。(9)は冷却真
空チャンバ?減圧にするための真空ポンプ、αOは真空
ポンプ用配管であり、真空ポンプ(9)と冷却真空チャ
ンバαυを接続している。αのは真空ポンプの排気口で
ある。
(3) is a solution supply pipe, (5) is a solution discharge pipe,
The gas-liquid separation membrane tube (connected to the country) (16) is a cooling vacuum chamber, and the spiral gas-liquid separation membrane tube (16) is a cooling vacuum chamber.
151 is a cooling vacuum chamber (19 installed on the inner wall surface. (8) is cold water for making the cooling vacuum chamber (lfjI function as a cooler). (9) is a cooling vacuum chamber? αO is a vacuum pump piping that connects the vacuum pump (9) and the cooling vacuum chamber αυ. α is the exhaust port of the vacuum pump.

次に動作について説明する。まず、冷却真空チャンバu
匂を機能させるため、冷却水(8)の供給を行い、冷却
真空チャンバ(16)全体と気液分離膜チューブα5を
冷却する。ついで、真空ポンプ(9)全作動させ、冷却
真空チャンバ116)内’?600w+Hg以下の真空
にする。この操作が終了したのち、溶液供給口(3)よ
り気液分離膜チューブ霞に溶液(1)全供給し、気液分
離膜チューブを通過した処理済の溶液は溶液排出配管(
5)ヲ経て溶液(1)は被処理液として採取される。
Next, the operation will be explained. First, the cooling vacuum chamber u
In order to make the odor function, cooling water (8) is supplied to cool the entire cooling vacuum chamber (16) and the gas-liquid separation membrane tube α5. Next, the vacuum pump (9) is fully activated to cool the inside of the cooling vacuum chamber 116). Make the vacuum below 600w+Hg. After this operation is completed, the entire solution (1) is supplied from the solution supply port (3) to the gas-liquid separation membrane tube Kasumi, and the treated solution that has passed through the gas-liquid separation membrane tube is discharged from the solution discharge pipe (3).
5) After that, the solution (1) is collected as a liquid to be treated.

上記のような溶液の糸路において、溶液(1)が気液分
離膜チューブ05ヲ通過するとき、気液分離膜を気泡を
形成する気体分子が透過して溶液外へ排出される。すな
わち、気液分離膜チューブ(15)は例えばテフロンの
薄膜で形成されているものであり、この膜は分子量の小
さい気体分子、つでりI−i+He+N、 、 02な
どは透過するが、これらの気体より分子量の大きい気体
分子や溶液分子は透過しない特性を持つものである。し
たがって、分子量の小さい気体で形成されている気泡は
気液分離膜チューブ(19ヲ通して、溶液(1)外へ排
出される。また、上記のように比較的分子量の大きい気
体で形成されている気泡は、溶液が順次進行するにつれ
て溶液(1)が冷却されるため、徐々に溶液中に吸蔵(
0eC−1ude )されて溶は込まれることになる。
In the solution thread path as described above, when the solution (1) passes through the gas-liquid separation membrane tube 05, gas molecules forming bubbles permeate through the gas-liquid separation membrane and are discharged out of the solution. That is, the gas-liquid separation membrane tube (15) is formed of a thin film of Teflon, for example, and this membrane allows gas molecules with small molecular weight, such as I-i+He+N, , 02, etc., to permeate, but these Gas molecules and solution molecules that have a larger molecular weight than gas do not pass through. Therefore, bubbles formed by gas with a small molecular weight are discharged out of the solution (1) through the gas-liquid separation membrane tube (19). As the solution (1) cools as the solution progresses, the bubbles gradually become occluded (
0eC-1ude) and will be injected into the melt.

この作用が、気液分離膜チューブ内を連続的に通過して
いる溶液(1)に働いており、最終的に気泡が完全に除
去された溶液が被処理溶液として溶液排出配管(5)へ
排出される。
This action acts on the solution (1) that is continuously passing through the gas-liquid separation membrane tube, and finally the solution from which air bubbles have been completely removed is sent to the solution discharge pipe (5) as the solution to be treated. be discharged.

なお、上記実施例では冷却真空チャンバ(16)の冷却
機能に冷水による水冷方法?用いたが、電子冷熱などの
他の冷却機能をもつ装置で行ってもよく、上記実施例と
同様の効果を奏する。また、上記実施例では、気液分離
膜チューブ(lωの素材としてテフロンを用いたものに
ついて説明したが、同様の特性をもち、液に対して汚染
のおそれのない材料であればどのような材質の薄膜チュ
ーブであっても同様の効果をもつことはいうまでもない
。さらに、上記実施例では溶液に対する気泡除去装置に
ついて説明したが、これに限定されるものではなく、例
えば純水などのほか膜などに対して反応性のない単一物
質の純液に対しても同様の効果を期待できるものである
In addition, in the above embodiment, the cooling function of the cooling vacuum chamber (16) uses a water cooling method using cold water. Although this example was used, a device having other cooling functions such as electronic cooling may be used, and the same effects as in the above embodiment can be obtained. In addition, in the above example, Teflon was used as the material for the gas-liquid separation membrane tube (lω), but any material can be used as long as it has similar characteristics and is not likely to contaminate the liquid. It goes without saying that even a thin film tube of A similar effect can be expected for a pure liquid of a single substance that has no reactivity with membranes or the like.

〔発明の効果〕〔Effect of the invention〕

以上のよう江、この発明によれば、液体の通過する配管
にパルプ類を一切使用しなくてよいため、パルプ類の操
作による液汚染がまったくなく、又装置構成が簡素化で
き、取扱い、メンテナンスが非常に簡単となった。そし
て、被処理液の連続的な気泡除去が可能となった。
As described above, according to the present invention, there is no need to use any pulp in the piping through which the liquid passes, so there is no liquid contamination due to the manipulation of pulp, and the device configuration can be simplified, and handling and maintenance can be simplified. became very easy. This makes it possible to continuously remove bubbles from the liquid to be treated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による溶液中の気泡除去装
置を示す断面説明図、第2図は従来の溶液中気泡除去装
置を示す断面説明図である。 図において、(1)は溶液、a9は気液分離膜チューブ
、Q6)は冷却真空チャンバである。 なお、各図中同一符号は同−又は相轟部分を示す。 代理人 弁理士  佐 藤 正 年 第1図 1゜
FIG. 1 is an explanatory cross-sectional view showing an apparatus for removing bubbles in a solution according to an embodiment of the present invention, and FIG. 2 is an explanatory cross-sectional view showing a conventional apparatus for removing bubbles in a solution. In the figure, (1) is a solution, a9 is a gas-liquid separation membrane tube, and Q6) is a cooling vacuum chamber. Note that the same reference numerals in each figure indicate the same or similar parts. Agent Patent Attorney Tadashi Sato Figure 1 1゜

Claims (1)

【特許請求の範囲】[Claims] 冷却器を着設した真空チャンバと、該真空チャンバの内
壁面に内接して周設され、被処理液の流路を形成する気
液分離膜チューブとを備えたことを特徴とする気泡除去
装置。
A bubble removal device comprising: a vacuum chamber equipped with a cooler; and a gas-liquid separation membrane tube that is inscribed and circumferentially attached to the inner wall of the vacuum chamber and forms a flow path for a liquid to be treated. .
JP27068585A 1985-12-03 1985-12-03 Foam removing device Pending JPS62132509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27068585A JPS62132509A (en) 1985-12-03 1985-12-03 Foam removing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27068585A JPS62132509A (en) 1985-12-03 1985-12-03 Foam removing device

Publications (1)

Publication Number Publication Date
JPS62132509A true JPS62132509A (en) 1987-06-15

Family

ID=17489521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27068585A Pending JPS62132509A (en) 1985-12-03 1985-12-03 Foam removing device

Country Status (1)

Country Link
JP (1) JPS62132509A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869732A (en) * 1988-12-23 1989-09-26 Texaco Inc. Deoxygenation of aqueous polymer solutions used in enhanced oil recovery processes
US4986837A (en) * 1986-12-12 1991-01-22 Yoshihiko Shibata Apparatus for degassing a liquid
US5123937A (en) * 1989-02-03 1992-06-23 Japan Gore-Tex Inc. Deaerating film and deaerating method
US5205844A (en) * 1990-11-30 1993-04-27 Uniflows Co., Ltd. Degassing apparatus
US5279647A (en) * 1990-12-04 1994-01-18 Thermo Separation Products (California) Inc. Methods and apparatus for degassing a liquid
CN111424306A (en) * 2020-04-13 2020-07-17 厦门通富微电子有限公司 Bubble stripping device and electroplating solution electroplating system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986837A (en) * 1986-12-12 1991-01-22 Yoshihiko Shibata Apparatus for degassing a liquid
US4869732A (en) * 1988-12-23 1989-09-26 Texaco Inc. Deoxygenation of aqueous polymer solutions used in enhanced oil recovery processes
US5123937A (en) * 1989-02-03 1992-06-23 Japan Gore-Tex Inc. Deaerating film and deaerating method
US5205844A (en) * 1990-11-30 1993-04-27 Uniflows Co., Ltd. Degassing apparatus
US5279647A (en) * 1990-12-04 1994-01-18 Thermo Separation Products (California) Inc. Methods and apparatus for degassing a liquid
CN111424306A (en) * 2020-04-13 2020-07-17 厦门通富微电子有限公司 Bubble stripping device and electroplating solution electroplating system

Similar Documents

Publication Publication Date Title
KR101907351B1 (en) Liquid treatment method and removal system of gas in filter
EP1512457B1 (en) Gas-dissolved water supply
JP2011062694A (en) Method for mixing pressurized fluid for semiconductor process tool and apparatus
CN108201711A (en) A kind of decompression degasser
CA2147659A1 (en) Oxygen enriched liquids, method and apparatus for making, and applications thereof
JPS62132509A (en) Foam removing device
JPH0889771A (en) Gas dissolver and gas dissolving method
JP4514267B2 (en) Impurity extraction method and impurity extraction apparatus for semiconductor substrate
JP2611183B2 (en) Fluid circulation deaerator
JP4347426B2 (en) Cleaning processing equipment
JPH0580248B2 (en)
US5061302A (en) Dissolved gas stripping apparatus
JP2821887B2 (en) Ultrasonic cleaning equipment
US6270063B1 (en) Ozone diffuser for deionized water
JP2003164861A (en) Ozone water deozonization system
JPH0547732A (en) Method and apparatus for precise cleaning
JPS63130107A (en) Automatic deaerator
JP2003107063A (en) Deaeration apparatus and method of high performance liquid chromatography
JPH10273193A (en) Large-sized container for transport of high purity chemical
SU1037932A1 (en) Apparatus for cleaning gas
JPH0526790A (en) Gas replacement device
JPS63178807A (en) Treatment of photosensitive coating liquid
US20210047219A1 (en) Processing liquid circulating apparatus
JPS6168107A (en) Deaeration apparatus
JPH04349902A (en) Deoxygenating method and apparatus using high purity gas