JPH0547732A - Method and apparatus for precise cleaning - Google Patents

Method and apparatus for precise cleaning

Info

Publication number
JPH0547732A
JPH0547732A JP20200191A JP20200191A JPH0547732A JP H0547732 A JPH0547732 A JP H0547732A JP 20200191 A JP20200191 A JP 20200191A JP 20200191 A JP20200191 A JP 20200191A JP H0547732 A JPH0547732 A JP H0547732A
Authority
JP
Japan
Prior art keywords
cleaning
carbon dioxide
pressure
cleaned
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20200191A
Other languages
Japanese (ja)
Inventor
Kenzo Kaminaga
賢三 神永
Yuzuru Okada
譲 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP20200191A priority Critical patent/JPH0547732A/en
Publication of JPH0547732A publication Critical patent/JPH0547732A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To enhance a cleaning effect by cleaning a matter to be cleaned, contained in a pressure resistant cleaning vessel by supercritical fluid. CONSTITUTION:After a silicon substrate is set in a metal frame of a pressure vessel cover 5, the cover 5 is hermetically mounted in an opening of a cleaning vessel body 4. Then, liquefied carbon dioxide is fed from a liquefied carbon dioxide tank 7 to a heater 9 by a booster pump 8, carbon dioxide is set to a supercritical state at 40 deg.C or higher by the heater 9, press-fitted in a pressure resistant cleaning vessel 1, and supplied to the vessel 1. In the vessel 1, the carbon dioxide of the supercritical state is brought into contact with a silicon substrate, and adhered moisture, organic material, other impurities are dissolved in the carbon dioxide. After cleaning, the cover 5 of the vessel 1 is removed from the body 4, and precisely cleaned substrate is obtained. Thus, the material, moisture adhered to the matter to be cleaned, can be effectively removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、精密洗浄方法および精
密洗浄装置に関し、より詳しくは、半導体ウェハー等の
精密洗浄に好適な精密洗浄方法およびそのような精密洗
浄方法を実施するのに好適な精密洗浄装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precision cleaning method and a precision cleaning apparatus, and more particularly, to a precision cleaning method suitable for precision cleaning of semiconductor wafers and the like, and a precision cleaning method suitable for carrying out such a precision cleaning method. Precision cleaning equipment

【0002】[0002]

【従来の技術】従来、半導体ウェハー、LSI基板等の
被洗浄物の精密洗浄を行う方法として、100〜200
kg/cm2 程度の水圧の純水を被洗浄物に噴射し、こ
の被洗浄物に付着している数μm程度の微粒子を除去す
る洗浄方法がある。しかし、この方法では、比抵抗の高
い純水を噴射しているので、静電気が発生する可能性が
あり、発生した静電気がLSIに悪影響を及ぼすことが
あり、また、被洗浄物の精密洗浄処理後に乾燥工程が必
要になるという問題がある。
2. Description of the Related Art Conventionally, as a method for precisely cleaning an object to be cleaned such as a semiconductor wafer and an LSI substrate, 100 to 200 has been used.
There is a cleaning method in which pure water having a water pressure of about kg / cm 2 is sprayed onto an object to be cleaned to remove fine particles of about several μm adhering to the object to be cleaned. However, in this method, since pure water having a high specific resistance is sprayed, there is a possibility that static electricity may be generated, which static electricity may adversely affect the LSI. There is a problem that a drying process is required later.

【0003】上記問題点のない精密洗浄方法として、ガ
スを利用した乾式洗浄法が検討されている。その一つと
して、ドライアイススノウ洗浄方法が知られている。こ
の洗浄方法は、液化炭酸ガスに乾燥窒素を混合してなる
混合物を被洗浄物に噴射するものであり、0.5μm以
下の微粒子も除去することができるとされているが、ド
ライアイスの噴射によってLSI基板等に温度ストレス
を与える可能性がある。さらにこの洗浄方法は、有機汚
染物質が共存していると粒子除去効果が低下するという
問題もある。
As a precision cleaning method which does not have the above problems, a dry cleaning method using gas has been studied. As one of them, a dry ice snow cleaning method is known. In this cleaning method, a mixture of liquefied carbon dioxide and dry nitrogen is sprayed onto the object to be cleaned, and it is said that fine particles of 0.5 μm or less can be removed. Therefore, temperature stress may be applied to the LSI substrate or the like. Further, this cleaning method has a problem that the effect of removing particles decreases when organic contaminants coexist.

【0004】したがって、現状においては、フロン液中
にLSI等を浸漬する方法が広く採用されている。しか
しながら、フロン液中にLSI等を浸漬した場合、LS
Iに付着していた水分がフロン液表面に浮遊するので、
フロン液からLSIを引き上げるときには、LSIの引
き上げ前にフロン液の表面に存在する水層を除去する必
要がある。そうしないと、LSIをフロン液から引き上
げるときに、折角洗浄したLSIに水分が再付着するか
らである。また、なによりも、フロンはオゾン層を破壊
するという重大な問題点がある。オゾン層を破壊すると
いう地球環境問題を少しでも防止するためには、フロン
が漏洩しないようにフロン液を使用する装置は完全密閉
系にする必要がある。そのような完全密閉洗浄装置とす
るのは技術的に煩雑である。また、たとえ完全密閉系の
洗浄装置を作成することができたとしても、その洗浄装
置の寿命が尽きた場合に、フロンガスが装置内に存在す
るので、その洗浄装置を分解したり廃棄したりすること
もできない。何故ならば、そのような装置を分解したり
するとフロンガスが空気中に揮散してやはりオゾン層破
壊の原因になるからである。したがって、将来的にはフ
ロンを絶対的な使用禁止となる公算が大きく、フロンに
代わる有効な洗浄液あるいは洗浄方法が望まれている。
Therefore, at present, a method of immersing LSI or the like in a CFC liquid is widely adopted. However, if the LSI etc. is immersed in the CFC liquid, the LS
Since the water adhering to I floats on the surface of the CFC liquid,
When pulling up the LSI from the fluorocarbon solution, it is necessary to remove the water layer existing on the surface of the fluorocarbon solution before pulling up the LSI. Otherwise, when the LSI is pulled up from the fluorocarbon solution, the moisture reattaches to the LSI that has been washed at all. Above all, CFC has a serious problem of depleting the ozone layer. In order to prevent the global environmental problem of destroying the ozone layer, it is necessary to make the device that uses CFC liquid a completely closed system so that CFCs will not leak. It is technically complicated to provide such a completely sealed cleaning device. Even if a cleaning device with a completely closed system can be created, when the life of the cleaning device is exhausted, CFC gas exists in the device, so the cleaning device is disassembled or discarded. I can't do it either. The reason is that, if such a device is disassembled, the CFC gas is volatilized into the air, which also causes the destruction of the ozone layer. Therefore, it is highly likely that the use of CFCs will be absolutely prohibited in the future, and an effective cleaning liquid or cleaning method that replaces CFCs is desired.

【0005】本発明はこのような事情の下になされた。
すなわち、本発明の目的は、被洗浄物を強い洗浄力で能
率よく洗浄することができ、公害発生の問題もない精密
洗浄方法および精密洗浄装置を提供することを目的とす
るものである。
The present invention has been made under such circumstances.
That is, it is an object of the present invention to provide a precision cleaning method and a precision cleaning device that can efficiently clean an object to be cleaned with a strong cleaning power and have no problem of pollution.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
の本発明の精密洗浄方法は、耐圧洗浄容器に収納した被
洗浄物を超臨界流体で洗浄することを特徴とし、かかる
精密洗浄方法を好適に実施することのできる本発明の精
密洗浄装置は、被洗浄物を収納した耐圧洗浄容器と、こ
の耐圧洗浄容器内に超臨界流体を供給する超臨界流体供
給手段とを有することを特徴とする。
The precision cleaning method of the present invention for solving the above-mentioned problems is characterized in that an object to be cleaned contained in a pressure-resistant cleaning container is cleaned with a supercritical fluid. A precision cleaning apparatus of the present invention that can be suitably implemented is characterized by comprising a pressure-resistant cleaning container accommodating an object to be cleaned, and a supercritical fluid supply means for supplying a supercritical fluid into the pressure-resistant cleaning container. To do.

【0007】[0007]

【作用】本発明の方法においては、耐圧洗浄容器に収容
した被洗浄物に超臨界流体を接触させて被洗浄物を洗浄
する。超臨界流体は、被洗浄物に付着する水分、有機物
等を溶解する能力が大きいので、洗浄効果が極めて大き
い。
In the method of the present invention, the object to be cleaned is brought into contact with the object to be cleaned contained in the pressure-resistant cleaning container by contacting it with a supercritical fluid. Since the supercritical fluid has a large ability to dissolve moisture, organic matter, and the like attached to the object to be cleaned, the cleaning effect is extremely large.

【0008】本発明の精密洗浄方法は、本発明の精密洗
浄装置を使用することにより実施することができる。す
なわち、耐圧洗浄容器内に被洗浄物を収納し、超臨界供
給手段により、超臨界流体を被洗浄物に接触させる。被
洗浄物に超臨界流体を接触させると、被洗浄物に付着す
る水分、有機物が超臨界流体に溶解し、超臨界流体に移
動する。水分や有機物を溶解した超臨界流体を、適宜の
手段により、耐圧洗浄容器から除去すると、精密洗浄さ
れた被洗浄物が得られる。
The precision cleaning method of the present invention can be carried out by using the precision cleaning device of the present invention. That is, the object to be cleaned is stored in the pressure-proof cleaning container, and the supercritical fluid is brought into contact with the object to be cleaned by the supercritical supply means. When the supercritical fluid is brought into contact with the object to be cleaned, water and organic substances attached to the object to be cleaned are dissolved in the supercritical fluid and moved to the supercritical fluid. By removing the supercritical fluid in which water or organic matter is dissolved from the pressure-resistant cleaning container by an appropriate means, a precisely cleaned object to be cleaned can be obtained.

【0009】[0009]

【実施例】図1に示すのは本発明の精密洗浄装置の一例
を示す説明図である。図1に示すように、本発明の精密
洗浄装置は、耐圧洗浄容器1と、超臨界流体供給手段2
と、超臨界流体回収装置3とを備える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view showing an example of the precision cleaning device of the present invention. As shown in FIG. 1, the precision cleaning device of the present invention comprises a pressure-resistant cleaning container 1 and a supercritical fluid supply means 2.
And a supercritical fluid recovery device 3.

【0010】耐圧洗浄容器1は、上方を開口すると共に
内部に被洗浄物を収容する空間を備えた洗浄容器本体4
とこの洗浄容器本体4の開口部を気密に封止する圧力容
器カバー5とを備えてなる。この圧力容器カバー5の底
面には、被洗浄物であるシリコン基板を互いに間隔を設
けて配置し、収容することができる例えば金属フレーム
6を懸垂する。
The pressure-resistant cleaning container 1 is a cleaning container body 4 having an opening at the top and a space for containing an object to be cleaned therein.
And a pressure container cover 5 that hermetically seals the opening of the cleaning container body 4. On the bottom surface of the pressure vessel cover 5, for example, a metal frame 6 that suspends and arranges silicon substrates, which are objects to be cleaned, at a distance from each other, is suspended.

【0011】超臨界流体供給手段2は、液化二酸化炭素
タンク7と、この液化二酸化炭素を送り出す昇圧ポンプ
8と、昇圧ポンプ8により送り出されてきた液化二酸化
炭素を40℃以上に加熱してこの液化二酸化炭素を超臨
界状態にする加熱器9と、圧力変換器10および導入ラ
イン11とを有する。なお、図1中において、12で示
されるのは逆止弁であり、13で示すのはバルブであ
り、14で示されるのはラプチャーディスクである。
The supercritical fluid supply means 2 heats the liquefied carbon dioxide tank 7, a booster pump 8 for sending out the liquefied carbon dioxide, and the liquefied carbon dioxide sent out by the booster pump 8 to 40 ° C. or higher to liquefy it. It has a heater 9 for bringing carbon dioxide into a supercritical state, a pressure converter 10 and an introduction line 11. In FIG. 1, reference numeral 12 is a check valve, reference numeral 13 is a valve, and reference numeral 14 is a rupture disc.

【0012】超臨界流体回収装置3は、前記耐圧洗浄容
器1における空間の底部から前記超臨界流体供給手段2
におけるバルブ13と昇圧ポンプ8との間のラインに結
合される循環ライン15と、この循環ライン15の途中
に設けられると共に超臨界状態の二酸化炭素中の不純物
を除去するフィルター16と、フィルターにより不純物
が除去された二酸化炭素を液化する冷却器17とを備え
る。なお、図1において、18で示されるのはバルブで
あり、19で示されるのは逆止弁である。
In the supercritical fluid recovery device 3, the supercritical fluid supply means 2 starts from the bottom of the space in the pressure-resistant cleaning container 1.
A circulation line 15 connected to the line between the valve 13 and the booster pump 8 in FIG. 1, a filter 16 provided in the middle of the circulation line 15 for removing impurities in carbon dioxide in a supercritical state, and impurities by a filter. And a cooler 17 for liquefying the removed carbon dioxide. In FIG. 1, reference numeral 18 is a valve, and reference numeral 19 is a check valve.

【0013】この精密洗浄装置を使用して以下のように
してシリコン基板を精密洗浄することができる。すなわ
ち、圧力容器カバー5における金属フレームにシリコン
基板をセットしてから、圧力容器カバー5を洗浄容器本
体4の開口部に気密に装着する。次いで、液化二酸化炭
素タンク7から液化二酸化炭素を昇圧ポンプ8により加
熱器9に送り、この加熱器9で二酸化炭素を40℃以上
の超臨界状態にし、耐圧洗浄容器1内に圧入することに
より超臨界状態の二酸化炭素を耐圧洗浄容器1に供給す
る。
Using this precision cleaning device, the silicon substrate can be precisely cleaned as follows. That is, the silicon substrate is set on the metal frame of the pressure vessel cover 5, and then the pressure vessel cover 5 is airtightly attached to the opening of the cleaning vessel body 4. Next, the liquefied carbon dioxide is sent from the liquefied carbon dioxide tank 7 to the heater 9 by the pressurizing pump 8, the carbon dioxide is brought to a supercritical state of 40 ° C. or higher by the heater 9, and the carbon dioxide is injected into the pressure-resistant cleaning container 1 under pressure. Carbon dioxide in a critical state is supplied to the pressure resistant cleaning container 1.

【0014】耐圧洗浄容器1内では、超臨界状態となっ
た二酸化炭素がシリコン基板と接触し、シリコン基板に
付着する水分、有機物その他の不純物が二酸化炭素中に
溶解する。この精密洗浄装置は、バッチ式の洗浄装置で
ある。耐圧洗浄容器1内に超臨界状態となった二酸化炭
素を圧入してから所定時間の経過後に、耐圧洗浄容器1
内の超臨界状態の二酸化炭素を抜き出し、超臨界状態の
二酸化炭素で洗浄することにより混入した固形分や液滴
をフィルターで除去する。固形分や液滴の除去された超
臨界状態の二酸化炭素は、冷却器17によりガス状の二
酸化炭素にし、これを昇圧ポンプ8とバルブとの間のラ
インに戻して、耐圧洗浄容器1内から回収した二酸化炭
素を再利用する。洗浄後、耐圧洗浄容器1における圧力
容器カバー5を洗浄容器本体4から外すことにより、精
密洗浄されたシリコン基板を得る。
In the pressure-proof cleaning container 1, carbon dioxide in a supercritical state comes into contact with the silicon substrate, and water, organic substances and other impurities adhering to the silicon substrate are dissolved in the carbon dioxide. This precision cleaning device is a batch type cleaning device. After a predetermined time has elapsed since the supercritical carbon dioxide was pressed into the pressure-resistant cleaning container 1, the pressure-resistant cleaning container 1
The carbon dioxide in the supercritical state inside is extracted and washed with carbon dioxide in the supercritical state to remove the mixed solids and droplets with a filter. The carbon dioxide in the supercritical state from which solids and liquid droplets have been removed is made into gaseous carbon dioxide by the cooler 17, and this is returned to the line between the booster pump 8 and the valve to remove it from the pressure-resistant cleaning container 1. Reuse the collected carbon dioxide. After the cleaning, the pressure container cover 5 of the pressure resistant cleaning container 1 is removed from the cleaning container main body 4 to obtain a precisely cleaned silicon substrate.

【0015】この精密洗浄装置を使用し、本発明の洗浄
方法によりシリコン基板を洗浄すると、超臨界状態の二
酸化炭素は、有機物に対する溶解性が大きいので、シリ
コン基板に付着する有機物は完全に除去される。しかも
二酸化炭素は超臨界状態であるから、ミクロンオーダー
の間隙にまで浸入することができ、したがって微細な凹
凸面まで精密に洗浄することができる。また、超臨界状
態の二酸化炭素は水分をも溶解するので、シリコン基板
の洗浄後に二酸化炭素を耐圧洗浄容器1から排出するだ
けで、清浄なシリコン基板を得ることができる。
When a silicon substrate is cleaned by the cleaning method of the present invention using this precision cleaning device, carbon dioxide in a supercritical state has a high solubility in organic substances, so that the organic substances attached to the silicon substrate are completely removed. It Moreover, since carbon dioxide is in a supercritical state, it can penetrate into a gap of micron order, so that even fine irregularities can be precisely cleaned. Further, since carbon dioxide in a supercritical state also dissolves water, it is possible to obtain a clean silicon substrate simply by discharging carbon dioxide from the pressure-resistant cleaning container 1 after cleaning the silicon substrate.

【0016】本発明の精密洗浄装置は、図2に示す構成
にすることもできる。図2に示す精密洗浄装置は、第1
耐圧洗浄容器1aと第2耐圧洗浄容器1bとを備える。
二酸化炭素を圧入する導入ライン20は、第1ロータリ
ーバルブ21で分岐し、分岐した一方のライン22は第
1耐圧洗浄容器1aに接続され、分岐した他方のライン
23は第2耐圧洗浄容器1bに接続される。また、第1
耐圧洗浄容器1aから二酸化炭素を排出するライン24
と第2耐圧洗浄容器1bから二酸化炭素を排出するライ
ン25とは第2ロータリーバルブ26を介して1本の排
出ライン27に集約されている。図2に示される精密洗
浄装置においては、図2に示されていない他の装置につ
いては前記図1に示されたのと同様である。
The precision cleaning device of the present invention can also be configured as shown in FIG. The precision cleaning device shown in FIG.
A pressure-resistant cleaning container 1a and a second pressure-resistant cleaning container 1b are provided.
The introduction line 20 for injecting carbon dioxide is branched by the first rotary valve 21, one branched line 22 is connected to the first pressure-resistant cleaning container 1a, and the other branched line 23 is connected to the second pressure-resistant cleaning container 1b. Connected. Also, the first
Line 24 for discharging carbon dioxide from the pressure-resistant cleaning container 1a
The line 25 for discharging carbon dioxide from the second pressure-resistant cleaning container 1b is integrated into one discharge line 27 via the second rotary valve 26. In the precision cleaning device shown in FIG. 2, the other devices not shown in FIG. 2 are the same as those shown in FIG.

【0017】図2に示す精密洗浄装置においては、第1
ロータリーバルブを操作して導入ライン20とライン2
2とを導通状態にすると共に導入ライン20とライン2
3とを閉鎖状態にする。また第2ロータリーバルブ26
を操作してライン24と排出ライン27とを導通状態に
すると同時にライン25と排出ライン27とを閉鎖状態
にする。この状態で、被洗浄物であるシリコン基板を収
容した第1耐圧洗浄容器1aに超臨界状態の二酸化炭素
ガスを流通させる。所定時間かけて二酸化炭素を第1耐
圧洗浄容器1aに流通させた後、第1ロータリーバルブ
21および第2ロータリーバルブ26を操作して、第1
耐圧洗浄容器1aに二酸化炭素が流通せずに、第2耐圧
洗浄容器1bに流通するようにする。第2耐圧洗浄容器
1bに超臨界状態の二酸化炭素が流通している間に、第
1耐圧洗浄容器1a内のシリコン基板を取り出し、新た
に洗浄するべきシリコン基板をこの第1耐圧洗浄容器1
a内に収容する。
In the precision cleaning apparatus shown in FIG. 2, the first
Operate the rotary valve to introduce line 20 and line 2
2 and the introduction line 20 and the line 2
3 and 3 are closed. In addition, the second rotary valve 26
Is operated to bring the line 24 and the discharge line 27 into conduction, and at the same time, the line 25 and the discharge line 27 are closed. In this state, carbon dioxide gas in a supercritical state is passed through the first pressure-resistant cleaning container 1a containing the silicon substrate which is the object to be cleaned. After the carbon dioxide is passed through the first pressure-resistant cleaning container 1a for a predetermined time, the first rotary valve 21 and the second rotary valve 26 are operated to make the first
Carbon dioxide does not flow through the pressure-resistant cleaning container 1a, but flows through the second pressure-resistant cleaning container 1b. While the carbon dioxide in the supercritical state is flowing through the second pressure-resistant cleaning container 1b, the silicon substrate in the first pressure-resistant cleaning container 1a is taken out, and the silicon substrate to be newly cleaned is used as the first pressure-resistant cleaning container 1
It is housed in a.

【0018】第1耐圧洗浄容器1a内にシリコン基板を
セットした後に、再び第1ロータリーバルブ21と第2
ロータリーバルブ26とを操作して、第2耐圧洗浄容器
1bには二酸化炭素が流通しないようにし、他方第1耐
圧洗浄容器1aに二酸化炭素が流通するようにする。第
1耐圧洗浄容器1aに超臨界状態の二酸化炭素を流通さ
せることによって被洗浄物に超臨界状態の二酸化炭素を
接触させる。これによって、シリコン基板の精密洗浄が
達成される。第1耐圧洗浄容器1bにおいては、精密洗
浄されたシリコン基板を第1耐圧洗浄容器1bから取り
出し、その後に新たに洗浄するべきシリコン基板をセッ
トする。
After the silicon substrate is set in the first pressure-resistant cleaning container 1a, the first rotary valve 21 and the second rotary valve 21 are again set.
The rotary valve 26 is operated so that carbon dioxide does not flow through the second pressure-resistant cleaning container 1b, while carbon dioxide flows through the first pressure-resistant cleaning container 1a. The carbon dioxide in the supercritical state is brought into contact with the object to be cleaned by circulating the carbon dioxide in the supercritical state through the first pressure-resistant cleaning container 1a. This achieves precision cleaning of the silicon substrate. In the first pressure-resistant cleaning container 1b, the precision-cleaned silicon substrate is taken out of the first pressure-resistant cleaning container 1b, and then a silicon substrate to be newly cleaned is set.

【0019】以上に説明したように、図2に示す精密洗
浄装置を使用すると、第1耐圧洗浄容器1aおよび第2
耐圧洗浄容器1bに交互に超臨界状態の二酸化炭素を流
通させることにより、休みなく被洗浄物の洗浄操作が行
われる。
As described above, when the precision cleaning device shown in FIG. 2 is used, the first pressure-resistant cleaning container 1a and the second pressure-resistant cleaning container 1a
By alternately passing carbon dioxide in a supercritical state through the pressure-resistant cleaning container 1b, the cleaning operation of the object to be cleaned is performed without a break.

【0020】[0020]

【発明の効果】以上に詳述した本発明によると、オゾン
層の破壊を招くフロンを一切使用することなく、被洗浄
物に付着する有機物や水分を、フロンで洗浄する以上に
効率的に除去することができる。本発明では浸透力の大
きな超臨界流体を使用するので、被洗浄物の表面におけ
る微細な凹凸に付着する有機物や水分を完全に除去する
ことができる。また、超臨界流体、特に超臨界状態の二
酸化炭素はフロンと比べ環境公害の原因にならないの
で、地球環境を阻害しないという最大の効果を本発明は
奏する。
EFFECTS OF THE INVENTION According to the present invention described in detail above, organic substances and water adhering to an object to be cleaned can be removed more efficiently than cleaning with CFCs without using CFCs that cause destruction of the ozone layer. can do. In the present invention, since a supercritical fluid having a large penetrating power is used, it is possible to completely remove the organic matter and water attached to the fine irregularities on the surface of the object to be cleaned. In addition, since the supercritical fluid, especially carbon dioxide in the supercritical state, does not cause environmental pollution as compared with CFCs, the present invention has the greatest effect of not inhibiting the global environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の精密洗浄装置の一例を示す説明
図である。
FIG. 1 is an explanatory view showing an example of a precision cleaning device of the present invention.

【図2】図2は本発明の精密洗浄装置の他の例を示す説
明図である。
FIG. 2 is an explanatory view showing another example of the precision cleaning device of the present invention.

【符号の説明】[Explanation of symbols]

1 耐圧洗浄容器 2 超臨界流体供給手段 3 超臨界流体回収装置 1 Pressure-resistant cleaning container 2 Supercritical fluid supply means 3 Supercritical fluid recovery device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 耐圧洗浄容器に収納した被洗浄物を超臨
界流体で洗浄することを特徴とする精密洗浄方法。
1. A precision cleaning method comprising cleaning an object to be cleaned housed in a pressure resistant cleaning container with a supercritical fluid.
【請求項2】 前記超臨界流体が二酸化炭素である前記
請求項1に記載の精密洗浄方法。
2. The precision cleaning method according to claim 1, wherein the supercritical fluid is carbon dioxide.
【請求項3】 被洗浄物を収納した耐圧洗浄容器と、こ
の耐圧洗浄容器内に超臨界流体を供給する超臨界流体供
給手段とを有することを特徴とする精密洗浄装置。
3. A precision cleaning apparatus comprising: a pressure-resistant cleaning container accommodating an object to be cleaned; and a supercritical fluid supply means for supplying a supercritical fluid into the pressure-resistant cleaning container.
【請求項4】 前記超臨界流体が二酸化炭素である前記
請求項3に記載の精密洗浄装置。
4. The precision cleaning device according to claim 3, wherein the supercritical fluid is carbon dioxide.
JP20200191A 1991-08-12 1991-08-12 Method and apparatus for precise cleaning Withdrawn JPH0547732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20200191A JPH0547732A (en) 1991-08-12 1991-08-12 Method and apparatus for precise cleaning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20200191A JPH0547732A (en) 1991-08-12 1991-08-12 Method and apparatus for precise cleaning

Publications (1)

Publication Number Publication Date
JPH0547732A true JPH0547732A (en) 1993-02-26

Family

ID=16450291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20200191A Withdrawn JPH0547732A (en) 1991-08-12 1991-08-12 Method and apparatus for precise cleaning

Country Status (1)

Country Link
JP (1) JPH0547732A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496506A (en) * 1992-09-21 1996-03-05 Sony Corporation Process for removing fine particles
US5555902A (en) * 1993-04-26 1996-09-17 Sematech, Inc. Submicron particle removal using liquid nitrogen
KR20030029465A (en) * 2001-10-03 2003-04-14 마츠시타 덴끼 산교 가부시키가이샤 Method for manufacturing an electronic device
US6797063B2 (en) 2001-10-01 2004-09-28 Fsi International, Inc. Dispensing apparatus
WO2004092292A1 (en) 2003-04-14 2004-10-28 Sekisui Chemical Co., Ltd. Method for releasing adhered article
US6880560B2 (en) 2002-11-18 2005-04-19 Techsonic Substrate processing apparatus for processing substrates using dense phase gas and sonic waves
CN114388995A (en) * 2021-12-29 2022-04-22 深圳赛骄阳能源科技股份有限公司 Carbon dioxide supercritical cleaning method for cylindrical lithium ion battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5628954A (en) * 1992-09-21 1997-05-13 Sony Corporation Process for detecting fine particles
US5496506A (en) * 1992-09-21 1996-03-05 Sony Corporation Process for removing fine particles
US5555902A (en) * 1993-04-26 1996-09-17 Sematech, Inc. Submicron particle removal using liquid nitrogen
US6797063B2 (en) 2001-10-01 2004-09-28 Fsi International, Inc. Dispensing apparatus
US6995092B2 (en) 2001-10-03 2006-02-07 Matsushita Electric Industrial Co., Ltd. Method for manufacturing an electronic device
KR20030029465A (en) * 2001-10-03 2003-04-14 마츠시타 덴끼 산교 가부시키가이샤 Method for manufacturing an electronic device
JP2003115576A (en) * 2001-10-03 2003-04-18 Matsushita Electric Ind Co Ltd Method for manufacturing electronic device
US6880560B2 (en) 2002-11-18 2005-04-19 Techsonic Substrate processing apparatus for processing substrates using dense phase gas and sonic waves
WO2004092292A1 (en) 2003-04-14 2004-10-28 Sekisui Chemical Co., Ltd. Method for releasing adhered article
JPWO2004092292A1 (en) * 2003-04-14 2006-07-06 積水化学工業株式会社 Method of peeling adherend
JP4599294B2 (en) * 2003-04-14 2010-12-15 積水化学工業株式会社 Laminated glass peeling method
US7909959B2 (en) 2003-04-14 2011-03-22 Sekisui Chemical Co., Ltd. Method for releasing adhered article
CN114388995A (en) * 2021-12-29 2022-04-22 深圳赛骄阳能源科技股份有限公司 Carbon dioxide supercritical cleaning method for cylindrical lithium ion battery

Similar Documents

Publication Publication Date Title
JP2922791B2 (en) Inexpensive cleaning equipment using liquefied gas
KR100853354B1 (en) Cleaning of contaminated articles by aqueous supercritical oxidation
US5456759A (en) Method using megasonic energy in liquefied gases
US5377705A (en) Precision cleaning system
US5316591A (en) Cleaning by cavitation in liquefied gas
KR101720500B1 (en) Cleaning method
US20040055621A1 (en) Processing of semiconductor components with dense processing fluids and ultrasonic energy
US6403544B1 (en) Composition and method for removing photoresist materials from electronic components
EP0726099B1 (en) Method of removing surface contamination
JPH03123604A (en) Cleaning process utilizing change in the phase of a concentrated phase gas
JPH0547732A (en) Method and apparatus for precise cleaning
KR20030032029A (en) High-pressure treatment apparatus and high-pressure treatment method
JP3380021B2 (en) Cleaning method
JPH1024270A (en) Cleaning method using supercritical fluid as cleaning fluid
US20040016450A1 (en) Method for reducing the formation of contaminants during supercritical carbon dioxide processes
JP2006528553A (en) Workpiece cleaning system and method using supercritical carbon dioxide
JP4252295B2 (en) Metal mask cleaning method and apparatus
JPH0751645A (en) Megasonic cleaning system using compressed and condensed case
JP2005005469A (en) Substrate processor and substrate processing method
US20200078834A1 (en) Substrate processing method, substrate processing apparatus, and composite processing apparatus
JP2832190B2 (en) Cleaning method using supercritical and subcritical fluids
JP3289035B2 (en) Semiconductor wafer cleaning method
JP2002343760A (en) Apparatus and method for removing organic polymer substance
CN208465784U (en) The mixing arrangement of medical fluid and supercritical fluid
JP2001007073A (en) Cleaning method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112