JPS6211633B2 - - Google Patents

Info

Publication number
JPS6211633B2
JPS6211633B2 JP8430880A JP8430880A JPS6211633B2 JP S6211633 B2 JPS6211633 B2 JP S6211633B2 JP 8430880 A JP8430880 A JP 8430880A JP 8430880 A JP8430880 A JP 8430880A JP S6211633 B2 JPS6211633 B2 JP S6211633B2
Authority
JP
Japan
Prior art keywords
wastewater
mercury
heavy metals
coagulation
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8430880A
Other languages
Japanese (ja)
Other versions
JPS5710383A (en
Inventor
Chuichi Motohashi
Masaya Aihara
Morisue Nagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP8430880A priority Critical patent/JPS5710383A/en
Publication of JPS5710383A publication Critical patent/JPS5710383A/en
Publication of JPS6211633B2 publication Critical patent/JPS6211633B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は都市ゴミ焼却場から排出される排水中
の重金属除去法に関する。 近年、都市ゴミはその多くが焼却処理により処
分されているが、この方法ではゴミの中に存在す
る重金属および塩化水素等が煙突から排出され、
大気汚染の原因となる。このため、焼却煙をアル
カリ性水溶液で洗浄する方法が一般的に採用され
ているが、この洗浄廃水(通常、洗煙廃水と呼ば
れる)中には水銀、カドミウム、鉛、亜鉛などの
重金属を含有しているのでこのまま河川等に放流
することはできない。一方、ゴミを焼却したのち
の燃えがらは灰冷却水槽に入れられ、冷却洗浄さ
れ、この冷却洗浄水(通常、洗灰廃水と呼ばれ
る)中には通常、水銀は含まれないがカドミウ
ム、鉛、亜鉛等の重金属が含有され、このまま河
川等に放流することはできない。この他ゴミ焼却
場から排出される廃水には、塵芥濠に堆積された
塵芥層から浸出する汚水、塵芥運搬車の洗浄によ
る洗車廃水、職員住宅、工場内から排出される生
活廃水等がある。 従来、都市ゴミ焼却場から排出される廃水処理
は、上述した洗煙廃水の他洗灰廃水、生活廃水等
のその他の廃水を全て一括統合して凝集沈澱処理
―過処理―水銀吸着用キレート樹脂による吸着
処理を順次行なうことにより処理されていた。し
かし、かかる従来法では、一般重金属は除去可能
であつても、水銀についてその規制値である
0.005ppm以下にすることは非常に困難であつ
た。このため、一括統合した廃水(以下、総合廃
水と呼ぶ)について凝集沈澱処理を繰り返した
り、また該処理時に硫化ソーダを添加したりし、
次いで過、中和ののち水銀吸着用キレート樹脂
による吸着処理を行なつているが、その工程の前
後に次亜塩素酸ソーダ添加装置、活性炭吸着装
置、一般重金属用キレート樹脂による吸着装置、
マイクロフイルターの取り付け等種々の装置を必
要とし、非常な過大設備となる。 しかし、過大設備になるとそれだけトラブルも
多く発生し、特にマイクロフイルターなどはすぐ
に目詰りして連続使用には全くたえられない。ま
た凝集沈澱処理の際硫化ソーダを添加すること
は、一般重金属の除去方法としては非常に効果が
あるが、水銀に関してはあまり効果がない。すな
わち、水銀は硫化ソーダとたやすく反応して硫化
水銀となり、水酸化鉄との共沈である程度は沈澱
するが、硫化水銀は非常に疎水性であるため沈澱
の一部が、処理液表面に浮上し、シツクナーにお
いて分離除去が不完全になる場合がある。また硫
化水銀は微細なコロイド粒子をつくる場合があ
り、過塔の目詰り、さらに過塔からリークし
た場合はそのあとのキレート塔などの目詰りをお
こす。更には硫化ソーダ添加量が過剰になると処
理水に臭気を与えて二次公害の恐れもあり、また
次式により硫化水銀が再溶解することがある。 HgS+SHgS2 -- また硫化水銀は非常に安定な化合物であり、キ
レート樹脂とキレート結合して吸着しにくいもの
であり、硫化水銀は過工程で過できなければ
水銀吸着用キレート樹脂による吸着除去も困難で
ある。 このようなことから、本発明者らは都市ゴミ焼
却場から廃出される廃水中の重金属特に水銀を経
済的に、容易に、しかも規制値以下にまで除去す
る方法について鋭意検討を行なつた。 本発明者等はさきに都市ゴミ焼却場から排出さ
れる廃水の処理において、該廃水を洗煙廃水とそ
の他の廃水の少なくとも2系列に分離して処理す
ることの有効性について見出したが(特願昭54―
134776号)、洗煙廃水の重金属捕集剤を利用して
の凝集沈澱処理を行なう際に、そのPHおよび添加
順序を考慮することにより、さらに好結果を得る
ことができることを見出し本発明に至つた。 すなわち本発明は、都市ゴミ焼却場から排出さ
れる廃水を洗煙廃水とその他の廃水少なくとも2
系列に分離し、洗煙廃水のPHを2〜10の範囲に調
整して重金属捕集剤と混合した後無機系凝集剤、
高分子凝集剤と順次混合する凝集沈澱処理を行な
い、続いて過処理および過母液の水銀吸着用
キレート樹脂による吸着処理を順次行ない、その
他の廃水についてはPHを7〜12の範囲に調整して
無機系凝集剤及び高分子凝集剤と順次混合する凝
集沈澱処理を行なうことからなる都市ゴミ焼却場
廃水中の重金属除去方法である。 本発明は、都市ゴミ焼却場廃水を洗煙廃水とそ
の他の廃水の少なくとも2系列に分離するもので
あるが、もちろん各排水口から排出される各廃水
毎に処理を行なつてもなんら差しつかえないが、
経済的に費用がかかるので、洗煙廃水のみを別系
列にして処理し、その他の廃水は一括して処理す
るのがより実用的である。 以下本発明を詳細に説明する。 洗煙廃水を処理する際の凝集沈澱処理は、まず
洗煙廃水を硫酸、塩酸、カセイソーダ等を用いて
PH2〜10の範囲に調整して重金属捕集剤と混合し
た後無機系凝集剤、高分子凝集剤と順次混合する
わけであるが、ここで用いられる重金属捕集剤は
特に限定されず、たとえばスミフロツクHM―
2000、スミフロツクHM―6000(住友化学社
品)、ALM648(日本曹達社製)等が使用され
る。 被処理液のPHは2〜10の範囲、好ましくは4〜
9の範囲が良い。この範囲は重金属捕集剤が水銀
を捕獲するのに最適なPH範囲である。洗煙廃水と
重金属捕集剤の混合方法は撹拌機のついた混合槽
で行なつてもよいし、配管途中のラインで行なつ
てもかまわないが、充分混合するためには混合時
間は少なくとも2分以上必要である。 次に混合する無機系凝集剤は、たとえばポリ塩
化アルミ、硫酸バン土、塩化鉄等が使用され、高
分子凝集剤としては、たとえばスミフロツクFA
―50、スミフロツクFA―40、スミフロツクFA―
30〓(以上住友化学社品)、サンポリー(三共化成
社品)、サンフロツク(三洋化成社品)、ハイセツ
ト(第一工業製薬社品)等が使用される。 この凝集沈澱処理方法は、それ自身公知の方法
が適用され、装置及び操作方法等になんら制限さ
れることはない。 本発明において重金属捕集剤を使用するのは一
般重金属をより確実に凝集沈澱除去させることの
みならず、より安定な形で凝集沈澱せしめること
にある。 すなわち、一般重金属は単なるアルカリ凝集沈
澱処理によつても沈澱除去され、分離されたスラ
ツジは多くの場合埋め立て処分されるが、該スラ
ツジ中には一般重金属のみならず水銀の一部が混
入してくることもあり、これをそのまま埋め立て
処分すればかかる重金属が溶出して二次公害を引
き起こす危険性もあるが、凝集沈澱処理に重金属
捕集剤を併用すれば重金属類が安定な形でスラツ
ジ中に存在するため、スラツジを埋め立て処分し
ても重金属が溶出したりすることがなく、単に廃
水中の重金属の除去ということだけでなく、廃水
の総合処理という点からも極めて有効である。 過処理工程は、過方法としては重力式過
と急速過の二通りがあるが、本発明はどちらの
方法をとつても差しつかえない。また材として
は砂、アンスラサイトなどがあるが、本発明方法
ではどちらの材をとつても差しつかえなく、両
者を合わせた複層ろ過でも差しつかえない。ここ
でろ過された母液は次の吸着処理工程にまわされ
る。 水銀着用キレート樹脂による吸着処理工程にお
いて用いられる水銀吸着用キレート樹脂は特に限
定されず、たとえばスミキレートQ―10R(住友
化学社品)、ALM125(日本曹達社品)、エポラス
Z―7(ミヨシ油脂社品)、UR―120H(ユニチ
カ社品)、キレートMA(北越炭素社品)等が使
用される。 また、吸着処理操作そのものも従来公知の方法
がそのまま適用され、特に制限されないが、該吸
着処理に供される廃水のPHは水銀の除去性からPH
8以下、好ましくはPH2〜7の範囲がよい。 かくして順次処理された洗煙廃水中の一般重金
属および水銀は完全に規制値以下にまで除去され
ており、PH調整ののちそのまま河川等に放流する
ことができるし、或いはこれを工場内で循環使用
し、たとえばゴミを焼却したもえがらの冷却洗浄
水として用いることも可能である。 また、洗煙廃水処理水中には食塩が多量に含ま
れているため、これを濃縮して食塩を回収するこ
とも可能であるし、電気分解を行なつて次亜塩素
酸ソーダ水溶液を製造することも可能である。 次に本発明でいうその他の廃水は凝集沈澱処理
を行なうわけであるが、凝集沈澱処理方法は全く
一般的なアルカリ凝集沈澱法でよい。すなわちPH
を7〜12の範囲に調整して無機系凝集剤及び高分
子凝集剤と順次混合する。アルカリ凝集沈澱処理
された処理水中の一般重金属は完全に規制値以下
に除去されており、PH調整してそのまま河川等に
放流することができる。河川、海域に直接放流す
る場合で、まだCOD、BODが残存している場合
にはこの後で生物処理設備を設置しCOD、BOD
その他を規制値以下にしなければならないのは当
然である。 以上本発明方法は都市ゴミ焼却場から排出され
る廃水を洗煙廃水とその他の廃水の少なくとも2
系列に分離し、洗煙廃水は重金属捕集剤を添加し
て凝集沈澱処理を行なう第1工程、過処理を行
なう第2工程、水銀吸着用キレート樹脂による吸
着処理を行なう第3工程を順々に行ない、その他
の廃水は凝集沈澱処理のみを行なうことを特徴と
するが、必要に応じて各種処理を組込むことも可
能であるが、かくして都市ゴミ焼却場廃水中の重
金属を非常に経済的にかつ完全に規制値以下に除
去することができる。 以下に本発明方法を実施例によりさらに詳細に
説明するが、本発明はその要旨を越えないかぎ
り、以下の実施例のみに限定されるものではな
い。 実施例 1 都市ゴミ焼却場であるA、B、C、Dの各工場
の洗煙廃水のPHを硫酸もしくはカセイソーダを使
用して7に調整し、スミフロツクHM6000を
10ppm添加して10分間撹拌を行なつた後、塩化
第2鉄を200ppm添加し、5分間急速撹拌を行な
い、再びカセイソーダを添加してPHを7に調整
し、スミフロツクFA50を1ppm添加し、5分間
緩速撹拌を行なつた。次に該処理液の砂―アンス
ラサイトの複層過機を通してスラツジを分離し
たのち、母液に硫酸を添加してPH4とした液を原
水とした。 この原水中の一般重金属を分析したところA、
B、C、Dのどの工場の廃水とも規制値以下であ
つたが、水銀のみは規制値以下にならず表1に示
したような濃度であつた。この原水をスミキレー
トQ―10R 500mlを充填した内径28mm、高さ1500
mmの塩ビ製カラムを2塔ならべ直列にSV=5で
通液した。結果は表1に示した通り水銀は完全に
除去されていた。
The present invention relates to a method for removing heavy metals from wastewater discharged from municipal waste incinerators. In recent years, much of municipal garbage has been disposed of by incineration, but with this method, heavy metals and hydrogen chloride present in the garbage are discharged from the chimney.
Causes air pollution. For this reason, a method of cleaning incineration smoke with an alkaline aqueous solution is generally adopted, but this cleaning wastewater (usually called smoke cleaning wastewater) contains heavy metals such as mercury, cadmium, lead, and zinc. Therefore, it is not possible to discharge the water into rivers, etc. as it is. On the other hand, after incinerating garbage, the cinders are put into an ash cooling water tank where they are cooled and washed, and this cooling washing water (usually called ash washing wastewater) usually does not contain mercury, but does contain cadmium, lead, and zinc. It contains heavy metals such as, and cannot be discharged into rivers as is. Other types of wastewater discharged from garbage incinerators include sewage that seeps from the dust layer deposited in the garbage moat, car wash wastewater from cleaning garbage transport vehicles, and domestic wastewater discharged from staff housing and factories. Traditionally, wastewater discharged from municipal garbage incinerators has been treated by integrating all of the above-mentioned smoke washing wastewater, ash washing wastewater, domestic wastewater, and other wastewater at once, using coagulation-sedimentation treatment, overtreatment, and chelate resin for mercury adsorption. The treatment was carried out by sequentially performing adsorption treatment. However, with such conventional methods, although general heavy metals can be removed, mercury does not meet the regulatory limits.
It was extremely difficult to reduce the content to 0.005 ppm or less. For this reason, coagulation and sedimentation treatment is repeated on the collectively integrated wastewater (hereinafter referred to as comprehensive wastewater), and sodium sulfide is added during the treatment.
Next, after filtration and neutralization, adsorption treatment using chelate resin for mercury adsorption is performed, but before and after this process, a sodium hypochlorite addition device, an activated carbon adsorption device, an adsorption device using chelate resin for general heavy metals,
This requires various devices such as the installation of a microfilter, resulting in extremely large equipment. However, the larger the equipment, the more problems will occur, especially the microfilter, which will quickly become clogged and cannot be used continuously. Also, adding sodium sulfide during coagulation and precipitation treatment is very effective as a method for removing general heavy metals, but is not very effective for mercury. In other words, mercury easily reacts with sodium sulfide to form mercury sulfide, which is precipitated to some extent by coprecipitation with iron hydroxide, but mercury sulfide is extremely hydrophobic, so some of the precipitate does not reach the surface of the treatment solution. It may float to the surface, resulting in incomplete separation and removal in the thickener. Additionally, mercury sulfide may form fine colloidal particles, which can clog the filter tower, and if it leaks from the filter tower, it can clog the chelate tower that follows it. Furthermore, if the amount of sodium sulfide added is excessive, there is a risk of giving odor to the treated water and causing secondary pollution, and mercury sulfide may be redissolved according to the following equation. HgS+SHgS 2 --In addition, mercury sulfide is a very stable compound, and it is difficult to adsorb as it forms a chelate bond with a chelate resin, and it is difficult to adsorb and remove mercury sulfide with a chelate resin for mercury adsorption unless it can be passed through a series of steps. It is. For these reasons, the present inventors have conducted intensive studies on a method for economically and easily removing heavy metals, particularly mercury, from wastewater discharged from municipal garbage incinerators, and further, to a level below the regulation value. The present inventors have previously discovered the effectiveness of separating the wastewater into at least two streams, smoke washing wastewater and other wastewater, in the treatment of wastewater discharged from municipal waste incinerators (particularly Gansho 54-
No. 134776), we have discovered that even better results can be obtained by considering the pH and order of addition when carrying out coagulation-sedimentation treatment of smoke washing wastewater using a heavy metal scavenger, leading to the present invention. Ivy. That is, the present invention combines wastewater discharged from a municipal waste incinerator into at least two types of wastewater: smoke washing wastewater and other wastewater.
Separate into series, adjust the pH of the smoke washing wastewater to a range of 2 to 10, mix it with a heavy metal scavenger, and then add an inorganic flocculant,
Coagulation-sedimentation treatment is performed by sequentially mixing with a polymer flocculant, followed by overtreatment and adsorption treatment of the supernatant mother liquor using a chelate resin for mercury adsorption.For other wastewater, the pH is adjusted to a range of 7 to 12. This is a method for removing heavy metals from municipal waste incinerator wastewater, which involves performing coagulation-sedimentation treatment by sequentially mixing an inorganic flocculant and a polymer flocculant. The present invention separates municipal waste incinerator wastewater into at least two streams: smoke washing wastewater and other wastewater, but of course there is no problem in treating each wastewater discharged from each drainage outlet. No, but
Since it is economically expensive, it is more practical to treat only the smoke washing wastewater in a separate system and treat the other wastewater all at once. The present invention will be explained in detail below. In the coagulation and sedimentation treatment when treating smoke washing wastewater, the smoke washing wastewater is first treated with sulfuric acid, hydrochloric acid, caustic soda, etc.
After adjusting the pH to a range of 2 to 10 and mixing with a heavy metal scavenger, the mixture is sequentially mixed with an inorganic flocculant and a polymer flocculant, but the heavy metal scavenger used here is not particularly limited; for example, Sumifrock HM-
2000, Sumifloc HM-6000 (manufactured by Sumitomo Chemical Co., Ltd.), ALM648 (manufactured by Nippon Soda Co., Ltd.), etc. are used. The pH of the liquid to be treated is in the range of 2 to 10, preferably 4 to 10.
A range of 9 is good. This range is the optimum pH range for heavy metal scavengers to capture mercury. The smoke washing wastewater and the heavy metal scavenger may be mixed in a mixing tank equipped with an agitator or in a line in the middle of the piping, but in order to mix thoroughly, the mixing time must be at least It takes more than 2 minutes. The inorganic flocculant to be mixed next is, for example, polyaluminum chloride, aluminum sulfate, iron chloride, etc., and the polymer flocculant is, for example, Sumifloc FA.
-50, Sumifrock FA-40, Sumifrock FA-
30〓 (products of Sumitomo Chemical Co., Ltd.), Sunpoly (products of Sankyo Kasei Co., Ltd.), Sunfloc (products of Sanyo Chemical Co., Ltd.), Hiset (products of Daiichi Kogyo Seiyaku Co., Ltd.), etc. are used. This coagulation-sedimentation treatment method is a method known per se, and is not limited in any way to the apparatus and operating method. The purpose of using a heavy metal scavenger in the present invention is not only to more reliably remove general heavy metals by coagulation and precipitate, but also to coagulate and precipitate them in a more stable form. In other words, general heavy metals can be precipitated and removed by simple alkali coagulation and precipitation treatment, and the separated sludge is often disposed of in landfills, but not only general heavy metals but also some mercury are mixed in the sludge. If these heavy metals are disposed of directly in a landfill, there is a risk that these heavy metals will leach out and cause secondary pollution, but if a heavy metal scavenger is used in conjunction with coagulation and sedimentation treatment, heavy metals can be kept in a stable form in the sludge. Since heavy metals are present in the sludge, they will not be leached even if the sludge is disposed of in a landfill, making it extremely effective not only for the removal of heavy metals from wastewater but also for the comprehensive treatment of wastewater. There are two methods of overtreatment in the overtreatment process: gravity overtreatment and rapid overtreatment, and the present invention can use either method. Further, materials include sand, anthracite, etc., and in the method of the present invention, either material can be used, and multilayer filtration using a combination of both materials can also be used. The mother liquor filtered here is sent to the next adsorption treatment step. The mercury-adsorbing chelate resin used in the adsorption treatment step with mercury-wearing chelate resin is not particularly limited, and examples include Sumikylate Q-10R (Sumitomo Chemical Co., Ltd.), ALM125 (Nippon Soda Co., Ltd.), and Eporus Z-7 (Miyoshi Yushi Co., Ltd.). UR-120H (Unitika product), Chelate MA (Hokuetsu Tanso product), etc. are used. In addition, the adsorption treatment itself can be applied using conventionally known methods and is not particularly limited, but the PH of the wastewater subjected to the adsorption treatment is
8 or less, preferably in the range of PH2 to 7. General heavy metals and mercury in the sequentially treated smoke washing wastewater are completely removed to levels below regulation values, and after pH adjustment, it can be discharged directly into rivers, etc., or it can be recycled within the factory. However, it can also be used, for example, as cooling water for washing rice husks from incinerated garbage. In addition, since the smoke washing wastewater treatment water contains a large amount of salt, it is possible to recover the salt by concentrating it, or to produce a sodium hypochlorite aqueous solution by electrolysis. It is also possible. Next, the other wastewater referred to in the present invention is subjected to coagulation and sedimentation treatment, and the coagulation and sedimentation treatment method may be a completely general alkali coagulation and sedimentation method. i.e. PH
is adjusted to a range of 7 to 12 and sequentially mixed with an inorganic flocculant and a polymer flocculant. General heavy metals in treated water that has been subjected to alkali coagulation and precipitation treatment are completely removed to levels below regulatory limits, and the water can be discharged into rivers, etc., as is after adjusting the pH. When discharging directly into rivers or sea areas, if COD and BOD still remain, biological treatment equipment will be installed after this to remove COD and BOD.
It goes without saying that other factors must be kept below regulation values. As described above, the method of the present invention uses at least two types of wastewater discharged from a municipal garbage incinerator: smoke washing wastewater and other wastewater.
Separated into series, the smoke washing wastewater is sequentially subjected to a first step in which a heavy metal scavenger is added and subjected to coagulation and sedimentation treatment, a second step in which overtreatment is performed, and a third step in which adsorption treatment is performed using a chelate resin for mercury adsorption. It is characterized in that only coagulation and sedimentation treatment is performed on other wastewater, but it is also possible to incorporate various treatments as necessary.In this way, heavy metals in wastewater from municipal waste incinerators can be removed very economically. And it can be completely removed to below the regulation value. The method of the present invention will be explained in more detail below with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Example 1 The pH of the smoke washing wastewater from factories A, B, C, and D, which are municipal waste incineration plants, was adjusted to 7 using sulfuric acid or caustic soda, and Sumifloc HM6000 was
After adding 10 ppm and stirring for 10 minutes, add 200 ppm of ferric chloride, stir rapidly for 5 minutes, add caustic soda again to adjust the pH to 7, add 1 ppm of Sumifloc FA50, and stir for 5 minutes. Slow stirring was performed for a minute. Next, the treated liquid was passed through a sand-anthracite multilayer filter to separate sludge, and sulfuric acid was added to the mother liquor to adjust the pH to 4, which was used as raw water. Analysis of general heavy metals in this raw water revealed that A.
The wastewater from factories B, C, and D all had concentrations below the regulation value, but only mercury did not fall below the regulation value, and the concentration was as shown in Table 1. This raw water was filled with Sumikylate Q-10R 500ml.Inner diameter 28mm, height 1500
Two mm PVC columns were arranged in series and liquid was passed through them at SV=5. As shown in Table 1, mercury was completely removed.

【表】 実施例 2 都市ゴミ焼却場であるA工場の洗煙廃水のPHを
硫酸を添加して7に調整し、スミフロツク
HA6000を20ppm添加して10分間撹拌を行なつた
後、塩化第2鉄を200ppm添加し、5分間急速撹
拌を行ない、再びカセイソーダを添加してPHを7
に調整し、スミフロツクFA―50を2ppmに添加
し、5分間緩速撹拌を行なつた。 次に砂―アンスラサイトの複層過機を通して
スラツジを分離したのちPH調整を行ない、PH4と
した液を原水とした。この原水中の一般重金属を
分析したところ規制値以下で問題なかつたが、水
銀は規制値以下にならず0.0112ppmであつた。こ
の原水を各種市販の水銀吸着用キレート樹脂を
500ml充填した内径28mm、高さ1500mmの塩ビ製カ
ラムを2塔ならべて直列にSV=5で通液した。
結果は表2に示した通りどのような水銀吸着用キ
レート樹脂を使用しても水銀は完全に除去されて
いた。
[Table] Example 2 The pH of smoke washing wastewater from Factory A, which is a municipal waste incinerator, was adjusted to 7 by adding sulfuric acid, and Sumifloc was
After adding 20 ppm of HA6000 and stirring for 10 minutes, 200 ppm of ferric chloride was added, rapid stirring was performed for 5 minutes, and caustic soda was added again to bring the pH to 7.
Sumifloc FA-50 was added to 2 ppm and stirred slowly for 5 minutes. Next, the sludge was separated through a sand-anthracite multi-layer filtration machine, and the pH was adjusted to make the liquid pH 4, which was used as raw water. When the general heavy metals in this raw water were analyzed, they were found to be below the regulation value and there were no problems, but the mercury was not below the regulation value and was 0.0112ppm. This raw water is treated with various commercially available chelate resins for adsorbing mercury.
Two PVC columns packed with 500 ml and having an inner diameter of 28 mm and a height of 1500 mm were lined up and the liquid was passed in series at SV=5.
As shown in Table 2, mercury was completely removed no matter what chelate resin for adsorbing mercury was used.

【表】 実施例 3 都市ゴミ焼却場であるA工場の洗煙廃水以外の
その他の廃水(洗灰廃水、じん芥浸出汚水、洗車
廃水、生活廃水等の混合廃水)のPHをカセイソー
ダを使用して11に調整し、塩化第2鉄を200ppm
添加し5分間急速撹拌を行ない、再びカセイソー
ダを添加してPHを11に調整し、スミフロツク
FA50を2ppm添加し5分間緩速撹拌を行なつ
た。その上澄液の一般重金属を分析した。その結
果を表3に示したが一般重金属は完全に規制値以
下に除去されていた。
[Table] Example 3 Using caustic soda, the pH of other wastewater other than smoke washing wastewater (ash washing wastewater, dust leaching wastewater, car washing wastewater, domestic wastewater, etc.) at Factory A, which is a municipal garbage incinerator, was determined. Adjust to 11 and add ferric chloride to 200ppm.
Add and stir rapidly for 5 minutes, then add caustic soda again to adjust the pH to 11, and add Sumifloc.
FA50 was added at 2 ppm and stirred slowly for 5 minutes. The supernatant liquid was analyzed for common heavy metals. The results are shown in Table 3, and it was found that general heavy metals were completely removed to below the regulatory values.

【表】【table】

【表】 比較例 1 都市ゴミ焼却場であるA、B、C、Dの各工場
の洗煙廃水のPHを硫酸もしくはカセイソーダを使
用して10に調整し、硫化ソーダを10ppm添加し
て10分間撹拌を行なつた後塩化第2鉄を200ppm
添加し、5分間急速撹拌を行ない再びカセイソー
ダを添加してPHを10に調整し、スミフロツクFA
―50を1ppm添加し、5分間緩速撹拌を行なつ
た。 次に砂―アンスラサイトの複層過機を通して
スラツジを分離したのちPH調整を行ない、PH4と
した液を原水とした。この原水中の一般重金属を
分析したところ、A、B、C、Dのどの工場の廃
水とも規制値以下であつたが、水銀のみは規制値
以下にならず表4に示したような濃度であつた。
この原水をスミキレートQ―10R 500mlを充填し
た内径28mm、高さ1500mmの塩ビ製カラムを2塔な
らべ直列にSV=5で通液した。結果は表4に示
した通り水銀は完全に規制値以下にならなかつ
た。
[Table] Comparative Example 1 The PH of the smoke washing wastewater from factories A, B, C, and D, which are municipal waste incinerators, was adjusted to 10 using sulfuric acid or caustic soda, and 10 ppm of sodium sulfide was added to it for 10 minutes. After stirring, add 200ppm of ferric chloride.
After stirring rapidly for 5 minutes, add caustic soda again to adjust the pH to 10, and add Sumifloc FA.
-50 was added at 1 ppm and slowly stirred for 5 minutes. Next, the sludge was separated through a sand-anthracite multi-layer filtration machine, and the pH was adjusted to make the liquid pH 4, which was used as raw water. When general heavy metals in this raw water were analyzed, the wastewater from factories A, B, C, and D were all below the regulatory value, but only mercury did not fall below the regulatory value, and the concentration was as shown in Table 4. It was hot.
This raw water was passed in series at SV=5 through two PVC columns with an inner diameter of 28 mm and a height of 1500 mm filled with 500 ml of Sumikylate Q-10R. As shown in Table 4, the mercury was not completely below the regulatory value.

【表】 比較例 2 都市ゴミ焼却場であるA、B、C、Dの各工場
の総合廃水のPHをカセイソーダを使用して11に調
整し、塩化第2鉄を200ppmを添加し、5分間急
速撹拌を行ない再びカセイソーダを添加してPHを
11に調整し、スミフロツクFA50 2ppm添加し、
5分間緩速撹拌を行なつた。以下比較例1と全く
同様の操作で過処理、スミキレートQ―10R処
理を行なつた。結果は表5に示した通りで、水銀
は規制値以下にならなかつた。
[Table] Comparative Example 2 The pH of the comprehensive wastewater from each of the municipal waste incineration plants A, B, C, and D was adjusted to 11 using caustic soda, 200 ppm of ferric chloride was added, and the mixture was heated for 5 minutes. Stir rapidly and add caustic soda again to adjust the pH.
Adjust to 11, add Sumifloc FA50 2ppm,
Slow stirring was performed for 5 minutes. Thereafter, overtreatment and Sumichylate Q-10R treatment were carried out in exactly the same manner as in Comparative Example 1. The results are shown in Table 5, and the mercury did not fall below the regulatory value.

【表】 比較例 3 都市ゴミ焼却場であるA工場の総合廃水につい
て比較例2と全く同様の操作を行ない、原水中の
水銀濃度を測定したところ0.0131ppmであつた。
この原水を表6に示したような市販の水銀吸着用
キレート樹脂を500ml充填した内径28mm、高さ
1500mmの塩ビ製カラムを2塔ならべ直列にSV=
5で通液した。結果は表6に示した通り、いずれ
の樹脂でも水銀は規制値以下にならなかつた。
[Table] Comparative Example 3 The same operation as in Comparative Example 2 was carried out on general wastewater from Factory A, which is a municipal waste incinerator, and the mercury concentration in the raw water was measured and found to be 0.0131 ppm.
This raw water was filled with 500 ml of commercially available chelate resin for mercury adsorption as shown in Table 6, with an inner diameter of 28 mm and a height of
Two 1500mm PVC columns are connected in series with SV=
The liquid was passed through the tube at step 5. As shown in Table 6, mercury did not fall below the regulatory value in any of the resins.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 都市ゴミ焼却場から排出される廃水を洗煙廃
水とその他の廃水の少なくとも2系列に分離し、
洗煙廃水のPHを2〜10の範囲に調整して、重金属
捕集剤と混合した後、無機系凝集剤、高分子凝集
剤と順次混合する凝集沈澱処理を行ない、続いて
過処理および過母液の水銀吸着用キレート樹
脂による吸着処理を順次行ない、その他の廃水は
PHを7〜12の範囲に調整して無機系凝集剤及び高
分子凝集剤と順次混合する凝集沈澱処理を行なう
ことを特徴とする都市ゴミ焼却場廃水中の重金属
除去法。
1. Separate wastewater discharged from municipal garbage incinerators into at least two streams: smoke washing wastewater and other wastewater,
After adjusting the pH of the smoke washing wastewater to a range of 2 to 10 and mixing it with a heavy metal scavenger, a coagulation-sedimentation treatment is performed by sequentially mixing it with an inorganic flocculant and a polymer flocculant, followed by overtreatment and filtration. The mother liquor is sequentially adsorbed using a chelate resin for mercury adsorption, and other wastewater is
A method for removing heavy metals from municipal waste incinerator wastewater, which comprises adjusting the pH to a range of 7 to 12 and performing a coagulation-sedimentation treatment by sequentially mixing an inorganic flocculant and a polymer flocculant.
JP8430880A 1980-06-20 1980-06-20 Removing method of heavy metallic element contained in waste water Granted JPS5710383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8430880A JPS5710383A (en) 1980-06-20 1980-06-20 Removing method of heavy metallic element contained in waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8430880A JPS5710383A (en) 1980-06-20 1980-06-20 Removing method of heavy metallic element contained in waste water

Publications (2)

Publication Number Publication Date
JPS5710383A JPS5710383A (en) 1982-01-19
JPS6211633B2 true JPS6211633B2 (en) 1987-03-13

Family

ID=13826856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8430880A Granted JPS5710383A (en) 1980-06-20 1980-06-20 Removing method of heavy metallic element contained in waste water

Country Status (1)

Country Link
JP (1) JPS5710383A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665279B2 (en) * 2000-01-14 2011-04-06 栗田工業株式会社 Method for treating boron-containing water
CN106348484A (en) * 2015-07-17 2017-01-25 许中石 Novel deep mercury removal process
CN105565559B (en) * 2016-01-18 2018-02-02 四川师范大学 A kind of technology for removing mercury in acidic high-strength mercury-containing waste water
CN110697964A (en) * 2019-11-11 2020-01-17 方小兵 Method for removing heavy metal in sewage

Also Published As

Publication number Publication date
JPS5710383A (en) 1982-01-19

Similar Documents

Publication Publication Date Title
US3577341A (en) Water treatment
KR100851456B1 (en) Method and apparatus for treatment of water
US9242878B2 (en) Heavy metal removal from waste streams
CN101817575B (en) Electric flocculation method and device for recovering and processing desulfurized wastewater
US7291275B1 (en) Method for clarifying industrial wastewater while minimizing sludge
US4108769A (en) Process for reducing the mercury content of industrial waste waters
WO2007052618A1 (en) Method for removing metals from waste water and apparatus for removing metals from waste water
US20050230318A1 (en) Method of clarifying industrial laundry wastewater using cationic dispersion polymers and anionic flocculent polymers
US20220073396A1 (en) Process and apparatus for water treatment
US6015498A (en) Coal ashes used for treating various media and facilities for using same
WO1991007354A1 (en) Water treatment method
KR20060091084A (en) Treatment method for livestock waste water including highly concentrated organic materials
JPS6211633B2 (en)
JPH06237B2 (en) Wastewater treatment method and apparatus
JPS63258690A (en) Treatment of organic sewage
JPS601073B2 (en) Method for removing heavy metals from wastewater
JP6213044B2 (en) Method and apparatus for treating selenium-containing water
JPS6344989A (en) Treatment of washing waste water containing oxidizing agent
JP3512613B2 (en) Leachate treatment method and apparatus
JP3392298B2 (en) Wastewater treatment method
JPH0445237B2 (en)
JP3267948B2 (en) Treatment method for oil-containing waste liquid
JP2003010860A (en) Treater for cleaning wastewater used for demolishing of incinerator
JP2004188340A (en) Method for treating liquid containing dioxins
JP2000185289A (en) Waste water treatment method and apparatus