JP2000185289A - Waste water treatment method and apparatus - Google Patents

Waste water treatment method and apparatus

Info

Publication number
JP2000185289A
JP2000185289A JP10364838A JP36483898A JP2000185289A JP 2000185289 A JP2000185289 A JP 2000185289A JP 10364838 A JP10364838 A JP 10364838A JP 36483898 A JP36483898 A JP 36483898A JP 2000185289 A JP2000185289 A JP 2000185289A
Authority
JP
Japan
Prior art keywords
wastewater
ozone
treatment
activated carbon
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10364838A
Other languages
Japanese (ja)
Inventor
Jiro Sato
二朗 佐藤
Kohei Miki
康平 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP10364838A priority Critical patent/JP2000185289A/en
Publication of JP2000185289A publication Critical patent/JP2000185289A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pretreatment process for effectively removing iron and manganese contained in waste water at a low cost in a waste water treatment method for treating waste water containing org. compounds by using ozone and light. SOLUTION: Ozone supplied from an ozone generator 7 through a line L5 is injected into waste water supplied from a line L1 in an ozone treatment tank 1 to oxidize soluble metals in waste water to insolubilize them and the treated soln. is passed through a sand filter tank 3 through a line L2 to separate the insolubilized matter and the waste water from which soluble metals are removed is sent to an org. matter treatment apparatus 2 and an org. compd. is decomposed by using ozone and light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は用水、工業廃水、上
水、上水汚泥処理排水、特にゴミ埋立地浸出水等の溶解
性金属等を含む廃水の処理方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for treating water, industrial wastewater, tap water, wastewater from treated sludge, and particularly wastewater containing soluble metals such as leachate from landfills.

【0002】[0002]

【従来の技術】廃水にオゾンを添加し、紫外線等の光を
照射することにより、有機化合物を酸化分解する処理方
法が知られている(特開平7−136668号公報参
照)。
2. Description of the Related Art A treatment method is known in which ozone is added to wastewater and the organic compound is oxidatively decomposed by irradiating light such as ultraviolet rays (see Japanese Patent Application Laid-Open No. Hei 7-136668).

【0003】ところで、有機化合物を含む廃水のうち、
ゴミ埋立地浸出水には鉄・マンガンが含まれていること
がしばしばある。また、用水処理に一般的に用いられる
凝集沈殿のための凝集剤として塩化鉄やポリ鉄を使用す
れば、処理用水中に凝集に寄与しなかった溶解性鉄が流
出することがある。凝集剤として用いられる塩化鉄やポ
リ鉄には数千ppmのマンガンが含まれており、溶解性
マンガンも処理用水中に流出してしまう。
By the way, of wastewater containing organic compounds,
Landfill leachate often contains iron and manganese. In addition, if iron chloride or polyiron is used as a coagulant for coagulation and sedimentation generally used in water treatment, soluble iron that did not contribute to coagulation may flow out into the water for treatment. Iron chloride and polyiron used as flocculants contain manganese of several thousand ppm, and soluble manganese also flows out into the treatment water.

【0004】このように鉄・マンガン等を多量に含有す
る廃水に対して、前述のオゾンと光を利用した処理を行
なった場合、鉄・マンガン等から不溶化物を生じ廃水中
への光線の透過を阻害することや、光源となるランプ表
面にスケーリングを生じランプの照射能力を低下させる
といった問題がある。鉄・マンガン等を除去するには、
従来から過マンガン酸カリウム酸化沈殿法、接触ろ過
法、アルカリ凝析法等が使われる。
When the wastewater containing a large amount of iron, manganese, etc. is subjected to the treatment using ozone and light as described above, insolubilized substances are generated from the iron, manganese, etc., and light is transmitted into the wastewater. And the scaling of the surface of the lamp as a light source to reduce the irradiation capability of the lamp. To remove iron, manganese, etc.
Conventionally, potassium permanganate oxidation precipitation method, contact filtration method, alkali coagulation method and the like have been used.

【0005】このうち、過マンガン酸カリウム酸化沈殿
法は、廃水に過マンガン酸カリウムを添加し、溶解性の
鉄・マンガンを酸化させて不溶化させ、砂ろ過等の方法
を用いて廃水から分離・除去する方法である。接触ろ過
法は、次亜塩素酸ナトリウム等の塩素系酸化剤を廃水に
添加し、溶解性のマンガンをマンガン砂を用いた砂ろ過
で吸着除去する方法である。マンガン砂は粒子表面に酸
化マンガンが付着している砂のことをいい、日本水道協
会で規格化されている。この方法は、砂粒子表面に付着
している酸化マンガンを触媒とすることで、酸化力の弱
い塩素系酸化剤でもマンガンを酸化・不溶化させて除去
できるという処理法である。アルカリ凝析法は、廃水に
水酸化ナトリウム等のアルカリ剤を添加し、溶解性の鉄
・マンガンをpH10以上でフロック状の水酸化物と
し、凝集沈殿・膜分離する方法である。同様に凝沈工程
で凝集剤の他に重金属捕集剤等を用いて除去する方法も
ある。
In the potassium permanganate oxidation precipitation method, potassium permanganate is added to wastewater to oxidize and insolubilize soluble iron and manganese, and is separated from wastewater by a method such as sand filtration. It is a method of removing. The contact filtration method is a method in which a chlorine-based oxidizing agent such as sodium hypochlorite is added to wastewater, and soluble manganese is adsorbed and removed by sand filtration using manganese sand. Manganese sand refers to sand with manganese oxide attached to the particle surface and is standardized by the Japan Water Works Association. This method is a treatment method in which manganese oxide adhering to the surface of sand particles is used as a catalyst to oxidize and insolubilize manganese even with a chlorine-based oxidizing agent having weak oxidizing power and remove it. The alkali coagulation method is a method in which an alkali agent such as sodium hydroxide is added to wastewater to form a floc-like hydroxide of soluble iron or manganese at a pH of 10 or more, and coagulation precipitation and membrane separation are performed. Similarly, there is a method of removing the coagulant using a heavy metal collector in the coagulation process.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、こうし
た従来技術の鉄・マンガン除去方法には、それぞれ以下
に挙げるような問題点があった。過マンガン酸カリウム
酸化法は、添加する過マンガン酸カリウム溶液の量を加
減することが非常に難しく、添加量が多くても少なくて
もマンガンが溶出してしまう。接触ろ過法は、塩素系酸
化剤の使用による残留塩素の増大で有機塩素化合物が合
成されてしまうことになり、本来の目的である有機物処
理に悪影響を及ぼす。凝沈工程での鉄・マンガン除去方
法は、pH調整用薬液や重金属捕集剤のコストがかかっ
てしまう。
However, the conventional methods for removing iron and manganese have the following problems, respectively. In the potassium permanganate oxidation method, it is very difficult to adjust the amount of the potassium permanganate solution to be added, and manganese is eluted even if the amount of addition is large or small. In the contact filtration method, an organic chlorine compound is synthesized due to an increase in residual chlorine due to the use of a chlorine-based oxidizing agent, which adversely affects the original purpose of treating organic substances. The method of removing iron and manganese in the coagulation process requires a chemical solution for pH adjustment and a heavy metal collecting agent.

【0007】上記問題点に鑑みて、本発明に係る廃水処
理方法は、オゾンと光を用いた有機化合物を含む廃水処
理方法において、廃水に含まれる鉄・マンガンを効果的
かつ低コストで除去する前処理工程を備えた廃水処理方
法を提供することを課題とする。
In view of the above problems, a wastewater treatment method according to the present invention, in a wastewater treatment method containing an organic compound using ozone and light, removes iron and manganese contained in the wastewater effectively and at low cost. It is an object to provide a wastewater treatment method including a pretreatment step.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明の廃水処理方法は、オゾンを添加した廃水に
光を照射してこの廃水中の有機化合物を酸化分解処理す
る廃水処理方法において、この酸化分解処理に先立っ
て、(1)廃水にオゾンを注入し、廃水中の溶解性金属
を酸化させて不溶化する不溶化工程と、(2)廃水から
不溶化物を分離する分離工程と、を備えていることを特
徴とする。
In order to solve the above-mentioned problems, a wastewater treatment method of the present invention is directed to a wastewater treatment method for irradiating ozone-added wastewater with light to oxidatively decompose organic compounds in the wastewater. Prior to the oxidative decomposition treatment, (1) injecting ozone into wastewater to oxidize and insolubilize soluble metals in the wastewater, and (2) separating the insolubilized product from the wastewater. It is characterized by having.

【0009】一方、本発明に係る排水処理装置は、
(1)廃水を貯水し、廃水中にオゾンを注入して、廃水
中の溶解性金属を酸化させて不溶化処理するオゾン処理
槽と、(2)オゾン処理槽の処理廃水から不溶化物を分
離する分離装置と、(3)分離装置で不溶化物を分離し
た廃水にオゾンを注入するとともに、光を照射して有機
物を酸化分解処理する有機物処理装置と、を備えている
ことを特徴とする。
On the other hand, the wastewater treatment apparatus according to the present invention
(1) storing wastewater, injecting ozone into the wastewater, oxidizing soluble metals in the wastewater to insolubilize the wastewater, and (2) separating insolubilized substances from the treated wastewater in the ozone treatment tank. It is characterized by comprising a separation device and (3) an organic material treatment device that injects ozone into wastewater from which insolubilized substances have been separated by the separation device and irradiates light to oxidatively decompose organic materials.

【0010】廃水にオゾンを注入すると、液中に含まれ
る鉄・マンガン等の溶解性金属の金属イオンは、オゾン
を酸化剤として酸化され、酸化物として不溶化する。こ
の不溶化物を分離することにより、鉄・マンガン等を効
果的に除去することができ、後工程のオゾン−光による
酸化分解処理も効果的に行なうことができる。後工程用
の既設のオゾン設備を利用することができるので、コス
ト上昇もなく、また、不溶化時に有機塩素化合物の生成
反応等も起こらず、好ましい。
[0010] When ozone is injected into wastewater, metal ions of soluble metals such as iron and manganese contained in the liquid are oxidized using ozone as an oxidizing agent and insolubilized as oxides. By separating this insolubilized material, iron, manganese and the like can be effectively removed, and the oxidative decomposition treatment using ozone-light in the subsequent step can also be effectively performed. Since the existing ozone equipment for the post-process can be used, there is no cost increase, and there is no occurrence of an organic chlorine compound generation reaction at the time of insolubilization, which is preferable.

【0011】この分離工程は、砂ろ過あるいは膜分離に
より不溶化物を分離することが好ましい。不溶化物を物
理的に分離することにより、低コストかつ分離時に新た
な反応物も生成されないので、好ましい。
In this separation step, it is preferable to separate the insolubilized matter by sand filtration or membrane separation. Physically separating the insolubilized substance is preferable because it is low in cost and no new reactant is generated during the separation.

【0012】不溶化工程は、廃水を中性若しくは酸性の
状態に維持して行なうことが好ましい。オゾンは液中で
は自己分解性を有し、その自己分解速度は液のpHに依
存し、pH値が高いほど早く分解する。廃水を中性若し
くは酸性の状態に維持することで、注入されるオゾンの
自己分解を抑制し、溶解性金属との反応に効果的に用い
ることができる。
The insolubilization step is preferably performed while maintaining the wastewater in a neutral or acidic state. Ozone has self-decomposition property in a liquid, and its self-decomposition rate depends on the pH of the liquid. The higher the pH value, the faster the decomposition. By maintaining the wastewater in a neutral or acidic state, the self-decomposition of the injected ozone can be suppressed, and the wastewater can be effectively used for the reaction with the soluble metal.

【0013】分離工程の後、さらに、処理ろ液を粒状活
性炭に通過させ、廃水中の有機化合物を活性炭に吸着さ
せる吸着工程を備えていることが好ましい。オゾンは、
高分子有機化合物を低分子化する作用も有している。低
分子化された有機化合物を活性炭に吸着させることで、
後続のオゾン−光による酸化分解処理工程の負荷を減ら
し、同工程において高分子有機化合物を効果的に処理す
ることができる。
[0013] After the separation step, it is preferable to further comprise an adsorption step of passing the treated filtrate through the granular activated carbon and adsorbing the organic compound in the wastewater to the activated carbon. Ozone is
It also has the function of lowering the molecular weight of a high molecular weight organic compound. By adsorbing low molecular organic compounds on activated carbon,
The load of the subsequent oxidative decomposition treatment step using ozone-light can be reduced, and the high-molecular organic compound can be effectively treated in this step.

【0014】不溶化工程において、酸化分解処理におけ
る排オゾンを注入オゾンとして用いることが好ましい。
この不溶化工程において必要な注入オゾン濃度は後続の
酸化分解処理におけるオゾン濃度より低く、酸化分解処
理後の排オゾン濃度は、不溶化工程における注入オゾン
濃度として十分である。したがって、この排オゾンを注
入オゾンとして利用することで、オゾンを有効利用する
ことができ、消費量を削減できる。
In the insolubilization step, it is preferable to use ozone discharged from the oxidative decomposition treatment as injected ozone.
The injected ozone concentration required in this insolubilization step is lower than the ozone concentration in the subsequent oxidative decomposition treatment, and the exhausted ozone concentration after the oxidative decomposition treatment is sufficient as the injected ozone concentration in the insolubilization step. Therefore, by using the waste ozone as the injected ozone, the ozone can be effectively used, and the consumption can be reduced.

【0015】[0015]

【発明の実施の形態】以下、添付図面を参照して、本発
明の好適な実施の形態について説明する。説明の理解を
容易にするため、各図面において同一の構成要素に対し
ては可能な限り同一の参照番号を附し、重複する説明は
省略する。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. In order to facilitate understanding of the description, the same constituent elements are denoted by the same reference numerals as much as possible in each drawing, and redundant description will be omitted.

【0016】図1は、本発明に係る廃水処理方法を実施
する第1の装置の概略構成図である。この装置は、廃水
にオゾンを注入して溶解性金属を不溶化処理するオゾン
処理槽1と、不溶化物をろ過する砂ろ過槽3と、廃水に
オゾンを注入しつつ紫外線等の光を照射することにより
有機物を酸化分解処理する有機物処理装置2と、を備え
ている。廃水はラインL1からオゾン処理槽1に供給さ
れ、オゾン処理槽1の処理済廃水はラインL2により砂
ろ過槽3へと供給される。砂ろ過槽3のろ液はラインL
3により、有機物処理装置2へと供給される。有機物処
理装置2の処理済廃液はラインL4を介して排出され
る。オゾン処理槽1と有機物処理装置2で使用するオゾ
ンは、ラインL5、L6を介してオゾン発生器7から供
給される。
FIG. 1 is a schematic configuration diagram of a first apparatus for implementing a wastewater treatment method according to the present invention. The apparatus includes an ozone treatment tank 1 for injecting ozone into wastewater to insolubilize soluble metals, a sand filtration tank 3 for filtering insoluble matter, and irradiating light such as ultraviolet rays while injecting ozone into wastewater. And an organic substance processing device 2 for oxidatively decomposing organic substances. The wastewater is supplied from the line L1 to the ozone treatment tank 1, and the treated wastewater from the ozone treatment tank 1 is supplied to the sand filtration tank 3 via the line L2. Filtrate of sand filter tank 3 is line L
By 3, it is supplied to the organic matter processing device 2. The treated waste liquid from the organic matter treatment device 2 is discharged via a line L4. Ozone used in the ozone treatment tank 1 and the organic matter treatment device 2 is supplied from an ozone generator 7 via lines L5 and L6.

【0017】この装置による本発明の廃水処理方法を具
体的に説明すると、まず、廃水は、ラインL1からオゾ
ン処理槽1へと供給される。オゾン処理槽1内では、廃
水中にオゾン発生器7で生成されたオゾンがラインL5
を介して注入されており、このオゾンが廃水中の溶解性
金属である鉄・マンガン等を酸化させることにより、酸
化鉄、酸化マンガン等を生成させて不溶化させる。オゾ
ンは酸素に比べて10倍程度の水溶性があり、酸化力も
高いので、酸化剤として有効である。また、塩素系酸化
剤のように有機塩素化合物を生成することもないので、
非常に好ましい。オゾンは自己分解性を有しており、そ
の分解速度はpH値に依存してpH値が高いほど分解速
度が速くなる傾向があるので、オゾン処理槽1内の廃液
を中性あるいは酸性(pH7.5以下)に維持しておく
ことが好ましい。さらに、pH値4〜7.5であれば特
に好ましい。このため、オゾン処理槽1は、薬剤等を用
いて処理槽内の廃液のpHを調整するpH調整装置を備
えていることが好ましい。廃液中に溶け込まなかった排
オゾンは、ラインL7から排出される。また、このオゾ
ン処理により高分子有機物を分解して低分子化する効果
もある。
The wastewater treatment method of the present invention using this apparatus will be specifically described. First, wastewater is supplied to the ozone treatment tank 1 from a line L1. In the ozone treatment tank 1, the ozone generated by the ozone generator 7 in the wastewater is supplied to a line L5.
This ozone oxidizes iron, manganese, and the like, which are soluble metals in the wastewater, thereby generating iron oxide, manganese oxide, and the like, and insolubilizing them. Ozone is about 10 times more water-soluble than oxygen and has a high oxidizing power, and thus is effective as an oxidizing agent. In addition, since it does not generate organic chlorine compounds unlike chlorine-based oxidizing agents,
Very preferred. Ozone has a self-decomposition property, and its decomposition rate is dependent on the pH value, and the decomposition rate tends to increase as the pH value increases. .5 or less). Furthermore, a pH value of 4 to 7.5 is particularly preferred. For this reason, it is preferable that the ozone treatment tank 1 includes a pH adjusting device that adjusts the pH of the waste liquid in the treatment tank using a chemical or the like. The waste ozone that has not been dissolved in the waste liquid is discharged from the line L7. In addition, the ozone treatment also has an effect of decomposing high molecular organic substances to lower the molecular weight.

【0018】溶解性金属が不溶化された廃液は、ライン
L2を介して砂ろ過槽3に送られ、不溶化物が除去され
る。こうして溶解性金属の大部分が除去された廃水は有
機物処理装置2に送られ、光−オゾン処理により、廃水
中の有機物が酸化分解処理される。この廃水からは溶解
性金属が除去されているので、光−オゾン処理時に不溶
化物が発生することがなく、廃水中の光透過性が阻害さ
れず、効率的な光−オゾン処理を行なうことができる。
また、光源となるランプへのスケーリング等が発生する
こともない。処理された廃水は、ラインL4を介して排
出される。
The waste liquid in which the soluble metal has been insolubilized is sent to the sand filtration tank 3 via the line L2 to remove the insoluble matter. The wastewater from which most of the soluble metal has been removed is sent to the organic matter treatment device 2, where the organic matter in the wastewater is oxidatively decomposed by light-ozone treatment. Since the soluble metal is removed from the wastewater, no insolubilized substances are generated during the light-ozone treatment, the light transmittance in the wastewater is not hindered, and efficient light-ozone treatment can be performed. it can.
Further, scaling to a lamp serving as a light source does not occur. The treated wastewater is discharged via line L4.

【0019】有機物処理装置2の排オゾンは、比較的高
濃度なので、この排オゾンをラインL8を介してオゾン
処理槽1へ導いてもよい。このようにすれば、オゾンを
効率良く消費することができ、好ましい。また、砂ろ過
槽3は閉塞しないよう適当な時間間隔で逆洗を行なう。
逆洗排水は、汚泥等と同様に系外に排出する。
Since the waste ozone of the organic matter treatment device 2 has a relatively high concentration, the waste ozone may be led to the ozone treatment tank 1 via the line L8. This is preferable because ozone can be efficiently consumed. In addition, backwashing is performed at appropriate time intervals so as not to block the sand filtration tank 3.
Backwash wastewater is discharged out of the system in the same way as sludge.

【0020】図2の装置は、図1の装置と異なり、不溶
化物のろ過を行なう膜分離槽4をオゾン処理槽1と一体
化している点が相違している。オゾン処理槽1と膜分離
槽4との隔壁8は、オゾン処理槽1内をラインL5を介
したオゾン注入により攪拌・混合しているため、図に示
されるようなオーバーフロータイプの仕切り板で十分で
ある。膜分離槽4内には、MF膜(精密ろ過膜)を使用
した膜分離装置6が設けられている。さらに、膜分離槽
4の下部には、膜分離装置6の膜閉塞を避けるため、そ
の膜面へ空気による曝気を行う曝気装置9が設けられて
いる。
The apparatus of FIG. 2 differs from the apparatus of FIG. 1 in that a membrane separation tank 4 for filtering insolubles is integrated with an ozone treatment tank 1. Since the partition 8 between the ozone treatment tank 1 and the membrane separation tank 4 is stirred and mixed in the ozone treatment tank 1 by injecting ozone through the line L5, an overflow type partition plate as shown in the figure is sufficient. It is. In the membrane separation tank 4, a membrane separation device 6 using an MF membrane (microfiltration membrane) is provided. Further, an aeration device 9 for aerating the membrane surface with air is provided below the membrane separation tank 4 in order to avoid blocking of the membrane of the membrane separation device 6.

【0021】この装置を利用した本発明に係る廃水処理
方法は、図1の装置による廃水処理方法とほぼ同様であ
り、不溶化物の分離を砂ろ過槽3で行なうか、膜分離装
置6で行なうかが相違するだけである。ここで、膜分離
槽4内の不溶化物等の懸濁物質濃度が高くなりすぎない
よう、適当な時間間隔でラインL9を介して濃縮液を引
き抜き、汚泥等と同様に系外に排出することが好まし
い。
The wastewater treatment method according to the present invention using this apparatus is substantially the same as the wastewater treatment method using the apparatus shown in FIG. 1, and the separation of the insolubilized material is performed in the sand filtration tank 3 or in the membrane separation device 6. The only difference is. Here, in order to prevent the concentration of suspended substances such as insolubilized substances in the membrane separation tank 4 from becoming too high, the concentrated liquid should be withdrawn through the line L9 at appropriate time intervals and discharged out of the system in the same manner as sludge. Is preferred.

【0022】図3の装置は、図1の装置の砂ろ過槽3と
有機物処理装置2との間に粒状活性炭を充填させた粒状
活性炭充填塔5を配置したものである。前述したよう
に、オゾンには溶解性金属等を酸化する作用だけでな
く、高分子有機物を低分子化する作用もある。オゾン処
理槽1内でオゾンにより低分子化された有機物を、粒状
活性炭充填塔5内の活性炭で吸着除去することにより、
後続の有機物処理装置2内では、添加されたオゾンを残
留する高分子有機物に対して効率的に反応させることが
できる。このことにより、有機物処理装置2における高
分子有機物の分解効果の向上が期待される。ここで充填
塔5に充填する活性炭は、生物活性炭であれば、廃水中
のBOD等を効果的に処理できるのでさらに好ましい。
The apparatus shown in FIG. 3 is such that a granular activated carbon packed tower 5 filled with granular activated carbon is disposed between the sand filtration tank 3 and the organic substance treatment apparatus 2 of the apparatus shown in FIG. As described above, ozone not only has an action of oxidizing soluble metals and the like, but also has an action of lowering the molecular weight of high-molecular organic matter. Organic substances degraded by ozone in the ozone treatment tank 1 are adsorbed and removed by activated carbon in the granular activated carbon packed tower 5 to remove organic substances.
In the subsequent organic substance processing apparatus 2, the added ozone can be efficiently reacted with the remaining high molecular organic substances. This is expected to improve the effect of decomposing the high molecular organic substance in the organic substance processing device 2. Here, the activated carbon to be packed in the packed tower 5 is more preferably a biological activated carbon, since BOD and the like in wastewater can be effectively treated.

【0023】ここでは、図1の装置に粒状活性炭充填塔
5を配置する例を説明したが、図2の装置に適用するこ
とも可能である。
Here, an example in which the granular activated carbon packed tower 5 is arranged in the apparatus shown in FIG. 1 has been described, but the present invention can also be applied to the apparatus shown in FIG.

【0024】[0024]

【実施例】本発明者らは、本発明の廃水処理方法による
溶解性金属の除去効果等を確認する比較実験を行った。
以下、その実験結果について説明する。
EXAMPLES The present inventors conducted comparative experiments to confirm the effect of removing soluble metals by the wastewater treatment method of the present invention.
Hereinafter, the experimental results will be described.

【0025】実施例1 ゴミ埋立地の浸出水処理施設で生物処理・凝沈処理を経
た処理水を原水として用い、オゾン処理前とオゾン処理
後に膜ろ過(MF膜、孔径1.0μm)を行った各ろ液
のマンガン濃度を比較した。ここで、オゾン処理時の廃
水のpHは5とし、オゾン消費量は22.7 mg/lと
した。その結果、オゾン処理前のろ液のマンガン濃度は
5.80mg/lであったが、オゾン処理後のろ液のマ
ンガン濃度は0.1mg/l未満にまで減少した。オゾ
ン処理後の膜ろ過で捕捉された懸濁物質(SS)の組成
を蛍光X線分析で分析した。その結果、SSの成分構成
は、マンガン49%、アルミニウム25%、鉄6%、ケ
イ素5%、リン5%、カルシウム3%(いずれも重量
比)であった。このオゾン処理液に、さらにオゾンを注
入してみたところSSの発生は確認されなかった。
Example 1 At a leachate treatment facility in a landfill, treated water subjected to biological treatment and coagulation treatment is used as raw water, and membrane filtration (MF membrane, pore size 1.0 μm) is performed before and after ozone treatment. The manganese concentration of each filtrate was compared. Here, the pH of the wastewater during the ozone treatment was set to 5, and the ozone consumption was set to 22.7 mg / l. As a result, the manganese concentration of the filtrate before the ozone treatment was 5.80 mg / l, but the manganese concentration of the filtrate after the ozone treatment was reduced to less than 0.1 mg / l. The composition of the suspended solid (SS) captured by the membrane filtration after the ozone treatment was analyzed by X-ray fluorescence analysis. As a result, the composition of SS was manganese 49%, aluminum 25%, iron 6%, silicon 5%, phosphorus 5%, and calcium 3% (all by weight). When ozone was further injected into the ozone-treated liquid, generation of SS was not confirmed.

【0026】このように、オゾン処理により、マンガン
等の溶解性金属を効果的に除去する効果が確認された。
Thus, it was confirmed that the ozone treatment effectively removed soluble metals such as manganese.

【0027】実施例2 オゾン処理時の廃液のpHを変化させて、水中の溶解性
マンガン等のほぼ全量を不溶化するのに必要なオゾン消
費量を調べた。初期のマンガン濃度は、実施例1の原水
と同じ5.80mg/lである。結果をまとめて表1に
示す。
Example 2 The amount of ozone consumed to insolubilize almost all the soluble manganese and the like in water was examined by changing the pH of the waste liquid during ozone treatment. The initial manganese concentration is 5.80 mg / l, which is the same as the raw water of Example 1. The results are summarized in Table 1.

【0028】[0028]

【表1】 表1から明らかなように、pH値が高いほどオゾン消費
量が増すことが確認された。これは、前述したように、
pH値が高いほどオゾンの自己分解速度が速くなるため
である。pH値が8以上では、オゾンの消費量は大きく
増大しており、pH値としては7.5以下、つまり、中
性あるいは酸性の領域でオゾン処理を行なうことが好適
であることが確認された。pH値が4未満の場合は、オ
ゾン消費量は低減されるが、処理液を排出する際に少な
くとも弱酸性レベルまで調整して放出する必要があるた
め、pH調整用薬剤の使用量が増大して好ましくない。
したがって、処理時の廃水は、中性あるいは弱酸性とす
ることがより好ましい。また、前処理で必要とされるオ
ゾン量は、後続の光−オゾン処理で必要とされるオゾン
量(数百mg/l以上)よりはるかに少なくてよいこと
が確認された。
[Table 1] As is clear from Table 1, it was confirmed that the higher the pH value, the higher the ozone consumption. This is, as mentioned above,
This is because the higher the pH value, the higher the self-decomposition rate of ozone. When the pH value is 8 or more, the consumption of ozone is greatly increased, and it is confirmed that the ozone treatment is preferably performed in a pH value of 7.5 or less, that is, in a neutral or acidic region. . When the pH value is less than 4, the ozone consumption is reduced, but since the treatment liquid needs to be adjusted to at least a weakly acidic level when the treatment liquid is discharged, the use amount of the pH adjusting agent increases. Is not preferred.
Therefore, it is more preferable that the wastewater at the time of treatment is neutral or weakly acidic. It was also confirmed that the amount of ozone required in the pre-treatment was much smaller than the amount of ozone (several hundred mg / l or more) required in the subsequent light-ozone treatment.

【0029】実施例3 実施例1の原水と同じ原水を用い、オゾン処理を行なわ
ない場合(前処理なし)と、本発明のオゾン処理を行な
った場合(前処理あり)の両方のケースについて、それ
ぞれ光−オゾン処理を行い、ダイオキシン類(DXN
類)の除去効率を比較した。前処理は、実施例1と同じ
オゾン消費量22.7 mg/lのオゾン酸化と膜ろ過に
よるマンガン等の不溶物除去処理を行なった。光−オゾ
ン処理は、約900mg/lのオゾンを注入し、殺菌線出
力20Wの紫外線ランプ照射の条件で行なった。
Example 3 The same raw water as in Example 1 was used, and the ozone treatment was not performed (no pre-treatment) and the ozone treatment of the present invention was performed (with pre-treatment). Each of them is subjected to light-ozone treatment, and dioxins (DXN
) Were compared. In the pretreatment, the same ozone consumption of 22.7 mg / l as in Example 1 and the removal of insolubles such as manganese by membrane filtration were performed. The light-ozone treatment was performed under the conditions of injecting about 900 mg / l of ozone and irradiating an ultraviolet lamp with a sterilization line output of 20 W.

【0030】実験の結果、前処理なしの場合のDXN類
除去率が59%であったのに対し、前処理ありの場合の
DXN類除去率は98%に達し、格段に向上しているこ
とが確認された。
As a result of the experiment, the removal rate of DXNs without pre-treatment was 59%, whereas the removal rate of DXNs with pre-treatment reached 98%, which was markedly improved. Was confirmed.

【0031】実施例4 実施例1のオゾン処理・ろ過ろ液を用い、ろ液を活性炭
塔を通し、活性炭充填塔の空塔速度(SV[1/h])変
化による処理後の水質の変化を調べた。なお、比較のた
めにオゾン前処理を行わずに活性炭充填塔だけを通過さ
せた処理水の水質も併せて調べた。この時、活性炭充填
塔には生物活性炭を2.5リットル充填した。これらの
処理水及び処理前の原水の水質(BOD及びCOD)を
表2にまとめて示す。さらに、これらの各処理水を実施
例3と同様に紫外線・オゾン処理した場合のDXN類除
去率も併せて表2にまとめて示す。
Example 4 Using the ozone treatment / filtration filtrate of Example 1, the filtrate was passed through an activated carbon tower, and the water quality after the treatment was changed due to a change in the empty tower speed (SV [1 / h]) of the activated carbon packed tower. Was examined. For comparison, the quality of the treated water passed through only the activated carbon packed tower without performing the ozone pretreatment was also examined. At this time, the activated carbon packed tower was filled with 2.5 liters of biological activated carbon. Table 2 summarizes the quality (BOD and COD) of the treated water and the raw water before the treatment. Further, the removal rate of DXN when each of these treated waters was treated with ultraviolet rays and ozone in the same manner as in Example 3 is also shown in Table 2.

【0032】[0032]

【表2】 表2から明らかなように、オゾン前処理により、CO
D、BODが低減される効果が確認された。さらに、生
物活性炭を通過させることにより、特に、BODを効果
的に低減することができる。そして、この効果は空塔速
度が遅いほど向上する。さらに、BOD、CODの低減
効果が高いほど、後続の光−オゾン処理におけるDXN
類除去率も向上した。活性炭によるBODの良好な処理
は、低分子有機物を非常によく分解した証拠と考えられ
る。この効果により有機物処理装置では、オゾンが効率
的に対象とする高分子有機物と反応をした結果、DXN
類の除去率が向上したと考えられる。これにより、オゾ
ン処理後のろ液を活性炭に通過させることが有効である
ことが確認された。
[Table 2] As is evident from Table 2, the ozone pretreatment resulted in CO 2
The effect of reducing D and BOD was confirmed. Further, by passing the biological activated carbon, the BOD can be particularly effectively reduced. This effect is improved as the superficial velocity becomes lower. Furthermore, the higher the effect of reducing BOD and COD, the more DXN in the subsequent light-ozone treatment.
Class removal rate also improved. The good treatment of the BOD with activated carbon is considered to be evidence that the low molecular weight organics were degraded very well. Due to this effect, in the organic matter treatment apparatus, as a result of the ozone efficiently reacting with the target polymer organic matter, DXN
It is considered that the removal rate of the class was improved. This confirmed that it was effective to pass the filtrate after the ozone treatment through activated carbon.

【0033】[0033]

【発明の効果】以上、詳細に説明したように、本発明の
廃水処理方法によれば、光−オゾン処理の阻害要因とな
る廃水中の溶解性金属等を前処理において効果的に除去
できるので、光−オゾン処理で対象の有機化合物を効率
よく除去できる。
As described above in detail, according to the wastewater treatment method of the present invention, soluble metals and the like in wastewater which are a factor inhibiting light-ozone treatment can be effectively removed in the pretreatment. The target organic compound can be efficiently removed by light-ozone treatment.

【0034】また、前処理でのオゾン消費量は後段の有
機物処理に用いるオゾン消費量と比較してはるかに少な
いことから別にオゾン発生装置を設置する必要はなく、
オゾン発生に伴う原料費や維持費も低くおさえられ、比
較的安価ですむ。そして、塩素系酸化剤の使用もなく、
有機塩素化合物の合成の心配もない。アルカリ凝析とは
異なりpH調整用の薬液は最低限ですむので、薬液代も
低減される。
In addition, since the amount of ozone consumed in the pretreatment is much smaller than the amount of ozone used in the subsequent organic matter treatment, there is no need to separately install an ozone generator.
Raw material costs and maintenance costs associated with the generation of ozone are also kept low and relatively inexpensive. And without the use of chlorine oxidants,
There is no need to worry about the synthesis of organic chlorine compounds. Unlike alkaline coagulation, the amount of chemical for pH adjustment is minimal, so that the cost of chemical is also reduced.

【0035】pHを中性もしくは弱酸性に保つことで自
己分解に費やされるオゾン消費量を低減することができ
る。さらに、オゾンを添加し不溶化物を分離除去した後
活性炭を通すことにより、有機化合物が除去され、後段
の有機物処理装置においてオゾンを効率的に利用できる
ために対象有機物の分解効率が向上する。
By maintaining the pH at neutral or slightly acidic, the amount of ozone consumed for autolysis can be reduced. Furthermore, by adding ozone and separating and removing the insolubilized substance, the organic compound is removed by passing through activated carbon, and the ozone can be efficiently used in the subsequent organic substance treatment apparatus, so that the decomposition efficiency of the target organic substance is improved.

【0036】有機物処理装置での排オゾンを前処理にお
いて有効利用すれば、オゾン発生量をさらに抑制するこ
ともでき、さらに排オゾンの処理にかかる手間も軽減で
きる。
If the waste ozone in the organic matter treatment device is effectively used in the pretreatment, the amount of ozone generated can be further suppressed, and the labor involved in the treatment of the waste ozone can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る廃水処理方法を実施する装置の全
体構成図である。
FIG. 1 is an overall configuration diagram of an apparatus for performing a wastewater treatment method according to the present invention.

【図2】本発明に係る廃水処理方法を実施する別の装置
の全体構成図である。
FIG. 2 is an overall configuration diagram of another apparatus for performing the wastewater treatment method according to the present invention.

【図3】本発明に係る廃水処理方法を実施するさらに別
の装置の全体構成図である。
FIG. 3 is an overall configuration diagram of still another apparatus for performing the wastewater treatment method according to the present invention.

【符号の説明】[Explanation of symbols]

1…オゾン処理槽、2…有機物処理装置、3…砂ろ過
槽、4…膜分離槽、5…粒状活性炭充填塔、6…膜分離
装置、7…オゾン発生器、8…隔壁、9…曝気装置、L
1〜L9…配管。
DESCRIPTION OF SYMBOLS 1 ... Ozone treatment tank, 2 ... Organic substance treatment apparatus, 3 ... Sand filtration tank, 4 ... Membrane separation tank, 5 ... Granular activated carbon packed tower, 6 ... Membrane separation apparatus, 7 ... Ozone generator, 8 ... Partition wall, 9 ... Aeration Device, L
1 to L9 ... piping.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D038 AA04 AA08 AB07 AB14 AB66 AB89 BA02 BA04 BB06 BB07 BB09 BB13 BB16 BB17 4D050 AA02 AA04 AA12 AA20 AB07 AB11 AB19 AB55 BB02 BC05 BC09 BD02 BD03 BD04 BD06 CA06 CA09 CA13 CA15 4G075 AA37 BA04 BA06 BB04 BD03 BD13 BD16 BD26 BD27 CA05 CA32 CA54 CA57 DA01 DA13 EB09 EB32 EC26 FC02  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4D038 AA04 AA08 AB07 AB14 AB66 AB89 BA02 BA04 BB06 BB07 BB09 BB13 BB16 BB17 4D050 AA02 AA04 AA12 AA20 AB07 AB11 AB19 AB55 BB02 BC05 BC09 BD02 BD03 BD04 BD06 CA37 CA0 CA13 A BA06 BB04 BD03 BD13 BD16 BD26 BD27 CA05 CA32 CA54 CA57 DA01 DA13 EB09 EB32 EC26 FC02

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 オゾンを添加した廃水に光を照射して前
記廃水中の有機化合物を酸化分解処理する廃水処理方法
において、 前記酸化分解処理に先立って、 前記廃水にオゾンを注入し、前記廃水中の溶解性金属を
酸化させて不溶化する不溶化工程と、 前記廃水から不溶化物を分離する分離工程と、 を備えていることを特徴とする廃水処理方法。
1. A wastewater treatment method in which ozone-added wastewater is irradiated with light to oxidatively decompose organic compounds in the wastewater, wherein ozone is injected into the wastewater prior to the oxidative decomposition treatment, A wastewater treatment method, comprising: an insolubilization step of oxidizing and insolubilizing a soluble metal therein, and a separation step of separating an insolubilized substance from the wastewater.
【請求項2】 前記分離工程は、砂ろ過あるいは膜分離
により不溶化物を分離することを特徴とする請求項1記
載の廃水処理方法。
2. The wastewater treatment method according to claim 1, wherein in the separation step, the insoluble matter is separated by sand filtration or membrane separation.
【請求項3】 前記不溶化工程は、前記廃水を中性若し
くは酸性の状態に維持して行なうことを特徴とする請求
項1記載の廃水処理方法。
3. The wastewater treatment method according to claim 1, wherein the insolubilizing step is performed while maintaining the wastewater in a neutral or acidic state.
【請求項4】 前記分離工程の後、さらに、前記分離工
程において処理されたろ液を充填させた粒状活性炭充填
塔に導き、前記廃水中の有機化合物を前記活性炭に吸着
させる吸着工程を備えていることを特徴とする請求項1
記載の廃水処理方法。
4. The method further comprises, after the separation step, an adsorption step of guiding the filtrate treated in the separation step to a granular activated carbon packed tower filled with the filtrate and adsorbing the organic compound in the wastewater to the activated carbon. 2. The method according to claim 1, wherein
Wastewater treatment method as described.
【請求項5】 前記不溶化工程において、前記酸化分解
処理における排オゾンを注入オゾンとして用いることを
特徴とする請求項1記載の廃水処理方法。
5. The wastewater treatment method according to claim 1, wherein in the insolubilization step, waste ozone in the oxidative decomposition treatment is used as injected ozone.
【請求項6】 廃水中の有機化合物を酸化分解処理する
廃水処理装置において、 前記廃水を貯水し、前記廃水中にオゾンを注入して、前
記廃水中の溶解性金属を酸化させて不溶化処理するオゾ
ン処理槽と、 前記オゾン処理槽の処理廃水から不溶化物を分離する分
離装置と、 前記分離装置で不溶化物を分離した廃水にオゾンを注入
するとともに、光を照射して有機物を酸化分解処理する
有機物処理装置と、 を備えていることを特徴とする廃水処理装置。
6. A wastewater treatment apparatus for oxidatively decomposing organic compounds in wastewater, wherein the wastewater is stored, ozone is injected into the wastewater, and a soluble metal in the wastewater is oxidized and insolubilized. An ozone treatment tank, a separation device that separates insoluble matter from the treatment wastewater of the ozone treatment tank, and ozone is injected into the wastewater from which the insolubilized material has been separated by the separation device, and the organic matter is oxidatively decomposed by irradiating light. A wastewater treatment device, comprising: an organic matter treatment device.
【請求項7】 前記分離装置は、砂ろ過あるいは膜分離
装置である請求項6記載の廃水処理装置。
7. The wastewater treatment device according to claim 6, wherein the separation device is a sand filtration or a membrane separation device.
【請求項8】 前記オゾン処理槽は、前記廃水を中性若
しくは酸性の状態に維持するpH調整装置を備えている
ことを特徴とする請求項6記載の廃水処理装置。
8. The wastewater treatment apparatus according to claim 6, wherein the ozone treatment tank includes a pH adjusting device for maintaining the wastewater in a neutral or acidic state.
【請求項9】 前記分離装置と前記有機物処理装置との
間に粒状活性炭を充填させた粒状活性炭充填塔をさらに
備えていることを特徴とする請求項6記載の廃水処理装
置。
9. The wastewater treatment apparatus according to claim 6, further comprising a granular activated carbon packed tower filled with granular activated carbon between the separation device and the organic matter treatment device.
【請求項10】 前記有機物処理装置の排オゾンの一部
を前記オゾン処理槽に導く配管を備えていることを特徴
とする請求項6記載の廃水処理装置。
10. The wastewater treatment apparatus according to claim 6, further comprising a pipe for guiding a part of the ozone discharged from the organic matter treatment apparatus to the ozone treatment tank.
JP10364838A 1998-12-22 1998-12-22 Waste water treatment method and apparatus Pending JP2000185289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10364838A JP2000185289A (en) 1998-12-22 1998-12-22 Waste water treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10364838A JP2000185289A (en) 1998-12-22 1998-12-22 Waste water treatment method and apparatus

Publications (1)

Publication Number Publication Date
JP2000185289A true JP2000185289A (en) 2000-07-04

Family

ID=18482793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10364838A Pending JP2000185289A (en) 1998-12-22 1998-12-22 Waste water treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP2000185289A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071201A (en) * 2001-09-05 2003-03-11 Nippon Steel Corp Method for disposing waste liquid containing a plurality of metals
BE1014267A3 (en) * 2001-06-27 2003-07-01 Aqua Reverse Osmosis Systems A Removal of iron from water by oxidation, comprises contacting water with ozone
JP6486569B1 (en) * 2018-03-22 2019-03-20 三菱電機株式会社 Water treatment apparatus and water treatment method
WO2022168948A1 (en) * 2021-02-08 2022-08-11 栗田工業株式会社 Water treatment device and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1014267A3 (en) * 2001-06-27 2003-07-01 Aqua Reverse Osmosis Systems A Removal of iron from water by oxidation, comprises contacting water with ozone
JP2003071201A (en) * 2001-09-05 2003-03-11 Nippon Steel Corp Method for disposing waste liquid containing a plurality of metals
JP6486569B1 (en) * 2018-03-22 2019-03-20 三菱電機株式会社 Water treatment apparatus and water treatment method
WO2019180864A1 (en) * 2018-03-22 2019-09-26 三菱電機株式会社 Water treatment device and water treatment method
CN111886205A (en) * 2018-03-22 2020-11-03 三菱电机株式会社 Water treatment device and water treatment method
US11358884B2 (en) 2018-03-22 2022-06-14 Mitsubishi Electric Corporation Water treatment apparatus and water treatment method
WO2022168948A1 (en) * 2021-02-08 2022-08-11 栗田工業株式会社 Water treatment device and method
JP2022121110A (en) * 2021-02-08 2022-08-19 栗田工業株式会社 Water treatment device and method

Similar Documents

Publication Publication Date Title
JP3883445B2 (en) Sewage treatment equipment
JP4933734B2 (en) Treatment of water containing persistent substances
EP1707538A1 (en) Method for treating raw water containing hardly decomposable substance
JP2007509740A (en) Apparatus and method for purifying aqueous effluents by oxidation and membrane filtration
JP2000288560A (en) Water purifying treatment apparatus and method
JP2007021347A (en) Hardly decomposable substance-containing water treatment method
KR100446042B1 (en) Industrial wastewater reusing system using combination froth separation process, hollow fiber filter process and advanced oxidation process
JP2012045550A (en) Treatment method of hardly decomposable substance-containing water
JPH10277568A (en) Treatment of organic matter-containing waste water
JP2004267855A (en) Water treatment apparatus utilizing photocatalyst
JP2000185289A (en) Waste water treatment method and apparatus
JPH1133593A (en) Treatment of organic waste water
JP4166881B2 (en) Wastewater treatment method and apparatus
JPH10337579A (en) Method and apparatus for treatment of wastewater
JP2000102794A (en) Treatment of harmful material and device therefor
WO1994011307A1 (en) Ozone treatment of landfill waste-water
JPH1133561A (en) Flocculation and sedimentation treatment equipment
JP2000157972A (en) Device for advanced sewage treatment
JP3512613B2 (en) Leachate treatment method and apparatus
JP3392298B2 (en) Wastewater treatment method
JP2003080274A (en) Treatment method and equipment for sewage
JP2003053350A (en) Method and device for highly removing cod component in water
KR200276382Y1 (en) Industrial wastewater reusing system
JP2000354892A (en) Treatment apparatus of hardly decomposable organic matter-containing water
JPH09117773A (en) Treatment of waste liquid in which organic matter is dissolved

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050802