JPS62113799A - 炭化ケイ素ウイスカ−の製造方法 - Google Patents

炭化ケイ素ウイスカ−の製造方法

Info

Publication number
JPS62113799A
JPS62113799A JP60253327A JP25332785A JPS62113799A JP S62113799 A JPS62113799 A JP S62113799A JP 60253327 A JP60253327 A JP 60253327A JP 25332785 A JP25332785 A JP 25332785A JP S62113799 A JPS62113799 A JP S62113799A
Authority
JP
Japan
Prior art keywords
silicon carbide
raw material
silicon
reaction
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60253327A
Other languages
English (en)
Inventor
Yoshiro Kaji
梶 吉郎
Katsunori Shimazaki
嶋崎 勝乗
Masakazu Yamamoto
正和 山本
Keita Yura
由良 慶太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Kobe Steel Ltd
Original Assignee
Kanebo Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd, Kobe Steel Ltd filed Critical Kanebo Ltd
Priority to JP60253327A priority Critical patent/JPS62113799A/ja
Publication of JPS62113799A publication Critical patent/JPS62113799A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭化ケイ素ウィスカーの製造方法に関し、詳
しくは、高純度であって、且つ、直線性にすぐれる炭化
ケイ素ウィスカーを高収率にて製造する方法に関する。
(従来の技術) 炭化ケイ素ウィスカーは、軽量、高強度、高弾性を有し
、近年、複合材料の強化材として注目されているのみな
らず、酸に対する耐食性及び耐酸化性がすぐれるところ
から、例えば、リン酸型燃料電池用材料としても注目さ
れるに至っている。
このような炭化ケイ素ウィスカーの製造方法は、従来、
炭素を含む原料及びケイ素を含む原料の一方又は両方を
気相にて反応炉内の所定の高温の反応域に供給する気相
合成法と、炭素を含む原料及びケイ素を含む原料として
共に固体を用いる固相合成法とに大別される。気相合成
法は、例えば、特公昭50−18480号公報、特公昭
52−28757号公報、特公昭52−28759号公
報等に記載されており、また、固相合成法は、例えば、
特開昭58−20799号公報、特開昭58〜4591
8号公報、特開昭58−145700号公報等に記載さ
れている。
上記のような従来の気相合成法は、−aに、針状結晶を
得るには有利であるが、反面、気相原料の利用率が著し
く低い、気相原料が反応炉内で分解し、反応炉がこれら
分解物によって汚染される、更に、生成した炭化ケイ素
ウィスカー中にこれら分解物が混入する等の問題を有し
ているので、炭化ケイ素ウィスカーの大量生産には不適
当であり、一方、従来の固相合成法によれば、ケイ素を
含む原料粉末と炭素を含む原料粉末とを混合し、これを
加熱して、主としてこれら粉末間の固相反応にて直接に
炭化ケイ素を生成させるので、粉状乃至屈曲状の炭化ケ
イ素を多く生成し、直線性にすぐれる炭化ケイ素ウィス
カーを得ることが困難であるほか、得られた炭化ケイ素
ウィスカーから上記のような粉状乃至屈曲状の炭化ケイ
素を分離除去することが容易ではない。
(発明の目的) 本発明者らは、従来の炭化ケイ素ウィスカーの製造にお
ける上記した問題を解決するために鋭意研究した結果、
二酸化ケイ素を含むケイ素原料を予め成形し、これを限
られた反応空間内において固体炭素原料と共に水素を含
む雰囲気下に所定の温度に加熱することによって、直線
性にすぐれた炭化ケイ素ウィスカーを得ることができる
ことを見出し、更に、かかる二酸化ケイ素含有成形体を
用いる炭化ケイ素ウィスカーの製造について鋭意研究し
た結果、上記二酸化ケイ素含有成形体において、その二
酸化ケイ素の含有量と、限られた反応空間内において曝
露されるそあ表面積とが得られる炭化ケイ素ウィスカー
の形状、特に、直線性と、収率に大きい影響を及ぼし、
上記成形体における二酸化ケイ素含有量を30重量%以
上とし、且つ、上記反応空間内において曝露される部分
の表面積1 cut当りの反応空間容積を0.3〜5.
 Oclとすることによって、直線性及び純度にすぐれ
た炭化ケイ素ウィスカーを高収率にて得ることができる
ことを見出して、本発明に至ったものである。
(発明の構成) 本発明は、二酸化ケイ素を含む固体ケイ素原料と炭素を
含む固体炭素原料とを限られた反応空間内で加熱して炭
化ケイ素ウィスカーを製造する方法において、二酸化ケ
イ素を含むケイ素原料を予め所定形状に成形してなる二
酸化ケイ素含有量30重量%以上であって、且つ、上記
反応空間において曝露される部分の表面積1 ctにつ
いて0.3〜5、 Oclの反応空間容積を有する成形
体と、固体炭素原料とを水素を含む雰囲気下に1400
’cJlI上の温度に加熱することを特徴とする。
本発明の方法において、二酸化ケイ素を含むケイ素原料
としては、例えば、ケイ石粉、粉状シリカゲル、各種の
非晶質シリカ、沈降性シリカ、粘土等が用いられる。本
発明において、これら二酸化ケイ素含有原料の成形体(
以下、二酸化ケイ素成形体ということがある。)とは、
この原料を適宜の手段、例えば、押出成形、プレス成形
、造粒等の手段によって成形し、仮、棒、管、粒乃至球
、容器や箱、線状又はこれらの組み合わせとしての形状
を与えた立体的な固体をいう。
本発明においては、この二酸化ケイ素成形体は、後述す
るように、これを還元性雰囲気下で加熱して、−酸化ケ
イ素ガスを生成させ、固体炭素原料と反応させて、炭化
ケイ素ウィスカーを生成させる際に、この−酸化ケイ素
ガスの生成量が成形体中の二酸化ケイ素含有量にほぼ比
例するので、高イ収率にて炭化ケイ素ウィスカーを得る
ためには、二酸化ケイ素成形体は、二酸化ケイ素を30
重量%以上含有することが必要であり、特に、40重量
%以上含有することが好ましい。尚、成形体が例えば、
管状や箱型の容器等のような成形体であるとき、原料を
充填するための反応容器を兼ねさせることができる。
炭素を含む固体炭素原料としては、カーボンブラックや
粉末活性炭、或いはタールやピッチの熱処理によって得
られる炭素等を用いることができる。本発明においては
、これら固体炭素原料は粉末であることが好ましい。
本発明の方法においては、これら二酸化ケイ素成形体と
固体炭素原料を水素を含む還元性雰囲気に保持された反
応系において加熱する。
従来、二酸化ケイ素を含む固体ケイ素原料と固体炭素原
料とを反応させるとき、一般に、次のような反応によっ
て、炭化ケイ素ウィスカーが生成するとされている。
SiO□(固)十C(固)→5in(気”)  + C
o(気)(1)Sin(気)+ 2C(固) = Si
C+ Co(気)(2)従って、総括反応は、 SiO□ + 3C→ SiC+  2COf3)で表
わされるとされている。
従って、本発明の方法においては、上記反応(11は、
ケイ素含有成形体の固体表面の二酸化ケイ素と固体炭素
原料の接触部分においてのみ起こる反応であり、この反
応によって生成した一酸化ケイ素ガスが固体炭素原料と
反応して、反応(2)によって針状炭化ケイ素を生成す
る。この反応(2)の反応速度は反応(1)の反応速度
よりも小さい。
以上のように、二酸化ケイ素含有成形体と固体炭素原料
を用いる炭化ケイ素の生成反応が2段階反応であるので
、高収率にて炭化ケイ素を得るには、反応(1)を十分
に進行させる必要がある。即ち、二酸化ケイ素含を成形
体と固体炭素原料の接触部分を多くする必要がある。
本発明によれば、二酸化ケイ素含有成形体が反応空間に
おいて曝露される部分の表面積1cnl当りの反応空間
容積(以下、担持容積という。)を5゜Q cnl /
 ctA以下とすることによって、高収率にて炭化ケイ
素を得ることができる。上記担持容積が5゜Q cn!
 / csAを越えるときは、二酸化ケイ素含有成形体
と固体炭素原料の接触部分が少なすぎるので、上記反応
(11が十分に進行せず、その結果、炭化ケイ素の収率
が低い。同様に、二酸化ケイ素含有成形体における二酸
化ケイ素含有量が30重量%より少ないときも、二酸化
ケイ素と固体炭素原料との接触部分が少ないので炭化ケ
イ素ウィスカーを高収率で得ることが困難である。
本発明において、担持容積は、二酸化ケイ素含有成形体
と固体炭素原料との反応が行なわれる限られた反応空間
(以下、空間部という。)の体積を、この空間部に曝露
されている当該成形体の表面積で除することによって得
られる成形体の単位表面積当りの反応空間容積をいう。
本発明において、上記反応は、通常、反応炉内にて行わ
れるが、担持容積は以下のように規定される。
先ず、反応炉内において、不活性の反応容器、例えば、
一端を閉じたアルミナ製容器内に二酸化ケイ素含有成形
体と固体炭素原料とを充填して反応を行なう場合は、上
記反応容器の内容積から二酸化ケイ素含有成形体の体積
を減じた反応空間が空間部であり、この空間部の体積を
二酸化ケイ素含有成形体の全表面積にて除した値が担持
容積である。但し、二酸化ケイ素含有成形体及び固体炭
素原料は共に反応容器内に収容されており、且つ、成形
体は反応容器内壁に接触していないものとする。また、
反応炉内において、一端を閉じた二酸化ケイ素含有成形
体自体からなる容器を反応容器とし、この反応容器内に
固体炭素原料を充填して反応を行なう場、合は、反応容
器の内容積が空間部体積であるので、この空間部体積を
反応容器の内表面積にて除した値が担持容積である。但
し、固体炭素原料は反応容器内に収容されているものと
する。本発明においては、炭化ケイ素ウィスカーは、反
応容器においてのみ生成する。
更に、本発明者らは、上記反応について詳細に研究した
結果、上記の2段階反応以外に、SiO□(固’)  
+ 3C(固) −5iC(固)  + 2GO(気)
(4)で表わされる直接固相反応によっても炭化ケイ素
が生成することを見出した。
この反応も、二酸化ケイ素含存成形体と固体炭素原料の
接触部分でのみ起こるが、この固相反応は炭化ケイ素の
針状結晶と共に種々の形状、例えば、粉末状や屈曲状の
炭化ケイ素を生成させる。
従来のケイ素含有原料、例えば、二酸化ケイ素粉末と、
炭素微粉末を用いる方法によるときは、固体二酸化ケイ
素含有原料と固体炭素原料の接触部分が極めて多く、従
って、前記2段階反応よりも上記直接固相反応を優先的
に起こさせるので、生成炭化ケイ素ウィスカー中には屈
曲状及び粉状のものが多く混入する。
本発明によれば、前記担持容積0.3 cn1以上とし
て、上記直接固相反応を抑制することによって、針状性
にすぐれた炭化ケイ素を得ることができる。
上記担持容積が0.3 cfl!よりも小さいときは、
二酸化ケイ素含有成形体と固体炭素原料の接触部分が多
すぎるので、上記反応(4)が優先的に進行し、その結
果、屈曲状及び粉状の炭化ケイ素が多く生成し、得られ
る炭化ケイ素ウィスカーの針状性を劣化させる。
更に、本発明者らは、水素を含む雰囲気下での上記反応
について詳細に研究した結果、上記の反応以外に、 C(固)+ 211□→CH4,(気)(5)c++4
(気)  + SiO□(固) −5in(気)  +
 Co(気)+2Hz(気)(6) Sin(気)  + 2CI、、(気)→5iC(固)
  + Co(気)+ 4)12(気)(7) 等の反応が起こり、炭化ケイ素ウィスカーの生成に対し
て、これらの反応の寄与も大きいことを見出した。即ち
、水素ガスを含まない雰囲気下、例えば、アルゴン、窒
素、ヘリウム等の不活性ガス雰囲気下、又は水素ガスが
体積%で20%よりも少ない雰囲気下では、同じ温度に
加熱しても、炭化ケイ素ウィスカーの生成量が少ないう
えに、その直線性も劣る。しかし、本発明の方法によれ
ば、水素の存在下に固体炭素原料を加熱することによっ
て、二酸化ケイ素成形体からの一酸化ケイ素の発生が促
進されると共に、前記(2)式の反応に加えて、上記−
酸化ケイ素と炭化水素ガスとの気相反応(7)によって
、直線性にすぐれた炭化ケイ素ウィスカーを生成するの
である。
上述したところは、従来、一般に直線性の良好な炭化ケ
イ素ウィスカーを得るには、気相での反応が適している
とされている点と一致する。
本発明の方法による炭化ケイ素ウィスカーの製造におい
ては、好ましくは反応触媒が用いられる。
反応触媒としては、鉄、ニッケル、コバルト又はこれら
の化合物、例えば、酸化物、硝酸塩、炭酸塩、硫酸塩等
が用いられる。これら化合物は、粉末、水溶液その他適
宜の形態で二酸化ケイ素成形体及び固体炭素原料と共に
使用される。例えば、水溶液を二酸化ケイ素含有成形体
に噴霧し、乾燥させてもよい。かかる触媒のうち、化合
物を用いる場合も、本発明の方法による反応条件下では
すべて金属に還元されている。これら触媒は、前記(2
)式及び(7)式の反応を促進して、直線状で高純度の
炭化ケイ素ウィスカーの生成速度を早めると共に、その
結果として、併発的に生じる望ましくない反応を抑制す
る作用がある。
本発明の方法において、上記触媒は、金属換算にて、好
ましくは、二酸化ケイ素成形体の単位表面積(clll
)当り、通常、I X 10−5〜5 X 10−′J
gの範囲で用いられる。触媒量が二酸化ケイ素成形体の
単位表面積(crA)当I/)lX10−’gよりも少
ないときは、その触媒作用が不十分である結果、前記反
応(8)や(5)によって炭素成形体上に生成する非ウ
ィスカー状の炭化ケイ素が増加し、炭化ケイ素ウィスカ
ーの収量が低下する。他方、5X10−3gよりも多い
ときは、反応の過程で触媒の微粒子が凝集粗大化し、生
成する炭化ケイ素ウィスカーの径が過度に大きくなる傾
向が強い。
本発明の方法において、二酸化ケイ素含有成形体と固体
炭素原料とを水素を含む雰囲気下で加熱する温度は、1
400℃以上が好適であり、特に、1450℃以上が好
ましい。1400℃よりも低い温度では、炭化ケイ素ウ
ィスカーの生成が極めて遅く、実用上好ましくないから
である。一方、余りに高温であるときは、反応条件が過
激にすぎて、ウィスカー径が肥大化し、また、ウイスカ
ーに分岐や折れ曲がり等の乱れが発生するようになる。
従って、反応温度は、通常、17000℃以下がよい。
また、加熱時間は、特に制限されるものではないが、通
常、0.5〜30時間が適当である。
反応時間が余りに短いときは、未反応原料が多量に残留
し、一方、余りに長時間反応させても、炭化ケイ素ウィ
スカーの収量の増加が僅かであるので、生産性及び熱エ
ネルギー費用の観点からみて、何ら利点がないからであ
る。
上記のように、二酸化ケイ素成形体と固体炭素原料とを
所定の水素雰囲気下に所定の温度に加熱した後、これを
徐冷若しくは放冷し、好ましくは、反応生成物に含まれ
る余剰の炭素を酸化焼却することによって、通常、綿状
の炭化ケイ素ウィスカーを得ることができる。
(発明の効果) 以上のように、本発明の方法によれば、所定量の二酸化
ケイ素を含有し、且つ、限られた反応空間において曝露
される表面積が所定の範囲にある二酸化ケイ素含有成形
体を二酸化ケイ素含有原料として用い、これを固体炭素
原料と共に水素を含む雰囲気下に加熱することによって
、粉状乃至屈曲状の炭化ケイ素の生成を抑えると共に、
針状の炭化ケイ素の生成を促進するように固体二酸化ケ
イ素と固体炭素との接触面積を最適化したものであり、
従って、前述したように、上記成形体表面層の二酸化ケ
イ素と固体炭素原料との反応が円滑に進行して、−酸化
ケイ素ガスが速やかに生成し、これが固体炭素原料と反
応して、針状性にすぐれた炭化ケイ素ウィスカーを高収
率にて与えるのである。
(実施例) 以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例によって何ら限定されるものではない。
実施例1 外径25龍、内径20111、長さ100龍の一端を閉
じたほぼ円筒状のムライト製反応容器(内表面積62.
8 cn!、内容積30.4 al、 Sin□含有!
t49重量%、担持容積=内容積/内表面積= 0.4
8 ci/Cm1)を二酸化ケイ素含有成形体として用
い、この容器内にカーボンブラック、酸化第二鉄及び塩
化ナトリウムの混合粉末(重量比24:0.1:8)2
、65 gを充填し、電気炉内に装入し、水素雰囲気下
に1500℃の温度に4時間保持した後、焼成物を電気
炉から取出した。次に、この焼成物をマツフル炉に装入
し、残存炭素を燃焼除去して、淡緑色綿状物1.48 
gを得た。
この綿状物質は、二酸化ケイ素10.8重量%を含有し
、また、フッ酸による洗浄後、X線回折の結果、β−炭
化ケイ素であることが確認された。
更に、第1図に走査型電子顕微鏡写真を示すように、粉
状乃至屈曲状炭化ケイ素が少なく、直線性にすぐれた高
アスペクト比の炭化ケイ素ウィスカーであることが確認
された。
また、反応に関与した炭素量から推算される炭化ケイ素
の理論収量に対する生成炭化ケイ素の収量の割合にて表
わした炭化ケイ素の収率は83.3%、反応容器の内表
面積1 ct当りの炭化ケイ素の収量は21■であった
実施例2 外径50龍、内径45tm、長さ内法(深さ)180鶴
の一端を閉じた高純度アルミナ製円筒状反応容器に直方
体状のニケイ素含有成形体(10nX I Q龍x 1
50mm、体積L5.Ocm’、全表面積62、Oc+
J)を充填し、更に、容器内に実施例1と同じカーボン
ブラック、酸化第二鉄及び塩化ナトリウムの混合粉末2
6.5 gを充填した。この場合は、担持容積は、(反
応容器の内容積−二酸化ケイ素成形体の体積)/二酸化
ケイ素含有成形体の全表面積(= 271/62.0)
で与えられるので、4、4 cl / ctである。
この後、実施例1と同じ条件下に同じ手順によって焼成
と残存炭素除去を行なって、淡緑色綿状物2.62 g
を得た。
この綿状物質は、二酸化ケイ素10.1重量%を含有し
、また、フッ酸による洗浄後、X線回折の結果、β−炭
化ケイ素であることが確認された。
更に、第2図に走査型電子顕微鏡写真を示すように、粉
状乃至屈曲状炭化ケイ素が少なく、直線性にすぐれた高
アスペクト比の炭化ケイ素ウィスカーであることが確認
された。
また、炭化ケイ素の収率は76.5%、二酸化ケイ素含
有成形体の表面積l a+を当りの炭化ケイ素の収量は
38mgであった。
実施例3 外径25龍、内径201■、長さ内法(深さ)100龍
の一端を閉じた高純度アルミナ製円筒状反応容器に、外
径15龍、内径11M@、長さ90鰭のムライトi中空
円筒(全表面積75.1 c++1、体積7、3 am
’ 、Sin、含有!!41重量%)を挿入し、空間部
(24,1crl)に実施例1と同じカーボンブラック
、酸化第二鉄及び塩化ナトリウムの混合粉末1.58g
を充填した。ここに、二酸化ケイ素含有成形体の担持容
積は0.32co(/cnlである。
この後、実施例1と同じ条件下に同じ手順によって焼成
と残存炭素除去を行なって、淡緑色綿状物0.97 g
を得た。
この綿状物質は、二酸化ケイ素9.8重量%を含有し、
また、フッ酸による洗浄後、X線回折の結果、β−炭化
ケイ素であることが確認された。更に、第3図に示すよ
うに、走査型電子顕微鏡写真による観察の結果、粉状乃
至屈曲状炭化ケイ素が少なく、直線性にすぐれた高アス
ペクト比の炭化ケイ素ウィスカーであることが石室J忍
された。
また、炭化ケイ素の収率は78.9%、二酸化ケイ素含
有成形体の表面積1cn当りの炭化ケイ素の収量は12
■であった。
比較例1 実施例3において用いたのと同じ高純度アルミナ製反応
容器に粒径1龍のシリカゲル5000粒(全表面積15
7cal、体積2.6.ff1)を充填し、空間部(2
8,8cf11)に実施例1と同じカーボンブラック、
酸化第二鉄及び塩化ナトリウムの混合粉末1、03 g
を充填した。ここに、二酸化ケイ素含有成形体の担持容
積は0.18 CA/cntである。
この後、実施例1と同じ条件下に同じ手順によって焼成
と残存炭素除去を行なって、淡緑色綿状物1.27 g
を得た。
この綿状物質における二酸化ケイ素の含有量は高く、7
4重量%であった。また、フッ酸による洗浄後、X線回
折の結果、β−炭化ケイ素であることが確認された。ま
た、第4図に示すように、走査型電子顕微鏡写真による
観察の結果、屈曲状炭化ケイ素が多く認められた。
また、炭化ケイ素の収率は84%、二酸化ケイ素含有成
形体の表面積lcd当りの炭化ケイ素の収量は6■であ
った。
比較例2 実施例2において用いたのと同じ高純度アルミナ製反応
容器に直方体状の二酸化ケイ素含有成形体(10n+x
 l QmmX 5 Qu+、表面積22cIIl、S
in、含有量97重量%)を充填し、空間部(281e
nt)に実施例1と同じカーボンブラック、酸化第二鉄
及び塩化ナトリウムの混合粉末26.7 gを充填した
。ここに、二酸化ケイ素含有成形体の担持容積は12.
8 cn!/cn+である。
この後、実施例1と同じ条件下に同じ手順によって焼成
と残存炭素除去を行なって、淡緑色綿状物0.96 g
を得た。
この綿状物質における二酸化ケイ素の含有量は41.1
重量%であった。また、フッ酸による洗浄後、X線回折
の結果、β−炭化ケイ素であることが確認された。また
、第5図に示すように、走査型電子顕微鏡写真による観
察の結果、粉状乃至屈曲状炭化ケイ素が少なく、直線性
にすぐれた高アスペクト比の炭化ケイ素ウィスカーであ
ることが確認された。
しかし、殆どの炭素が未反応のままであり、炭化ケイ素
の収率も低く、62.6%であった。尚、二酸化ケイ素
含有成形体の表面積1 c+A当りの炭化ケイ素の収量
は39■であった。
実施例4 本実施例は、担持容積に対する炭化ケイ素ウィスカー収
量、収率、混入5ioz量及び直線性の関係を示すもの
である。
(11炭化ケイ素ウィスカーの直線性 得られた炭化ケイ素ウィスカー試料を分散させ、走査型
電子w4微鏡で観察して、一般的状態を示ず5視野(倍
率2000倍)を写真撮影した後、それぞれの写真上に
5 cm四方の領域を設定した。次に、この領域内にお
いて、全試料の占める全面積に対する直線状の試料の占
める面積の百分率を求め、5視野についての平均値を「
直線指標」とした。
その結果、実施例1.2.3及び比較例1及び2の順序
に、直線指標は76%、82%、71%、23%及び7
9%であった。
(2)担持容積の影響 第6図に担持容積に対する炭化ケイ素つ・イスカーの収
量及び収率の関係を示す。また、第7図に担持容積に対
する炭化ケイ素ウィスカーの直線指標及び混入SiO□
量の関係を示す。
本発明に従って担持容積を0.3〜5.0cポ/cml
の範囲とすることによって、高純度で且つ直線性の高い
炭化ゲイ素ウィスカーを高収率にて得ることができるこ
とが明らかある。
【図面の簡単な説明】
第1図、第2図及び第3図は、本発明の実施例12.2
及び3によってそれぞれ得られた炭化ケイ素つ・イスカ
ーの粒子構造を示す走査型電子顕微鏡写真、第4図及び
第5図は、比較例1及び2によってそれぞれ得られた炭
化ケ・イ素ウィスカーの粒子構造を示す走査型電子顕微
鏡写真である。 第6図は、二酸化ケイ素含有成形体の担持容積と得られ
る炭化ケイ素ウィスカーの収量及び収率との関係を示す
グラフ、第7図は同様に担持容積と得られる炭化ケイ素
ウィスカーの直線性及び混入5ioz量との関係を示す
グラフである。 特許出願人  株式会社神戸製鋼所 第3図 第6図 担埼巷饋((−/。2)

Claims (5)

    【特許請求の範囲】
  1. (1)二酸化ケイ素を含む固体ケイ素原料と炭素を含む
    固体炭素原料とを限られた反応空間内で加熱して炭化ケ
    イ素ウイスカーを製造する方法において、二酸化ケイ素
    を含むケイ素原料を予め所定形状に成形してなる二酸化
    ケイ素含有量30重量%以上であつて、且つ、上記反応
    空間において曝露される部分の表面積1cm^2につい
    て0.3〜5.0cm^3の反応空間容積を有する成形
    体と、固体炭素原料とを水素を含む雰囲気下に1400
    ℃以上の温度に加熱することを特徴とする炭化ケイ素ウ
    イスカーの製造方法。
  2. (2)二酸化ケイ素を含むケイ素原料を予め所定形状に
    成形してなる成形体と固体炭素原料とを触媒の存在下に
    加熱することを特徴とする特許請求の範囲第1項記載の
    炭化ケイ素ウイスカーの製造方法。
  3. (3)触媒が鉄、コバルト、ニツケル又はこれらの化合
    物であることを特徴とする特許請求の範囲第2項記載の
    炭化ケイ素ウイスカーの製造方法。
  4. (4)水素を含む雰囲気が20体積%以上の水素を含む
    ことを特徴とする特許請求の範囲第1項記載の炭化ケイ
    素ウイスカーの製造方法。
  5. (5)反応温度が1400〜17000℃の温度である
    ことを特徴とする特許請求の範囲第1項記載の炭化ケイ
    素ウイスカーの製造方法。
JP60253327A 1985-11-11 1985-11-11 炭化ケイ素ウイスカ−の製造方法 Pending JPS62113799A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60253327A JPS62113799A (ja) 1985-11-11 1985-11-11 炭化ケイ素ウイスカ−の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60253327A JPS62113799A (ja) 1985-11-11 1985-11-11 炭化ケイ素ウイスカ−の製造方法

Publications (1)

Publication Number Publication Date
JPS62113799A true JPS62113799A (ja) 1987-05-25

Family

ID=17249761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60253327A Pending JPS62113799A (ja) 1985-11-11 1985-11-11 炭化ケイ素ウイスカ−の製造方法

Country Status (1)

Country Link
JP (1) JPS62113799A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137799A (ja) * 1988-11-18 1990-05-28 Shin Etsu Chem Co Ltd 炭化珪素ウィスカーの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137799A (ja) * 1988-11-18 1990-05-28 Shin Etsu Chem Co Ltd 炭化珪素ウィスカーの製造方法
JPH0476359B2 (ja) * 1988-11-18 1992-12-03 Shinetsu Chem Ind Co

Similar Documents

Publication Publication Date Title
Liang et al. Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles
Meng et al. Preparation of β–SiC nanorods with and without amorphous SiO2 wrapping layers
Li et al. Preparation of silicon carbide nanowires via a rapid heating process
JP3834634B2 (ja) 窒化ホウ素前駆物質の形成方法と窒化ホウ素前駆物質を利用した窒化ホウ素ナノチューブの製造方法
US4619905A (en) Process for the synthesis of silicon nitride
JPS5913442B2 (ja) 高純度の型窒化珪素の製造法
JPS623098A (ja) 炭化ケイ素ウイスカ−の製造方法
CN111943722A (zh) 一种在泡沫陶瓷表面合成碳纳米管的可控方法及其应用
EP0272773B1 (en) Process for production silicon carbide whiskers
JPS62113799A (ja) 炭化ケイ素ウイスカ−の製造方法
JP2004161561A (ja) 窒化ホウ素ナノチューブの製造方法
JP2004182571A (ja) 酸化ガリウムを触媒とする窒化ホウ素ナノチューブの製造方法
JP2011121797A (ja) 窒化ホウ素ナノチューブの製造方法
JP2002097004A (ja) 酸化物触媒を利用した窒化ホウ素ナノチューブの製造方法
JP3951107B2 (ja) 多孔質酸化珪素粉末
Meng et al. Synthesis of one-dimensional nanostructures—β-SiC nanorods with and without amorphous SiO 2 wrapping layers
JPH0353280B2 (ja)
JPH10203818A (ja) 低酸素ケイ素造粒物及びその製造方法並びに窒化ケイ素の製造方法
JPS63156100A (ja) 炭化ケイ素ウイスカ−の製造方法
JPH0477399A (ja) SiCウイスカーの製造方法
JPS6126600A (ja) β型炭化ケイ素ウイスカ−の製造方法
JPS63103898A (ja) 高純度炭化ケイ素ウイスカ−の製造方法
JPS63156098A (ja) 炭化ケイ素ウイスカ−の製造方法
KR101308420B1 (ko) 금속간화합물 또는 합금 코어와 탄소나노튜브 쉘로 구성된 이질나노와이어 및 그 합성방법
JPS6021806A (ja) 塩化ニツケル黒鉛層間化合物