JPS62113789A - Single crystal pulling up apparatus - Google Patents

Single crystal pulling up apparatus

Info

Publication number
JPS62113789A
JPS62113789A JP25306485A JP25306485A JPS62113789A JP S62113789 A JPS62113789 A JP S62113789A JP 25306485 A JP25306485 A JP 25306485A JP 25306485 A JP25306485 A JP 25306485A JP S62113789 A JPS62113789 A JP S62113789A
Authority
JP
Japan
Prior art keywords
gas
component
concentration
single crystal
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25306485A
Other languages
Japanese (ja)
Inventor
Yasuhiko Kuwano
泰彦 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25306485A priority Critical patent/JPS62113789A/en
Publication of JPS62113789A publication Critical patent/JPS62113789A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To keep the component concentration always at an optimum value and obtain a high-quality single crystal, by providing a gas sensor for measuring the component gas concentration and a mechanism capable of automatically controlling the component concentration in an inflow gas according to signals thereof. CONSTITUTION:In a single crystal pulling up apparatus for growing a single crystal in a gas stream, component gas detection signals given from a component gas concentration measuring instrument 13 are compared with program signals to drive a thermal mass flow controller 15 for inflow of a component gas by a PID controller 14 with a programmer. The component gas is mixed with a large volume of nitrogen or an inert gas from the thermal mass flow controller 16 and fed to a crystal growth apparatus. In this crystal pulling up apparatus, the component concentration in the discharge gas is detected and thereby the volume of the inflow component can be controlled to ensure the component concentration required for the crystal growth. Accordingly, this apparatus is effective in all cases where crystals in which minor components contained in an atmospheric gas have a serious influence on properties of the grown crystals.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は単結晶引上装置の改良に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to an improvement in a single crystal pulling device.

(従来の技術) 通常引上法単結晶育成は窒素や不活性ガスを主成分とし
た雰囲気μス気流中で行われる仁とが多い。またこうし
たガスの中に他成分ガスを混入することもしばしば行な
われている0例えば酸化物結晶では窒素やアルゴン中に
酸素等を混入する場合があシ、金属結晶では微量の水素
を混入する場合等がある。従来このような場合には必要
濃度の成分ガスを含む混合ガスボンベを用意するか、あ
るいはガスミキサーにより窒素や不活性ガス中と成分ガ
スを一定量比混合して必要濃度の混合ガスを作り供給し
ていた。
(Prior Art) Single crystal growth using the normal pulling method is often carried out in an air current containing nitrogen or an inert gas as a main component. In addition, other component gases are often mixed into these gases. For example, in the case of oxide crystals, oxygen, etc. may be mixed into nitrogen or argon, and in the case of metal crystals, trace amounts of hydrogen may be mixed. etc. Conventionally, in such cases, a mixed gas cylinder containing the component gas at the required concentration was prepared, or a gas mixer was used to mix the component gas in nitrogen or inert gas at a fixed ratio to create a mixed gas at the required concentration and supply it. was.

(発明が解決しようとする問題点) 窒素や不活性ガスに混合する他の成分ガスの櫨類や濃度
は育成する単結晶の種類忙よシまちまちである口たとえ
ば酸化物単結晶の場合を例として説明すると、 LiT
a01結晶の場合のように酸素が20チの場合もあれば
、 Gd@Ga@O@t  の場合のように1〜2チの
ものも、ある。最適含有率はその物質の融点における平
衡解離圧、坩堝の耐久性等諸因子によシ決められるが一
般的に言って添加する成分ガスの濃度が比較的高い場合
にはその供給方法についてあまシ問題はなかつたが、成
分濃度がお\よそ100 ppm以下が適当であるよう
な場合にはかな)考慮する必要があることがわかった。
(Problem to be solved by the invention) The type and concentration of other component gases mixed with nitrogen and inert gas vary depending on the type of single crystal to be grown.For example, in the case of an oxide single crystal, To explain it as, LiT
In some cases, the oxygen content is 20 t, as in the case of a01 crystal, and in others, it is 1 to 2 t, as in the case of Gd@Ga@O@t. The optimal content rate is determined by various factors such as the equilibrium dissociation pressure at the melting point of the substance and the durability of the crucible, but generally speaking, if the concentration of the component gas to be added is relatively high, it is necessary to be careful about the supply method. Although there were no problems, it was found that it is necessary to take this into consideration in cases where the appropriate component concentration is approximately 100 ppm or less.

流入するガス中の成分濃度を決められた濃度K 一定に
保つことは従来から可能であって、前述のようにホンベ
ラ用いた)サーマル・マス70−コントローラーを用い
たガスミキサーを用いたシすれば良かつた0しかし実際
の結晶引上においては流入ガス中の成分濃度を一定にし
ておいても融体く実効的に作用する成分濃度は一定とな
らず、その事が原因で結晶品質を阻害している場合があ
ることが多くの実験かられかった0本発明は従来見過ご
されていたこの実効的な成分濃度を正確にとらえ、′こ
の値を常に最適値に維持することによシ高品質単結晶を
得ようとするものである0(作用) 一定濃度の混合ガスを育成装置に流入しても。
It has conventionally been possible to maintain the concentration of components in the inflowing gas at a constant concentration K, and it has been possible to maintain the concentration of components in the inflowing gas at a constant value by using a gas mixer using a thermal mass controller (as described above). However, in actual crystal pulling, even if the concentration of components in the incoming gas is kept constant, the concentration of components that effectively act on the melt does not remain constant, which impairs crystal quality. It has been found from many experiments that there are cases in which the concentration of components is high. 0 (effect) which is intended to obtain quality single crystals Even if a mixed gas of a certain concentration is flowed into the growth device.

最も重要な結晶育成界面付近では流入時の成分濃度とは
異なることまた経時的に変化したシ変動した夛するとこ
ろに問題がある0このような事の起る理由は、高温ある
いは高周波加熱の場合はプラズマ状態のもとて主成分ガ
スと添加成分ガスの反応が起ったり添加成分ガスと耐火
物、原料融体との反応、吸着、溶解などが起るためと推
定される◇こうした現象は通常経時変化を伴うものであ
るがさらに結晶回転軸のシール部分などからの微小リー
クが成分濃度の不安定な変動の原因となることが多い。
There is a problem in that near the most important crystal growth interface, the concentration of components differs from the concentration at the time of inflow, and that the concentration changes over time.The reason why this happens is that when high temperature or high frequency heating It is presumed that this is due to the reaction between the main component gas and the additive gas in the plasma state, or the reaction, adsorption, and dissolution between the additive gas and the refractory and raw material melt.◇These phenomena occur. Although this usually accompanies changes over time, minute leaks from the seal portion of the crystal rotating shaft often cause unstable fluctuations in component concentrations.

窒素に酸素を混入する場合等はこうした影響が著るしい
。以上のような影響を考慮すれば、結晶育成界面付近で
の必要成分濃度確保のためKは、流入されてくるガスの
成分濃度を一定にしておくことでは達成できないことは
明らかである口重発明は実効的な成分濃度はむしろ流出
されてくる廃山ガスの成分濃度がよシ状況を反映してい
るという実験結果に基くものである◎すなわち、雰囲気
ガス流出口での濃度を一定あるいはプログラムにそって
制御することKよシ実質的に良好な結晶育成条件が維持
出来るという事実に着目してなされたものである口 (問題を解決するための手段) 本発明は最適実効成分濃度を確保する手段として、雰囲
気ガス流出口に成分ガス検知器たとえばアルゴン中に微
量の水素が混入されている場合であれば水素検知器を設
置し、その濃度を常時測定し、電気信号として出力し、
その信号によって、ガス流入口以前に設けられたガス混
合器の成分ガス流I調節用のサーマルマスコントローラ
の流入量調整機構を駆動し、流入ガス中の成分濃度を自
動制御しようとするものである。この場合結晶によりて
は育成界面付近の成分濃度をプログラムに従って変化さ
せる方がよいことがあるので、プログラム付の自動制御
装置が必要である0第1図は本発明による単結晶引上装
置の構成例を模式的に示したもので、成分ガス濃度測定
器13から出た成分ガス検出信号はプログラム信号と比
較され、プログラマ付PID制御器14によって成分カ
ス流入用ノサーマルマスフローコントロー−)15.を
駆動する0この成分ガスとテーマシマスフ0−コントロ
ーラ16からの多量の窒素ある1よ いメ不活性ガスとが混合され結晶育成装置に送られる。
This effect is significant when oxygen is mixed with nitrogen. Considering the above effects, it is clear that K cannot be achieved by keeping the component concentration of the incoming gas constant in order to secure the necessary component concentration near the crystal growth interface. is based on the experimental result that the effective component concentration is rather that the component concentration of the waste mountain gas flowing out reflects the actual situation. In other words, the concentration at the atmospheric gas outlet is kept constant or programmed. The present invention was made based on the fact that it is possible to maintain substantially good crystal growth conditions by controlling the above conditions (Means for solving the problem). As a means, a component gas detector (for example, a hydrogen detector if a trace amount of hydrogen is mixed in argon) is installed at the atmospheric gas outlet, and the concentration is constantly measured and output as an electrical signal.
The signal drives the inflow amount adjustment mechanism of the thermal mass controller for adjusting the component gas flow I of the gas mixer installed before the gas inlet, thereby automatically controlling the component concentration in the inflow gas. . In this case, depending on the crystal, it may be better to change the component concentration near the growth interface according to a program, so an automatic control device with a program is required.0 Figure 1 shows the configuration of a single crystal pulling apparatus according to the present invention. An example is schematically shown in which the component gas detection signal output from the component gas concentration measuring device 13 is compared with a program signal, and the PID controller with programmer 14 controls the thermal mass flow control for component gas inflow. This component gas that drives the oscilloscope is mixed with a large amount of nitrogen and an inert gas from the controller 16 and sent to the crystal growth apparatus.

以上を要約すれば雰囲気ガス流出口に設けた検出器の情
報によ)流入ガスの混合比を自動的に制御するような帰
還制御方式をとることが良質単結晶を得るのに有効な手
段である〇 (実施例) 本発明の実施例として窒素中に水素を微量含む雰囲気内
でのイットリウムアルミネイト、  YAlo。
To summarize the above, using a feedback control method that automatically controls the mixing ratio of incoming gas (based on information from a detector installed at the atmospheric gas outlet) is an effective means for obtaining high-quality single crystals. Yes (Example) As an example of the present invention, yttrium aluminate, YAlo, was produced in an atmosphere containing a small amount of hydrogen in nitrogen.

単結晶育成の場合について説明する。YkI!0 、は
固体レーザ用結晶として開発されたもので、その光学的
性質を改善するため雰囲気ガス中に微量の水素を混入し
た◎結晶育成装置は第1図の構成のものでるつぼ9はイ
リジウム製内径50 mm 、深さ50 mm s板厚
1.5前り耐火物5. 6. 7はジルコニア製である
0原料は純度99.999 %のAit’sと純度99
.9999%のY、0.を用い原料総量は330gとし
九〇主雰囲気ガスは窒素で添加成分として水素を用いた
口実際には窒素ボンベ19と、窒素ベース水素1%の混
合ガスボンベ18とを用いた0ガ゛スはコントローラ1
5,16.ガスミキ?17全通ってガス流入口3から筐
体1内に入る口育成は第い、直径約12 mm、長さ1
10皿の単結晶11を得た0また第1図で8は原料融体
、12は高周波コイル、10は種子結晶である。この結
晶の波長4000Xにおける光吸収係数は約0.04画
一1であった。一方窒素中水素100 ppmを含む混
合ガスボンベを製作し、これを用いて従来どおシの方法
で結晶育成を行ない同様の検査をしたところ4000X
における光吸収係数は約0.07 cm−’であった0
これは実効的な水素供給量が不安定であったため結晶づ
・′ 中の欠陥発生Q多くなったためと推定される。
The case of single crystal growth will be explained. YkI! 0 was developed as a crystal for solid-state lasers, and in order to improve its optical properties, a trace amount of hydrogen was mixed into the atmospheric gas. Inner diameter 50 mm, depth 50 mm S plate thickness 1.5 Front refractory 5. 6. 7 is made of zirconia 0 raw materials are Ait's with a purity of 99.999% and purity 99
.. 9999% Y, 0. The total amount of raw materials was 330 g, and the main atmospheric gas was nitrogen, and hydrogen was used as an additive component.Actually, a nitrogen cylinder 19 and a mixed gas cylinder 18 containing 1% nitrogen-based hydrogen were used. 1
5,16. Gas miki? 17, the opening that passes through the gas inlet 3 and enters the housing 1 is approximately 12 mm in diameter and 1 in length.
Ten dishes of single crystals 11 were obtained. In FIG. 1, 8 is a raw material melt, 12 is a high frequency coil, and 10 is a seed crystal. The light absorption coefficient of this crystal at a wavelength of 4000X was approximately 0.04 to 1. On the other hand, we made a mixed gas cylinder containing 100 ppm of hydrogen in nitrogen, used it to grow crystals using the conventional method, and conducted similar tests.
The optical absorption coefficient at 0 was about 0.07 cm-'
This is presumed to be due to the fact that the effective amount of hydrogen supplied was unstable, which caused more defects to occur during crystallization.

(発明の効果) 従来のように流入ガスの成分を一定にするのと異なり、
本発明の装置では流出ガス中の成分濃度を検出し、これ
によって流入成分量を制御し、結晶育成に必要な成分濃
度を確保することが可能となった0従って雰囲気ガス中
に含まれる微量成分が育成結晶の性質に重大な影響を及
ぼすような結晶を育成する全ての場合に本発明の装置は
有効である。
(Effect of the invention) Unlike the conventional method where the components of the inflowing gas are kept constant,
The device of the present invention detects the concentration of components in the outflow gas, thereby controlling the amount of components flowing in, and making it possible to ensure the concentration of components necessary for crystal growth. The apparatus of the present invention is effective in all cases where crystals are grown in which the properties of the grown crystal are significantly affected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本1発明の装置の構成例を示す図である01は
筐体、2はガス流出口、3はガス流入口、5〜7は保温
耐火物、8は原料融体、9はるつぼ。 10は種子結晶、11は育成結晶、12は高周波コイル
をそれぞれ示す〇
FIG. 1 is a diagram showing an example of the configuration of the apparatus of the present invention. 01 is a housing, 2 is a gas outlet, 3 is a gas inlet, 5 to 7 are heat-retaining refractories, 8 is a raw material melt, and 9 is a Crucible. 10 indicates a seed crystal, 11 indicates a growing crystal, and 12 indicates a high frequency coil.

Claims (1)

【特許請求の範囲】[Claims] ガス気流中で単結晶育成を行う単結晶引上装置において
、雰囲気ガスの流出口に設けられ該ガス中の成分ガス濃
度を測定するガス検知器と、その検出信号によって流入
ガス中の成分濃度を自動的に制御する機構とを備えたこ
とを特徴とする単結晶引上装置。
In a single crystal pulling device that grows a single crystal in a gas stream, there is a gas detector installed at the outlet of the atmospheric gas to measure the concentration of component gases in the gas, and a detection signal from the gas detector to determine the concentration of components in the inflowing gas. A single crystal pulling device characterized by comprising an automatic control mechanism.
JP25306485A 1985-11-11 1985-11-11 Single crystal pulling up apparatus Pending JPS62113789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25306485A JPS62113789A (en) 1985-11-11 1985-11-11 Single crystal pulling up apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25306485A JPS62113789A (en) 1985-11-11 1985-11-11 Single crystal pulling up apparatus

Publications (1)

Publication Number Publication Date
JPS62113789A true JPS62113789A (en) 1987-05-25

Family

ID=17245988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25306485A Pending JPS62113789A (en) 1985-11-11 1985-11-11 Single crystal pulling up apparatus

Country Status (1)

Country Link
JP (1) JPS62113789A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239089A (en) * 1987-11-30 1989-09-25 Toshiba Corp Process for production of compound semiconductor single crystal and apparatus therefor
WO2002057519A1 (en) * 2000-12-22 2002-07-25 Memc Electronic Materials, Inc. Process for monitoring the gaseous environment of a crystal puller for semiconductor growth
WO2018159108A1 (en) * 2017-02-28 2018-09-07 株式会社Sumco Method for manufacturing silicon single-crystal ingot, and silicon single-crystal ingot
WO2018159109A1 (en) * 2017-02-28 2018-09-07 株式会社Sumco Method for manufacturing silicon single crystal ingot and silicon single crystal growing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275187A (en) * 1985-05-29 1986-12-05 Toshiba Ceramics Co Ltd Process for checking leakage of pulling device for pulling silicon single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275187A (en) * 1985-05-29 1986-12-05 Toshiba Ceramics Co Ltd Process for checking leakage of pulling device for pulling silicon single crystal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239089A (en) * 1987-11-30 1989-09-25 Toshiba Corp Process for production of compound semiconductor single crystal and apparatus therefor
WO2002057519A1 (en) * 2000-12-22 2002-07-25 Memc Electronic Materials, Inc. Process for monitoring the gaseous environment of a crystal puller for semiconductor growth
WO2018159108A1 (en) * 2017-02-28 2018-09-07 株式会社Sumco Method for manufacturing silicon single-crystal ingot, and silicon single-crystal ingot
WO2018159109A1 (en) * 2017-02-28 2018-09-07 株式会社Sumco Method for manufacturing silicon single crystal ingot and silicon single crystal growing apparatus
JP2018140915A (en) * 2017-02-28 2018-09-13 株式会社Sumco Method for manufacturing silicon single crystal ingot, and silicon single crystal growing apparatus
JPWO2018159108A1 (en) * 2017-02-28 2019-06-27 株式会社Sumco Method of manufacturing silicon single crystal ingot and silicon single crystal ingot
KR20190109490A (en) * 2017-02-28 2019-09-25 가부시키가이샤 사무코 Silicon single crystal ingot manufacturing method and silicon single crystal growing apparatus
CN110678585A (en) * 2017-02-28 2020-01-10 胜高股份有限公司 Method for manufacturing silicon single crystal ingot and silicon single crystal growing apparatus
US11078595B2 (en) 2017-02-28 2021-08-03 Sumco Corporation Method of producing silicon single crystal ingot and silicon single crystal ingot

Similar Documents

Publication Publication Date Title
JPS5854115B2 (en) How to use tankets
Shindo Determination of the phase diagram by the slow cooling float zone method: The system MgO-TiO2
JPS62113789A (en) Single crystal pulling up apparatus
TW467973B (en) Continuous oxidation process and apparatus for using the same
Rudness et al. Growth of single crystals of incongruently melting yttrium iron garnet by flame fusion process
US3607111A (en) Verneuil crystallizer with powder by-pass means
KR960031657A (en) High pressure Nd: YVO_4 single crystal growth apparatus and method
JP2831906B2 (en) Single crystal manufacturing equipment
JPH0534318B2 (en)
JP3316902B2 (en) Optical fiber drawing furnace and drawing method
JPH01316417A (en) Device for controlling dew point in atmospheric furnace
SU1521720A1 (en) Method of controlling temperature conditions of welding-on quartz glass blocks
RU2034099C1 (en) Mixture for producing jewelry crystals
SU369748A1 (en) METHOD OF CULTIVATION OF MONOCRYSTALS OF NIOBATE AND TANTALATES OF ALKALINE METALS
JPS632886A (en) Crystal growth device
JP2005200256A (en) Purification method of metal fluoride, production method of polycrystal and single crystal of metal fluoride, and its production apparatus
JPS63291891A (en) Production of single crystal
JPH0859388A (en) Device for producing single crystal
JPH0699224B2 (en) Single crystal growth method
JP2584033B2 (en) Manufacturing method of zinc oxide whisker
JPH01313398A (en) Production of gaas compound semiconductor single crystal
JPH07172993A (en) Production of rutile single crystal
JPH02228086A (en) Method and device for stabilization control of output of fluorine excimer laser
do Espirito Santo et al. 20 LiF, LiYF4, and Nd-and Er-Doped LiYF4 Fluoride Fibers
JPH06239687A (en) Device for growing single crystal