JP2584033B2 - Manufacturing method of zinc oxide whisker - Google Patents

Manufacturing method of zinc oxide whisker

Info

Publication number
JP2584033B2
JP2584033B2 JP63324076A JP32407688A JP2584033B2 JP 2584033 B2 JP2584033 B2 JP 2584033B2 JP 63324076 A JP63324076 A JP 63324076A JP 32407688 A JP32407688 A JP 32407688A JP 2584033 B2 JP2584033 B2 JP 2584033B2
Authority
JP
Japan
Prior art keywords
atmosphere
furnace
reaction
zinc
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63324076A
Other languages
Japanese (ja)
Other versions
JPH02167899A (en
Inventor
實 芳中
栄三 朝倉
順 八木
英行 吉田
基 北野
隆重 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP63324076A priority Critical patent/JP2584033B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to DE68924646T priority patent/DE68924646T2/en
Priority to PCT/JP1989/001246 priority patent/WO1990007022A1/en
Priority to KR1019900701787A priority patent/KR930007857B1/en
Priority to US07/566,475 priority patent/US5158643A/en
Priority to EP90900992A priority patent/EP0407601B1/en
Priority to CA002005737A priority patent/CA2005737C/en
Publication of JPH02167899A publication Critical patent/JPH02167899A/en
Application granted granted Critical
Publication of JP2584033B2 publication Critical patent/JP2584033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、巨大なテトラポッド状構造を有する親規な
酸化亜鉛ウイスカの製造方法に関し、より詳しくはテト
ラポッド状構造の針状部の長さが数ミクロン以上の酸化
亜鉛ウイスカを製造するための焼成方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a zinc oxide whisker having a huge tetrapod-like structure, and more particularly, to a method for producing a tetrapod-like structure having a needle-like portion having a long length. The present invention relates to a firing method for producing zinc oxide whiskers of several microns or more.

従来の技術 従来、一般的工業素材として使用される酸化亜鉛は、
いわゆるフランス法によるもので、粒子の大きさ、特に
形状がまちまちの団かい状粒子の集合体である。また細
く短い針状結晶粒子を高収率で形成させる方法(例えば
特公昭60−5529号公報)があるが、これは上記フランス
法の改良法で、加熱による金属亜鉛蒸気を急速に冷却す
るものであり、このため巨大結晶は生成せず、微小寸法
(針状の長さが1〜1.5ミクロン程度)の針状結晶とな
る。このような寸法の針状結晶体は、現在市販されてい
る各種の工業用ウイスカと比較すると寸法面で約2桁小
さい。このため前記ウイスカの共通的特徴である金属,
セラミック,樹脂等への補強効果は前記団かい状酸化亜
鉛の水準となり、ウイスカとしての顕著な効果は認めら
れない。
Conventional technology Conventionally, zinc oxide used as a general industrial material is:
This is a so-called French method, which is an aggregate of cluster-like particles having various sizes, particularly shapes. There is also a method of forming thin and short needle-like crystal particles at a high yield (for example, Japanese Patent Publication No. Sho 60-5529), which is an improvement of the above-mentioned French method, in which metal zinc vapor is rapidly cooled by heating. Therefore, a giant crystal is not generated, and a needle-shaped crystal having a minute size (a needle-like length of about 1 to 1.5 μm) is obtained. Needle-like crystals having such dimensions are approximately two orders of magnitude smaller in size than various industrial whiskers currently on the market. For this reason, a common feature of the whisker is metal,
The reinforcing effect on ceramics, resin and the like is at the level of the above-mentioned brittle zinc oxide, and no remarkable effect as a whisker is recognized.

即ち、繊維形状の単結晶性であるウイスカは同じ物質
の団かい状物質より格段と機械的強度が大で、これを他
の物質中に混入して高い機械的強度を得るための強化物
質として注目されており、今日では金属,金属酸化物,
金属炭化物,金属窒化物等の工業用ウイスカが市販され
ている。また酸化亜鉛においても長さがmm桁のウイスカ
の例(特公昭50−5597号公報)があるが、これらは単純
な針状体のもので、わざわざ亜鉛の合金を用いるため結
晶中に不順物を含んだり、結晶の成長時に基盤を必要と
したり、複雑な装置や操作で長時間を要する等の実験室
的な検討に過ぎない。
In other words, whiskers that are single crystalline in the form of fibers have much higher mechanical strength than bridging substances of the same substance, and as a reinforcing substance to obtain high mechanical strength by mixing this into other substances. Attention has been paid to metals, metal oxides,
Industrial whiskers such as metal carbides and metal nitrides are commercially available. As for zinc oxide, there is an example of a whisker having a length of mm order (Japanese Patent Publication No. 50-5597). However, these are simple needle-like bodies, and since a zinc alloy is used for the purpose, irregularities are included in the crystal. Or a laboratory study that requires a substrate during the growth of the crystal or requires a long time for complicated equipment and operation.

さらに実際的な酸化亜鉛の製造にあっては、材料とな
る亜鉛金属を予め窒素ガス等の非酸化性雰囲気中で高温
加熱することにより、亜鉛蒸気ガスを発生し、この非酸
化性亜鉛蒸気混合ガスを別に酸素を含む酸化性雰囲気で
形成された高温炉に導入することにより、亜鉛蒸気を酸
化して酸化亜鉛結晶を製造するのが通常で、この場合に
は製造される酸化亜鉛のほとんどが団かい状酸化物でい
わゆる亜鉛華となる。
Furthermore, in the actual production of zinc oxide, zinc vapor as a material is heated in advance in a non-oxidizing atmosphere such as nitrogen gas at a high temperature to generate zinc vapor gas, and this non-oxidizing zinc vapor is mixed. Normally, zinc gas is oxidized to produce zinc oxide crystals by introducing a gas into a high-temperature furnace formed in an oxidizing atmosphere containing oxygen. In this case, most of the zinc oxide produced is used. It is a so-called zinc white with a cluster oxide.

発明が解決しようとする課題 本発明は、工業用ウイスカとして必要な大きさを有
し、かつテトラポッド状構造となる酸化亜鉛ウイスカの
新規で簡便な製造方法を提供するものである。さらに詳
しくは材料となる金属亜鉛の蒸発、核形成、結晶成長を
行なうための焼成工程に関するウイスカの新規な製造方
法を提供する。
SUMMARY OF THE INVENTION The present invention provides a novel and simple method for producing zinc oxide whiskers having a size required for an industrial whisker and having a tetrapod-like structure. More specifically, the present invention provides a novel whisker manufacturing method relating to a firing step for performing evaporation, nucleation, and crystal growth of metal zinc as a material.

課題を解決するための手段 本発明は、本質的に材料になる亜鉛粉末を酸素を含む
雰囲気中で加熱酸化して気中もしくは基盤上で酸化亜鉛
ウイスカを生成させるものである。ここで、材料なる亜
鉛粉末は、加熱による蒸発、酸化物結晶体を生成するた
めの結晶核生成、そしてテトラポッド状になる結晶成長
の過程がすべて同じ場で進行するように焼成炉の構造並
びに条件が与えられる。ここで用いられる材料なる亜鉛
粉末は、純亜鉛であっても一部酸化しているもの、また
その表面がすでに酸化皮膜で覆われているもの、さらに
は亜鉛以外の金属や非金属がいわゆる不純物程度に混入
しているものを用いることが可能である。
Means for Solving the Problems The present invention is to generate zinc oxide whiskers in the air or on a substrate by heating and oxidizing zinc powder, which is essentially a material, in an atmosphere containing oxygen. Here, the zinc powder used as the material has the structure of the firing furnace and the structure of the firing furnace so that the processes of evaporation by heating, generation of crystal nuclei for generating oxide crystals, and crystal growth to form a tetrapod proceed in the same place. Conditions are given. The zinc powder used here is pure zinc, which is partially oxidized, whose surface is already covered with an oxide film, and metals and nonmetals other than zinc are so-called impurities. It is possible to use those that are mixed to a certain extent.

本発明の特徴は加熱により発生する亜鉛蒸発が、直ち
にその雰囲気に含まれる酸素により酸化されると同時
に、生成結晶がテトラポッド状に成長するに十分な亜鉛
原子を供給できるだけの亜鉛蒸気を持続するに必要な雰
囲気をつくる条件の内容にある。この条件は焼成炉の構
造と極めて多くの実験の繰り返しの中から見付けだされ
たものである。そのひとつは焼成炉の炉壁材として多孔
質のものを用いること、そしてもひとつは亜鉛蒸気の発
生量とテトポッドを生成するに見合う雰囲気中の酸素量
をある範囲に制御して供給することである。
A feature of the present invention is that zinc evaporation generated by heating is immediately oxidized by oxygen contained in the atmosphere, and at the same time, zinc vapor that can supply enough zinc atoms to grow the resulting crystal into a tetrapod is maintained. It is in the content of the conditions to create the atmosphere required for This condition was found out of the structure of the firing furnace and the repetition of an extremely large number of experiments. One is to use a porous material as the furnace wall material of the firing furnace, and the other is to control and supply a certain range of the amount of zinc vapor and the amount of oxygen in the atmosphere corresponding to the production of tetpod. is there.

作用 本発明で得られる酸化亜鉛ウイスカは、結晶中心の核
部とこの核部から異なる4軸方向に伸び出た針状結晶部
からなり、前記針状結晶部の基部の径が0.1〜10μmで
あり、前記針状部の基部から先端までの長さが1〜300
μmである。また少量の針状結晶部が3軸あるいは2軸
また4軸以上のものも混入するが、これらは結晶の成長
中、あるいは後に他のウイスカと接触してその一部が折
れて離れたり、成長が停止した結果である。またこれら
成長部の接触により完全なテトポッド形の一部に他のテ
トポッドが焼結や付着したものである。また他の形状
物、即ち板状結晶が針状部に成長もしくは付着すること
もある。本発明の製造方法によれば、テトラポッド状の
ものが主体に製造することができる。
The zinc oxide whisker obtained in the present invention is composed of a nucleus at the center of the crystal and needle-like crystal parts extending from the nucleus in four different axial directions. The base of the needle-like crystal part has a diameter of 0.1 to 10 μm. Yes, the length from the base to the tip of the needle-shaped portion is 1 to 300
μm. Also, a small amount of needle-like crystal parts containing triaxial, biaxial, or quadriaxial or more may be mixed during the growth of the crystal or after contact with other whiskers, or some of the whiskers may break apart or grow. Is the result of stopping. In addition, another Tetopod is sintered or adhered to a part of the complete Tetopod shape due to the contact of these growth portions. Further, another shape, that is, a plate-like crystal may grow or adhere to the needle-like portion. According to the production method of the present invention, a tetrapod-shaped product can be mainly produced.

本発明は、焼成段階で材料なる亜鉛金属として亜鉛粉
末を使用する。ここで亜鉛粉末の粒子径は0.1〜500μm
のものが可能であり、なかでも1〜300μmのものが良
い結果となる。これは本発明の焼成過程における亜鉛蒸
気の発生速度に極めて重大な影響を及ぼす要因の一つと
なるからである。即ち、粒子径が極端に小さい時には、
亜鉛蒸気の蒸発速度は亜鉛金属の蒸発温度点以上の定温
度で同一金属量では極めて速く、以下に説明する雰囲気
中の酸素量の制御が実質的に不可能となり、殆どが金属
蒸気のままで結晶生成系の外(最も一般的には焼成炉の
外)に排出するか、たとえ生成系の内に止まっても雰囲
気条件によっては金属状態で凝集したり、また団かい状
の亜鉛酸化物となる。なお、よしんば針状焼結物(ウニ
殻状)や板状となる。また粒子径が大き過ぎると亜鉛蒸
気の発生速度は遅くなり、発生量に見合う雰囲気中の酸
素量の制御が困難となって、この場合もまた団かい状や
凝集金属状となり、目的とするテトラポッド状ウイスカ
は殆ど生成しない。
In the present invention, zinc powder is used as the zinc metal used in the firing step. Here, the particle size of the zinc powder is 0.1 to 500 μm
Can be obtained, among which 1 to 300 μm gives good results. This is because it is one of the factors that have a very significant effect on the generation rate of zinc vapor in the firing process of the present invention. That is, when the particle size is extremely small,
The evaporation rate of zinc vapor is extremely fast with the same amount of metal at a constant temperature equal to or higher than the evaporation temperature point of zinc metal, and it becomes virtually impossible to control the amount of oxygen in the atmosphere described below. It is discharged outside the crystal formation system (most commonly outside the firing furnace), or even if it stops inside the formation system, it may aggregate in the metal state depending on the atmospheric conditions, Become. In addition, it becomes a needle-like sintered product (sea urchin shell shape) or a plate shape. On the other hand, if the particle size is too large, the rate of generation of zinc vapor becomes slow, and it becomes difficult to control the amount of oxygen in the atmosphere corresponding to the amount of generated zinc vapor. Pod-like whiskers hardly form.

この亜鉛蒸気の蒸発量の制御をより容易に行なうため
に、本発明では焼成時の材料となる亜鉛粉末として純亜
鉛粉末よりむしろ予め表面が酸化皮膜で覆われている
か、または酸化亜鉛が混合されたものを用いる。これは
前記粒子径によって蒸発速度の速くなることを、酸化の
進行度によって緩和することができるためである。これ
は亜鉛金属粒子の表面が酸化皮膜で覆われているため、
粒子内部の亜鉛金属が雰囲気中に蒸気拡散するのを抑制
する効果を持つこと、粒子全体としての熱容量の増加、
または蒸発温度の見かけ上の上昇のためと考えられる。
In order to more easily control the evaporation amount of the zinc vapor, in the present invention, the surface of the zinc powder used as a material for firing is coated with an oxide film in advance rather than pure zinc powder, or zinc oxide is mixed. Used. This is because the increase in the evaporation rate due to the particle diameter can be reduced by the progress of oxidation. This is because the surface of the zinc metal particles is covered with an oxide film,
Having the effect of suppressing the vapor diffusion of zinc metal inside the particles into the atmosphere, increasing the heat capacity of the particles as a whole,
Or, it is considered due to an apparent increase in the evaporation temperature.

上記のように粉末材料を用いることにより、亜鉛蒸気
の蒸発量を制御すると共に、焼成炉内の雰囲気、特に酸
素分圧を制御して、炉内の亜鉛蒸気分圧と酸素分圧の相
対比率を、酸化亜鉛(ZnO)を形成するに必要である化
学量論比率に対してある幅に納めることにより、本発明
のテトラポッド状酸化亜鉛ウイスカを生成できることが
実験の結果明らかになった。ここでより大きなウイスカ
を形成するには、化学量論値に対して、かなりの亜鉛蒸
気過多と酸素不足の状態に結晶生成系の雰囲気を制御す
る必要があり、一方より小さいウイスカを形成するに
は、先とは逆に、亜鉛蒸気不足で酸素過多とする必要が
ある。
By using the powdered material as described above, while controlling the amount of evaporation of the zinc vapor, and controlling the atmosphere in the firing furnace, particularly the oxygen partial pressure, the relative ratio between the zinc vapor partial pressure and the oxygen partial pressure in the furnace. Experimental results have shown that the tetrapod-like zinc oxide whisker of the present invention can be produced by limiting the stoichiometric ratio to the stoichiometric ratio required for forming zinc oxide (ZnO). Here, in order to form a larger whisker, it is necessary to control the atmosphere of the crystal forming system to a state in which there is a considerable excess of zinc vapor and oxygen deficiency with respect to the stoichiometric value. On the contrary, it is necessary to increase the amount of oxygen due to lack of zinc vapor.

本発明は、以上のような雰囲気の下に亜鉛金属を焼成
酸化することに特徴がある。反応炉内の雰囲気を制御す
るための手段として、予め亜鉛蒸気を発生するゾーンを
独立して設け、搬送ガス(具体的には窒素などの非酸化
性ガス)を用いて亜鉛蒸気を後段に設けた酸化反応ゾー
ンに移送し、外部より導入した含酸素ガスによって酸化
する、いわゆる気相反応的な方法がとられるのが常であ
る。この場合、搬送ガスが不可欠のため、亜鉛蒸気分圧
と酸素分圧の相対的な比を、上記のような巨大ウイスカ
形成に必要な領域にすることは極めて困難で、しかも工
業的な収率を考慮するならばほとんど不可能であるとい
える。
The present invention is characterized in that zinc metal is calcined and oxidized under the above atmosphere. As a means for controlling the atmosphere in the reaction furnace, a zone for generating zinc vapor is separately provided in advance, and zinc vapor is provided at a later stage using a carrier gas (specifically, a non-oxidizing gas such as nitrogen). In general, a so-called gas-phase reaction method is adopted in which the material is transferred to an oxidation reaction zone and oxidized by an oxygen-containing gas introduced from the outside. In this case, since the carrier gas is indispensable, it is extremely difficult to set the relative ratio between the partial pressure of zinc vapor and the partial pressure of oxygen to a region necessary for forming the giant whiskers as described above, and the industrial yield is also high. It is almost impossible if you consider

本発明では、このような巨大なウイスカを形成するた
めの雰囲気を、亜鉛粉末(固体)、亜鉛蒸気(液体)、
亜鉛ガス(気体)と酸素(気体)を同一場に混在させる
ことにより形成しえたものであって、いわゆるS−L−
G三相反応場を形成することにより、酸化亜鉛の核形
成、テトラポッド状結晶の晶癖の引き出し、これに続く
テトラポッド状ウイスカ結晶の巨大成長が極めてスムー
ズに行なわれることから、収率の高い構造が可能となっ
た。つまり亜鉛粉末固体を供給源とした極めて濃い亜鉛
蒸気分圧域場とウイスカ形成終了を促す濃い酸素分圧域
場とが連続的に形成された場であることが本発明の核心
である。
In the present invention, the atmosphere for forming such a huge whisker is zinc powder (solid), zinc vapor (liquid),
It can be formed by mixing zinc gas (gas) and oxygen (gas) in the same place, and is a so-called SL-
By forming a G three-phase reaction field, nucleation of zinc oxide, extraction of the crystal habit of the tetrapod-like crystal, and subsequent huge growth of the tetrapod-like whisker crystal are performed extremely smoothly. A high structure became possible. In other words, it is the core of the present invention that the extremely dense zinc vapor partial pressure region using the zinc powder solid as a supply source and the dense oxygen partial pressure region that promotes the end of whisker formation are continuously formed.

以上のような雰囲気を形成するための具体的な炉構成
として、亜鉛粉末の蒸気場への含酸素雰囲気の導入方法
として、通常の流通炉を用い、導入する含酸素雰囲気の
酸素分圧制御とその時間的制御(亜鉛蒸気の発生量に対
応した雰囲気中の酸素分圧及びその時間制御)をする方
法と、炉の壁材を多孔質な通気性材料で構成した焼成炉
を用いることにより、炉内部での亜鉛蒸気の蒸発と、こ
れに続く酸化反応により、雰囲気中の酸素の固定に伴う
雰囲気全体の減圧によって、この減圧相当分のみの新気
が自然に炉外より壁材を流通して炉内に導入される方法
が本発明の具体的な内容である。
As a specific furnace configuration for forming the atmosphere as described above, as a method for introducing an oxygen-containing atmosphere into a steam field of zinc powder, using a normal circulation furnace, oxygen partial pressure control of the oxygen-containing atmosphere to be introduced and By using a method of temporal control (oxygen partial pressure in the atmosphere corresponding to the amount of generated zinc vapor and its time control) and a firing furnace in which the wall material of the furnace is made of a porous air-permeable material, Due to the evaporation of zinc vapor inside the furnace and the subsequent oxidation reaction, the reduced pressure in the entire atmosphere accompanying the fixation of oxygen in the atmosphere causes only fresh air equivalent to this reduced pressure to naturally flow through the wall material from outside the furnace. The method introduced into the furnace is the specific content of the present invention.

先の流通炉における雰囲気制御は、材料の亜鉛粉末の
投入量と、亜鉛の蒸発酸化に必要な反応場の温度条件の
もとで、決められた雰囲気となるように雰囲気ガスの供
給量(酸素分圧)を外部より制御することによりなされ
る。一方、後の多孔質の炉壁を用いる場合には、炉壁の
材料の通気度を選ぶことにより、亜鉛粉末の蒸気酸化反
応の進行に相応して、新たな酸素が壁外より自然に供給
されるために、炉外を決められた雰囲気(酸素分圧)に
しておくことによって、反応の進行に伴う時間的な制御
を人的に行なう必要がないという極めて簡便て確実な方
法を提供するものである。
Atmosphere control in the flow furnace described above is performed by controlling the supply amount of the atmosphere gas (oxygen gas) so that the atmosphere becomes a predetermined atmosphere under the input amount of the zinc powder as the material and the temperature conditions of the reaction field necessary for the evaporative oxidation of zinc. (Partial pressure) is externally controlled. On the other hand, when using a porous furnace wall later, by selecting the permeability of the material of the furnace wall, new oxygen is naturally supplied from outside the wall in accordance with the progress of the steam oxidation reaction of the zinc powder. Therefore, by providing a predetermined atmosphere (oxygen partial pressure) outside the furnace, it is possible to provide an extremely simple and reliable method in which there is no need to manually perform temporal control as the reaction proceeds. Things.

実施例 以下に本発明の実施例のいくつかについて、詳細に説
明する。
Examples Some examples of the present invention will be described below in detail.

実施例1 通常のシリコニット管状炉にコルツ製の反応管を設置
し、この反応管の両端を枝付きすり合わせキャップで密
封したものを酸化亜鉛ウイスカの焼成反応炉として用い
た。ここでの片方の枝管より、反応的に必要な雰囲気ガ
スを送入し、他方のキャップの枝管より排出して管内の
雰囲気を交換できるようにした。さらに排出側の枝管に
はテフロンチューブを介してマノメータとなるU字管
と、水バブラーが接続されており、反応管より排出され
る管内の雰囲気ガスは水中をバブルして反応系外(炉の
外)に排出される。このバブラーは管内に雰囲気ガスを
流入するとき流通していることの確認のために用いられ
る他に、雰囲気を固定(静止)する時には、排出側の水
シールとして用いるものである。またこのとき反応管内
の雰囲気ガス成分の反応に伴う吸収量(減少量)をバブ
ラー内の水の逆流を利用し、前段に設けたマノメータの
水位でもって減圧指示を行なうためにも用いられる。
Example 1 A reaction tube made of Colts was installed in a usual siliconit tube furnace, and the reaction tube was sealed at both ends with a rubbed cap and used as a firing furnace for zinc oxide whiskers. Atmosphere gas required for the reaction was supplied from one of the branch pipes and discharged from the branch pipe of the other cap so that the atmosphere in the pipe could be exchanged. Further, a U-shaped pipe serving as a manometer and a water bubbler are connected to the branch pipe on the discharge side via a Teflon tube, and the atmospheric gas in the pipe discharged from the reaction pipe is bubbled through the water to outside the reaction system (furnace). Outside). This bubbler is used not only for confirming that the atmosphere gas is flowing when flowing into the pipe, but also as a water seal on the discharge side when the atmosphere is fixed (still). At this time, the absorption amount (reduction amount) accompanying the reaction of the atmospheric gas components in the reaction tube is also used to give a pressure reduction instruction by the water level of the manometer provided in the preceding stage using the backflow of water in the bubbler.

一方、反応管には、コルツ製の舟形ボートを用い、こ
のボート内に亜鉛粉末を秤量後投入して反応床とした。
On the other hand, a boat made of Colts was used as a reaction tube, and zinc powder was weighed and charged into the boat to form a reaction bed.

実際に反応させる手順は、予め材料の亜鉛粉末を秤量
してコルツ製ボートに入れ、このボートを反応管の端部
に仮置きした。このときの反応管は管状炉の加熱ゾーン
の外に至る十分な管長からなっており、ボートを設置し
た反応管端部は管状炉の加熱ゾーンより十分に遠く離れ
ており、この状態でボート内の亜鉛粉末は炉の加熱によ
る熱的な影響は殆どなく、炉内の加熱ゾーンが反応に必
要な高温に加熱された時にも、ボートの温度は高々200
℃以下となるようにした。また通常の雰囲気流通の時に
は、ボートは反応管内の雰囲気ガス流の上流側の端部に
設置するため、そこでの温度はさらに低くなっていた。
この状態で反応管の両端をキャップで密封し、ボートを
設置した側のキャップの枝管はテフロンチューブを介し
てガス混合壜に接続し、さらにこの混合壜は酸素と窒素
の高圧ボンベにそれぞれ接続した。また流出側のキャッ
プの枝管はマノメータと水バブラーとに接続した。次に
反応に必要な反応管内の雰囲気を合成すべく、酸素ガス
と窒素ガスの流量をそれぞれ調節して反応管内に送入し
た。この合成雰囲気ガス中の酸素濃度は、反応管流出
後、水バブラーより排出した一部を酸素計に導入して測
定した。
In the procedure for actually reacting, zinc powder as a material was weighed in advance and put into a boat made of Colts, and this boat was temporarily placed at the end of the reaction tube. At this time, the reaction tube had a sufficient length to reach the outside of the heating zone of the tubular furnace, and the end of the reaction tube where the boat was installed was sufficiently far away from the heating zone of the tubular furnace. Zinc powder has almost no thermal effect due to the heating of the furnace, and even when the heating zone in the furnace is heated to the high temperature required for the reaction, the temperature of the boat is at most 200.
° C or less. In addition, during normal atmospheric circulation, the temperature of the boat was further reduced because the boat was installed at the upstream end of the atmosphere gas flow in the reaction tube.
In this state, both ends of the reaction tube are sealed with caps, the branch pipe of the cap on the side where the boat is installed is connected to a gas mixing bottle via a Teflon tube, and this mixed bottle is connected to a high-pressure cylinder of oxygen and nitrogen, respectively. did. The outlet branch of the cap was connected to a manometer and a water bubbler. Next, in order to synthesize the atmosphere in the reaction tube required for the reaction, the flow rates of the oxygen gas and the nitrogen gas were respectively adjusted and were fed into the reaction tube. The oxygen concentration in the synthesis atmosphere gas was measured by introducing a part of the gas discharged from the water bubbler after flowing out of the reaction tube into an oxygen meter.

次に反応管を亜鉛金属が蒸発するに十分な温度(800
〜1000℃)まで加温し、反応管の加熱ゾーンが平衡温度
になったことを確認した後に、反応管端のキャップにつ
けられたもう一つの枝管から押し棒を挿入してボートを
加熱ゾーンまで一気に移動した。直後、雰囲気ガス流入
側の接続チューブをピンチコックで閉塞し、反応管内の
雰囲気を固定(静止)した。ここで反応管内の加熱ゾー
ンに挿入されたボート内の亜鉛金属は一気に蒸発温度以
上に加熱され、亜鉛蒸気が急激に発生して反応管内に充
満すると共に、雰囲気ガス中の酸素と酸化反応して数分
たたずしてボート内及び反応管内に白色の酸化亜鉛粉末
が生成した。この時、下流側の炉外で接続した水バブラ
ーからは上流側へ水が逆流し、その前段に設置接続した
U字管マノメータ内に流入し、平衡位置で安定したのを
確認した後に、計測して反応管内の減圧分を測定した。
この反応管の減圧分は、亜鉛金属と雰囲気中の酸素とが
反応することによる雰囲気中の酸素分圧の減圧に相当す
るものであって、反応に寄与した酸素量を算出できるも
のである。
The reaction tube is then heated to a temperature sufficient to evaporate the zinc metal (800
(1000 ℃), and after confirming that the heating zone of the reaction tube has reached the equilibrium temperature, insert the push rod from the other branch tube attached to the cap at the end of the reaction tube to heat the boat to the heating zone. I moved all at once. Immediately after, the connection tube on the atmosphere gas inflow side was closed with a pinch cock, and the atmosphere in the reaction tube was fixed (stationary). Here, the zinc metal in the boat inserted into the heating zone in the reaction tube is heated at a stretch above the evaporating temperature, and zinc vapor is rapidly generated and fills the reaction tube, and at the same time, reacts with oxygen in the atmospheric gas by an oxidation reaction. After several minutes, white zinc oxide powder was formed in the boat and the reaction tube. At this time, after the water flows backward from the water bubbler connected outside the furnace on the downstream side to the upstream side, it flows into the U-tube manometer installed and connected in front of it, and after confirming that it has stabilized at the equilibrium position, measurement Then, the reduced pressure in the reaction tube was measured.
The reduced pressure in the reaction tube corresponds to the reduction in the oxygen partial pressure in the atmosphere due to the reaction between the zinc metal and the oxygen in the atmosphere, and the amount of oxygen that has contributed to the reaction can be calculated.

以上の手順によって反応管内に生成された酸化亜鉛粉
末は反応管より取り出した後に、走査電子顕微鏡で外観
を観察し、テトラポッド形状の粉体であるととその形状
の大きさ及び分布を計測した。また同時にボートの底に
は若干量の黄白色の粉体を生成されるが、このものを走
査電子顕微鏡で観察したところテトラポッド状の形状を
呈さず、いわゆる粒状結晶の集合体で団塊状物であるこ
とが判った。
After the zinc oxide powder generated in the reaction tube by the above procedure was taken out from the reaction tube, the appearance was observed with a scanning electron microscope, and when the powder was a tetrapod-shaped powder, the size and distribution of the shape were measured. . At the same time, a small amount of yellow-white powder is formed at the bottom of the boat, but when observed with a scanning electron microscope, it does not take the shape of a tetrapod, but is an aggregate of so-called granular crystals, It turned out to be.

本実施例によるテトラポッド状酸化亜鉛結晶の生成に
おいては、材料の亜鉛粉末量を一定として、反応管内の
反応前の雰囲気中の酸素濃度を第1表に示すとおり変え
て、それぞれの濃度条件の時に生成されるテトラポッド
状酸化亜鉛の収量(投入した亜鉛金属量に対するテトラ
ポッド状酸化亜鉛粉体量を百分率で表示)と生成したテ
トラポッド状結晶の大きさの分布をテトラポッド形状の
針状部の長さ(テトラポッドの基底部から針状部の先端
までの長さ)分布で表わした最大値から最小値と、分布
全体の中心値、そのほか反応終了直後の雰囲気中の酸素
濃度を第1表に記した。またここで生成したテトラポッ
ド状ウイスカの大きいもの及び小さいものの典型を電子
顕微鏡写真でそれぞれ第1図及び第2図に、またテトラ
ポッド状とならない粒状結晶の典型を電子顕微鏡写真で
第3図に示した。
In the production of the tetrapod-like zinc oxide crystal according to the present embodiment, the oxygen concentration in the atmosphere before the reaction in the reaction tube was changed as shown in Table 1 while keeping the amount of zinc powder of the material constant, and the respective concentration conditions were changed. The distribution of the tetrapod-like zinc oxide produced at that time (the amount of the tetrapod-like zinc oxide powder with respect to the amount of zinc metal charged is expressed as a percentage) and the distribution of the size of the tetrapod-like crystal produced are shown in the shape of a tetrapod-like needle. Length (length from the base of the tetrapod to the tip of the needle) from the maximum value to the minimum value, the central value of the entire distribution, and the oxygen concentration in the atmosphere immediately after the end of the reaction. The results are shown in Table 1. Also, typical examples of the large and small tetrapod-like whiskers generated here are shown in FIG. 1 and FIG. 2 by electron micrographs, respectively, and typical examples of granular crystals that do not become tetrapod-like are shown in FIG. 3 by electron micrographs. Indicated.

実施例2 実施例1と同じ反応系を用い、反応手順のみ以下のと
おりとした。即ち、予め材料の亜鉛金属粉末を秤量し、
コルツ製ボードに入れ、このボートを反応管の端部に設
置した。この後、反応管の両端をキャップで密封し、決
められた酸素濃度からなる雰囲気ガスを流通した。反応
管内の雰囲気ガスの酸素濃度が安定したことを確認した
後に、反応炉を加熱し、反応管の加熱ゾーンの温度が平
衡状態となった後に、一気に加熱ゾーンまで挿入し、た
だちに雰囲気ガスの送入を停止した。その後決められた
時間の後に再び決められた酸素濃度でなる雰囲気ガスを
流通し反応を継続した。反応終了後反応管内に生成した
酸化亜鉛粉末を取り出し、形状の確認をした。
Example 2 Using the same reaction system as in Example 1, only the reaction procedure was as follows. That is, the zinc metal powder of the material is weighed in advance,
The boat was placed on a board made of Colts, and the boat was placed at the end of the reaction tube. Thereafter, both ends of the reaction tube were sealed with caps, and an atmosphere gas having a predetermined oxygen concentration was passed. After confirming that the oxygen concentration of the atmosphere gas in the reaction tube was stabilized, the reactor was heated, and after the temperature of the heating zone of the reaction tube reached an equilibrium state, the reactor was immediately inserted into the heating zone, and immediately the atmosphere gas was sent. Stopped entering. Thereafter, after a predetermined time, an atmosphere gas having a predetermined oxygen concentration was passed again to continue the reaction. After the reaction was completed, the generated zinc oxide powder was taken out of the reaction tube, and the shape was confirmed.

ここで実施した反応前の流通雰囲気中の酸素濃度と、
ガスの流通を停止した時間、そして再び流通した雰囲気
中の酸素濃度とこれらの条件で生成したウイスカの形状
観察の結果を第2表にまとめた。
The oxygen concentration in the flowing atmosphere before the reaction performed here,
Table 2 summarizes the time during which the gas flow was stopped, the oxygen concentration in the flowed atmosphere again, and the shape observation results of the whiskers generated under these conditions.

実施例3 実施例1と同じ反応系を用い、反応手順ならびに反応
条件を以下のとおりとした。即ち、予め材料の亜鉛金属
粉末を秤量し、コルツ製ボートに入れ、このボートを反
応管の端部に設置した。この後、反応管の両端をキャッ
プで密封し、空気を送入し、反応管内を大気雰囲気とし
た。ここで送入流量(流速)を変えた時のウイスカの生
成への影響について調べた。また、雰囲気の流通条件と
して、実施例2の場合と同様に、反応初期の或時間は静
止雰囲気(流通を止めた)とし、その後、再び流通させ
た場合と、反応開始から完了まで定常の流通雰囲気で行
なう場合について行なった。この結果は第3表にまとめ
た。
Example 3 Using the same reaction system as in Example 1, the reaction procedure and reaction conditions were as follows. That is, a zinc metal powder as a material was weighed in advance and put into a boat made of Colts, and this boat was placed at an end of a reaction tube. Thereafter, both ends of the reaction tube were sealed with caps, air was supplied, and the inside of the reaction tube was set to an atmospheric atmosphere. Here, the influence on the formation of whiskers when the flow rate (flow velocity) was changed was examined. As in the case of Example 2, the flow conditions of the atmosphere were a static atmosphere (the flow was stopped) for a certain period of time at the beginning of the reaction, and then the flow was resumed. The test was performed in the case where the test was performed in an atmosphere. The results are summarized in Table 3.

実施例4 大口径のコルツ製反応管の中空同心に小口径の耐熱無
機繊維質でなる主反応管を配置し、この反応管の一端
(雰囲気ガス流通下流側)を同質材で閉塞し、他端は同
質材でなるキャップで蓋ができるようにした。一方、外
側の反応管の両端部は実施例1と同じ構成でかつ同じ付
加器具を接続した。この反応管を用いての手順は、実施
例2の場合と殆ど同じであるが、材料の亜鉛粉末を入れ
たコルツ製ボートは外側の反応管のキャップを外し、さ
らに主反応管のキャップも外した上で、主反応管の端部
に設置した。しかる後に、外側反応管に予め酸素濃度を
調整した窒素バランガスを流通し、主反応管内の加熱ゾ
ーンの温度が平衡に達したことを確認した後に、押し棒
で外部よりボートを加熱ゾーンまで押し込み、直ちに主
反応管の端部のキャップをして密封して反応させた。
Example 4 A main reaction tube made of a small-diameter heat-resistant inorganic fiber was arranged concentrically with the hollow of a large-diameter Colts reaction tube, and one end of the reaction tube (downstream of the atmosphere gas flow) was closed with a homogeneous material. The end was made to be able to cover with a cap made of the same material. On the other hand, both ends of the outer reaction tube had the same configuration as in Example 1 and connected the same additional equipment. The procedure using this reaction tube is almost the same as that of Example 2, except that the boat made of Colts containing zinc powder as the material removes the cap of the outer reaction tube and also removes the cap of the main reaction tube. Then, it was installed at the end of the main reaction tube. Thereafter, a nitrogen balun gas whose oxygen concentration has been adjusted in advance is passed through the outer reaction tube, and after confirming that the temperature of the heating zone in the main reaction tube has reached equilibrium, the boat is pushed from the outside to the heating zone with a push rod, Immediately, the end of the main reaction tube was capped and sealed to react.

この時主反応管の外周を流通する雰囲気の酸素濃度を
変えて、生成するウイスカの収率と形状について調べ
た。これらの結果は第4表にまとめた。
At this time, the oxygen concentration of the atmosphere flowing around the outer periphery of the main reaction tube was changed, and the yield and shape of the whisker formed were examined. These results are summarized in Table 4.

実施例5 通常の箱型電気炉に前面(炉の扉側)のみ開口した箱
型の耐熱鋼製内箱(マッフル)を配置した。このマッフ
ルには開口面と対向する面に、炉の外部より新気(雰囲
気ガス)を送入するための管が溶接され、一方開口面に
はその開口縁部に鋼製のフランジを設け、かつこのフラ
ンジ面全周に耐熱不織布で成る耐熱シールを貼付けて、
炉の扉内面と密着して閉扉できるようにした。このシー
ルによるマッフル内部の密閉度は、わずかなマッフル内
外の圧力差では通気しないが、マッフル内部の加圧(外
部よりの新気ガスの送入による加圧)に対しては流出排
気が可能な程度となっている。このため、定常通気状態
では、このマッフル炉はいわゆる流通炉と考えられ、実
施例2〜3におけるものと同等に雰囲気制御が可能であ
る。一方、材料の亜鉛金属粉末は耐腐蝕性の皿の底面に
一様な厚さで撒き、マッフル内雰囲気の酸素濃度と温度
が安定した後に、炉の扉を開け、すばやくマッフル内に
挿入設置し、直ちに炉の扉を閉めて反応させた。マッフ
ル内の雰囲気設定は実施例2〜3に相当した条件を用い
たところ、生成したウイスカの収量と形成分布はほぼ実
施例2〜3に相応したものとなった。
Example 5 A box-shaped heat-resistant steel inner box (muffle) having only a front surface (furnace door side) opened was arranged in a normal box-type electric furnace. A pipe for feeding fresh air (atmospheric gas) from the outside of the furnace is welded to a surface opposite to the opening surface of the muffle, and a steel flange is provided on an opening edge of the opening surface, And stick a heat-resistant seal made of heat-resistant non-woven fabric on the entire circumference of this flange surface,
The door can be closed in close contact with the inner surface of the furnace door. The seal inside the muffle by this seal does not ventilate even with a slight pressure difference between the inside and outside of the muffle, but it is possible to discharge and exhaust the pressurized inside the muffle (pressurized by feeding fresh gas from outside). It has become about. For this reason, in a steady ventilation state, this muffle furnace is considered to be a so-called flow furnace, and the atmosphere can be controlled in the same manner as in Examples 2 and 3. On the other hand, the zinc metal powder as the material is spread on the bottom surface of the corrosion-resistant dish in a uniform thickness, and after the oxygen concentration and the temperature of the atmosphere in the muffle have stabilized, the furnace door is opened and quickly inserted into the muffle. The furnace door was immediately closed to react. When the atmosphere in the muffle was set under the conditions corresponding to those of Examples 2 and 3, the yield and formation distribution of the generated whiskers almost corresponded to those of Examples 2 and 3.

実施例6 壁面材が多孔質な耐熱無機繊維質で構成された箱型電
気炉(但し外函は鋼製で先の多孔質函体とは大気の空間
がある)を用い、特にこの炉の内には実施例4で用いた
ような鋼製のマッフルは用いず、また炉内への新気挿入
口や管も配設しいない。この炉を用いての反応手順は実
施例5と全く同じとした。ここでの反応の変量は材料亜
鉛金属粉末の仕込み量のみで、炉内の雰囲気は炉壁材を
通しての自然換気によっている。この炉壁材を通じての
換気は別の検討の結果、炉内の亜鉛金属粉末が加熱蒸発
し、炉内雰囲気中の酸素と酸化反応で酸素が消費される
ことに伴い、炉内圧が低下するため、炉内外の圧力差を
生じ炉外の大気が炉内へ多孔質な壁材を通じて流入する
ことが確認されている。ここで材料亜鉛金属粉末の仕込
み量に対する生成したウイスカの収率と形状の結果は第
5表にまとめた。なお、亜鉛粉末の仕込み量は炉の気容
積に対する値で記した。
Example 6 A box-type electric furnace whose wall material is made of a porous heat-resistant inorganic fiber material (however, the outer case is made of steel and the porous case has an air space) is used. No steel muffle as used in Example 4 was used therein, and neither a fresh air inlet nor a pipe was provided in the furnace. The reaction procedure using this furnace was exactly the same as in Example 5. The variable of the reaction here is only the charged amount of the material zinc metal powder, and the atmosphere in the furnace depends on natural ventilation through the furnace wall material. As a result of another study, the ventilation through the furnace wall material showed that the zinc metal powder in the furnace was heated and evaporated, and the oxygen in the furnace atmosphere was consumed by the oxidation reaction, thereby reducing the furnace pressure. It has been confirmed that a pressure difference occurs between the inside and outside of the furnace, and the atmosphere outside the furnace flows into the furnace through a porous wall material. Here, the results of the yield and the shape of the whisker formed with respect to the charged amount of the material zinc metal powder are summarized in Table 5. In addition, the charged amount of zinc powder was described as a value with respect to the air volume of the furnace.

実施例7 実施例1で用いたと同じ反応系を用い、その手順とし
てはここではまず反応管の加熱ゾーンの中央に材料の入
っていない空のコルツ製ボートを設置し、反応管の両端
をキャップで密封して反応管内に雰囲気ガスを流通し
た。一方、上流側のキャップには予め別に枝管が設けて
あり、この枝管を貫通してコルツ製の直管が反応管の加
熱ゾーン中央に設置されているボート直上に届くよう
に、また他端が反応管より外側の十分離れたところに位
置するだけの長さを持たせ、しかもこの外部の端にはT
次の枝管を接続し、この直管の中心線方向の開口部は直
接窒素ガスボンベと流量計を介して接続し、また中心線
と垂直な上向き開口部は材料を入れる亜鉛金属粉末溜り
壜と接続した。反応管内の加熱ゾーンの温度が安定する
のを確認した後に、材料供給管に窒素ガスウを流し、亜
鉛粉末を溜り壜より供給管に定量供給し、窒素ガス流に
乗せて反応管内のボートに連続的に落下供給して反応さ
せた。この時雰囲気中の酸素濃度と雰囲気流通量、そし
て材料の供給速度によって、生成するウイスカの収量と
テトラポッド状酸化亜鉛結晶の形状分布が変わる。これ
らの変動要因による影響は実施例3の結果と良く似てい
たが、全体的には小さめのウイスカが生成する傾向にあ
った。
Example 7 The same reaction system as that used in Example 1 was used. The procedure was as follows. First, an empty Colts boat containing no material was placed at the center of the heating zone of the reaction tube, and both ends of the reaction tube were capped. And the atmosphere gas was passed through the reaction tube. On the other hand, a branch pipe is provided separately in advance on the upstream side cap, and a straight tube made of Colts penetrates this branch pipe so that it reaches directly above the boat installed in the center of the heating zone of the reaction tube. The end should be long enough to be located far enough outside the reaction tube, and T
The following branch pipe is connected, and the opening in the center line direction of this straight pipe is connected directly to the nitrogen gas cylinder via a flow meter, and the upward opening perpendicular to the center line is connected to the zinc metal powder holding bottle for charging the material. Connected. After confirming that the temperature of the heating zone in the reaction tube has stabilized, flow nitrogen gas into the material supply tube, supply zinc powder from the reservoir bottle to the supply tube in a fixed amount, and place it in the nitrogen gas flow to continuously feed the boat in the reaction tube. It was dropped and supplied to react. At this time, the yield of whiskers to be produced and the shape distribution of tetrapod-like zinc oxide crystals change depending on the oxygen concentration in the atmosphere, the amount of flowing atmosphere, and the material supply rate. The effects of these fluctuation factors were very similar to the results of Example 3, but overall there was a tendency for smaller whiskers to form.

実施例8 通常の耐熱、耐腐蝕性材料(磁器やインコネルなど)
のトンネル型マッフルより成る電気炉の両端部に、マッ
フル内に外気(大気)が流入するのを防ぐ目的で窒素流
カーテンを設け、かつマッフル内の雰囲気を制御するた
めの雰囲気成分ガスの送入口と排出口を適切な位置に配
設した。ここで送入口は合成雰囲気送出装置に接続さ
れ、一方、排出口は大気が逆拡散しないようにした排気
管がつながれている。さらにマッフル底面には耐熱、耐
腐蝕性材料でなるチェーン状もしくはベルト状コンベア
を配設した。このコンベアはマッフル炉外に設けた装置
により駆動される。このトンネル炉を用いて酸化亜鉛ウ
イスカを製造する手順は以下のようにした。
Example 8 Normal heat and corrosion resistant materials (porcelain, Inconel, etc.)
At the both ends of an electric furnace comprising a tunnel type muffle, a nitrogen flow curtain is provided for the purpose of preventing outside air (atmosphere) from flowing into the muffle, and an inlet for an atmosphere component gas for controlling the atmosphere inside the muffle. And the outlet was arranged in an appropriate position. Here, the inlet is connected to a synthetic atmosphere sending device, while the outlet is connected to an exhaust pipe that prevents the back diffusion of the atmosphere. Further, a chain-shaped or belt-shaped conveyor made of a heat-resistant and corrosion-resistant material is provided on the bottom surface of the muffle. This conveyor is driven by a device provided outside the muffle furnace. The procedure for producing zinc oxide whiskers using this tunnel furnace was as follows.

合成した雰囲気ガスを炉内に流入し、炉内雰囲気が決
められた成分組成となった後に、電気炉に通電し、マッ
フルを加熱して、炉内の雰囲気温度が決められた温度に
昇温したことを確認する。ここで、耐熱、耐腐蝕性材料
でなる皿状容器を複数個準備し、これらの底面に決めら
れた量の亜鉛粉末を一様な厚さで撒いたのち、前のコン
ベアのトンネル炉入口前方の部分に整列した。この後、
コンベアを決められた速度で動かし、前の材料入りの容
器の列を順次炉内に輸送した。この時のコンベアの駆動
速度は、一つの材料容器に撒かれた亜鉛粉末のすべて
が、完全に酸化亜鉛に変換されるに十分な時間、炉内に
留まっていられる速さに調節される。また炉内の雰囲気
は実施例3とほぼ同様な成分で、組成はトンネル炉の内
部に入っている材料全量を実施例3における材料投入量
に相応させた組成となるようにした。ここで当然のこと
として、最初に炉内に導入される容器から炉内全域に複
数個の容器が導入されるまでは、炉内の亜鉛粉末量は増
加することになる。このためこの時期の雰囲気ガスの組
成は予め決められたプログラムに従って変化させること
になる。そして、一旦、炉内全域を材料容器が占めるよ
うになってからは、一様な組成の雰囲気で連続に新しい
材料容器に炉入口より輸送してゆくことができる。また
実施例1あるいは2の条件の反応をするには、材料容器
の輸送を断続的に行なう。即ち、容器の炉内送入直前に
炉内を新気交換しておき、容器内の材料がすべて酸化亜
鉛に成った後、容器の炉よりの排出と共に、炉内雰囲気
の排気を行なう、というサイクルを断続的にすることに
より可能となる。この方式により生成したテトラポッド
状酸化亜鉛ウイスカは、やはり実施例1,2,3のものとよ
く似た形状と分布をしていた。この場合、製造条件(温
度,雰囲気組成,雰囲気流通速度,コンベア駆動速度,
材料亜鉛金属の投入量など)を精確に維持することによ
って、大量にテトラポッド状酸化亜鉛ウイスカを製造す
ることができる。
The synthesized atmosphere gas flows into the furnace, and after the atmosphere in the furnace reaches the specified composition, the electric furnace is energized, the muffle is heated, and the temperature of the atmosphere in the furnace is raised to the predetermined temperature. Make sure that you do. Here, a plurality of dish-shaped containers made of a heat-resistant and corrosion-resistant material are prepared, and a predetermined amount of zinc powder is scattered on the bottom surfaces of the containers in a uniform thickness. Lined up. After this,
The conveyor was moved at a determined speed and the rows of containers with previous materials were transported sequentially into the furnace. The driving speed of the conveyor at this time is adjusted so that all of the zinc powder scattered in one material container can remain in the furnace for a time sufficient to be completely converted to zinc oxide. The atmosphere in the furnace was substantially the same as that in Example 3, and the composition was such that the total amount of the material contained in the tunnel furnace corresponded to the material input amount in Example 3. Here, as a matter of course, the amount of zinc powder in the furnace increases until a plurality of vessels are introduced from the vessel initially introduced into the furnace to the entire area of the furnace. Therefore, the composition of the atmosphere gas at this time is changed according to a predetermined program. After the material container once occupies the whole area in the furnace, the material can be continuously transported from the furnace inlet to a new material container in an atmosphere having a uniform composition. In order to carry out the reaction under the conditions of Example 1 or 2, the material containers are transported intermittently. That is, fresh air is exchanged in the furnace immediately before the container is fed into the furnace, and after all the material in the container has been converted into zinc oxide, the atmosphere in the furnace is exhausted together with the discharge of the container from the furnace. This is made possible by making the cycle intermittent. The tetrapod-shaped zinc oxide whiskers produced by this method had a shape and distribution very similar to those of Examples 1, 2, and 3. In this case, the manufacturing conditions (temperature, atmosphere composition, atmosphere circulation speed, conveyor driving speed,
By precisely maintaining the input amount of the material zinc metal, etc.), a large amount of tetrapod-like zinc oxide whiskers can be produced.

さらに、前のマッフルを実施例4〜6で用いた多孔質
な材料で構成し、さらにその外側にこのマッフルを覆い
囲むように非多孔質な材料でなる2重マッフル構造とす
ることによって、実施例4〜6と同じような効果がある
連続炉が可能であることも確認した。この時には前の場
合のように、炉内全域に材料が入っていない時に特別な
雰囲気制御をすることなく、炉内にある材料の反応量に
応じた量の新気がマッフル壁材を通じて自然に補給され
るため、複雑な雰囲気制御が無用となる利点がある。
Further, the previous muffle is constituted by the porous material used in Examples 4 to 6, and the outside is further provided with a double muffle structure made of a non-porous material so as to cover the muffle. It was also confirmed that a continuous furnace having the same effect as in Examples 4 to 6 was possible. At this time, as in the previous case, when there is no material in the entire furnace, no special atmosphere control is performed, and the amount of fresh air according to the reaction amount of the material in the furnace naturally flows through the muffle wall material. Since it is supplied, there is an advantage that complicated atmosphere control becomes unnecessary.

発明の効果 本発明の効果は、実施例1〜7における結果に明らか
な通り、反応時の雰囲気中の酸素濃度、即ち、反応前の
雰囲気中の酸素量より、反応によって消費された、また
は消費されつつある酸素量を差し引いた雰囲気中に残存
している酸素量、もしくは酸素濃度によって、その他の
反応条件が同じにもかかわらずテトラポッド状ウイスカ
の形状(大きさ)の分布と生成の収率を変えられること
にある。このことは、ウイスカがその用途として、各種
のマトリックス材(たとえば、セラミックス,プラスチ
ックス,ゴム,ガラスそして金属など)に分散して、複
合材の添加物として用いられることが多いが、この場合
マトリックス材の種類によって、その複合効果を発揮す
るのに望ましい形状的な大きさが必然的にあり、この意
味において、ウイスカの生成にあたっては、大きさの分
布が自由にできることは製造上大変重要な課題であっ
た。本発明によれば、より大きなウイスカ(60〜400μ
mで分布中心が50μm以上)を生成するには、反応時の
雰囲気中の残存酸素濃度が10%以下となるように、さら
に望ましくは、3〜5%以下となるように、反応開始前
の雰囲気もしくは流通させる雰囲気ガス中の酸素濃度を
仕込む材料の亜鉛金属粉末量との関係から決めることに
より可能することができるのである。また逆に、より小
さなウイスカ(1〜100μmで分布中心が50μm以下)
を生成するには、反応時の残存酸化濃度が20%〜60%
に、さらに望ましくは30〜50%となるように、反応開始
前の雰囲気もしくは流通させる雰囲気ガス中の酸素濃度
を決めることにより可能となるものである。一方、実施
例1におけるような閉鎖系での反応によれば、反応開始
前の系内の酸素分圧と反応終了後の系内の酸素分圧とか
ら仕込んだ材料の亜鉛粉末を全量酸化亜鉛にするのに必
要な酸素量に対する酸素過剰率を算出した結果、より大
きなウイスカを生成するには、酸素過剰率が負、即ち酸
素不足状態とすることが必要で、より小さいウイスカを
生成するには、酸素過剰率が正、詳しくは20〜50%と過
剰することによって、形状を制御することができるもの
である。
Effect of the Invention As is clear from the results in Examples 1 to 7, the effect of the present invention is that the oxygen concentration in the atmosphere at the time of the reaction, that is, the amount of oxygen in the atmosphere before the reaction, The distribution of the shape (size) of tetrapod-like whiskers and the yield of formation, despite the other reaction conditions being the same, depending on the amount of oxygen remaining in the atmosphere from which the amount of oxygen being removed is subtracted, or the oxygen concentration Can be changed. This means that whiskers are often used as an additive in composite materials by dispersing them in various matrix materials (for example, ceramics, plastics, rubber, glass, and metals). Depending on the type of material, there is inevitably a desirable geometrical size to exert its combined effect. In this sense, in producing whiskers, being able to freely distribute the size is a very important issue in manufacturing. Met. According to the present invention, larger whiskers (60-400 μ
m, the distribution center is 50 μm or more) before the reaction is started so that the residual oxygen concentration in the atmosphere during the reaction is 10% or less, more preferably 3 to 5% or less. This can be achieved by determining the oxygen concentration in the atmosphere or the atmosphere gas to be circulated from the relationship with the amount of zinc metal powder of the material to be charged. Conversely, smaller whiskers (1 to 100 µm with a distribution center of 50 µm or less)
To produce, the residual oxidation concentration during the reaction is 20% ~ 60%
Further, it is more desirably possible to determine the oxygen concentration in the atmosphere before the start of the reaction or in the flowing atmosphere gas so that the concentration becomes 30 to 50%. On the other hand, according to the reaction in a closed system as in Example 1, the zinc powder of the material charged from the oxygen partial pressure in the system before the start of the reaction and the oxygen partial pressure in the system after the end of the reaction was completely converted to zinc oxide. As a result of calculating the oxygen excess ratio with respect to the amount of oxygen necessary to produce a larger whisker, the oxygen excess ratio must be negative, that is, in an oxygen-deficient state, to generate a larger whisker. The shape can be controlled by increasing the excess oxygen ratio to a positive value, specifically, from 20 to 50%.

本発明では、以上のような反応炉内の雰囲気を制御す
ることによって、生成するウイスカの形状を制御する製
造方法を提供することにあるが、さらに、このような微
妙な雰囲気制御を行なうための具体的な方法として、回
分式(密閉式)炉、また流通式炉の雰囲気濃度のきめ方
と経時的に濃度を変える時のきめ方について、実施例を
もって説明した。
In the present invention, it is an object of the present invention to provide a manufacturing method for controlling the shape of a whisker to be generated by controlling the atmosphere in the reaction furnace as described above. As a specific method, how to determine the atmospheric concentration of a batch type (closed type) furnace and a flow type furnace and how to determine the concentration when the concentration is changed with time have been described in Examples.

もう一つの本発明における具体的な製造方法は、多孔
質で通気性を有する炉壁で構成された反応炉を用いる方
法であり、実施例4と6で具体的に説明した。本来反応
炉にあっては、反応条件を制御しやすくするため、本発
明の他の実施例のように、反応進行中に系外からの反応
成分(この場合は酸素)が無秩序に変動することを避け
るため、密閉炉もしくは人的に制御された雰囲気流通炉
を用いるのが常である。しかるに、ここでは大気中もし
くは合成された雰囲気中に、通気性を有する炉壁で構成
された炉を設置し、反応の進行に伴って必要な酸素を炉
外の雰囲気より自然に取り入れて、反応を完結するもの
である。これは、本発明の酸化亜鉛ウイスカの生成反応
が酸化反応であり、かつ実施例1に見られるように、反
応開始前の炉内の雰囲気中の酸化が反応の進行と伴い消
費されて、その結果炉内の圧力が減圧状態と成ることか
ら、この減圧分を補う形で炉外との圧力差でもって炉壁
を通じて新気(含酸素)の導入がスムーズに行なわれる
ことにある。この時炉外の雰囲気中の酸素濃度を、炉内
に仕込んだ材料の量はさらには酸化反応の反応速度(炉
の温度に依存する)に見合うように設定しておくことに
よって、生成するウイスカの収率や形状分布をも調整で
きる。この方法を用いることによって、人的な雰囲気制
御では追従不可能な速度の速い反応の場合でも、容易に
追従可能であるという技術的な効果以上に、極めて単純
な構成で、必要な時に必要な量を自動的に制御しうると
いう極めて効果の大きいものである。
Another specific manufacturing method according to the present invention is a method using a reactor constituted by a porous and air-permeable furnace wall, and has been specifically described in Examples 4 and 6. Originally, in a reaction furnace, the reaction components (in this case, oxygen) from outside the system fluctuate randomly during the progress of the reaction, as in other embodiments of the present invention, in order to facilitate control of the reaction conditions. In order to avoid this, it is usual to use a closed furnace or an atmosphere circulation furnace controlled by humans. However, here, a furnace composed of air-permeable furnace walls was installed in the atmosphere or in a synthesized atmosphere, and the necessary oxygen was naturally taken in from the atmosphere outside the furnace as the reaction progressed, Is to be completed. This is because the formation reaction of the zinc oxide whisker of the present invention is an oxidation reaction, and as shown in Example 1, the oxidation in the atmosphere in the furnace before the start of the reaction is consumed with the progress of the reaction. As a result, the pressure in the furnace is reduced in pressure, so that the fresh air (containing oxygen) is smoothly introduced through the furnace wall with a pressure difference from the outside of the furnace to compensate for the reduced pressure. At this time, the whisker generated by setting the oxygen concentration in the atmosphere outside the furnace so that the amount of the material charged in the furnace further matches the reaction rate of the oxidation reaction (depending on the furnace temperature). Can also adjust the yield and shape distribution. By using this method, even in the case of a reaction with a high speed that cannot be followed by human atmosphere control, it has an extremely simple configuration, more than the technical effect of being able to follow easily, and is necessary when necessary. This is extremely effective because the amount can be controlled automatically.

実施例においては、最も典型的な例のいくつかについ
て説明したが、制御の方法や通気性炉壁の構成とその材
質については、実施例に限られたものでなく、先に説明
した雰囲気中の酸素量の条件を満たすものであれば、本
発明の効果を損なうものではない。
In the embodiment, some of the most typical examples have been described. However, the control method and the configuration of the permeable furnace wall and the material thereof are not limited to those in the embodiment, and are not limited to the atmosphere described above. The effect of the present invention is not impaired as long as the condition of the oxygen content is satisfied.

【図面の簡単な説明】[Brief description of the drawings]

第1図,第2図及び第3図はそれぞれ異なる条件で得ら
れた酸化亜鉛の結晶構造を示す電子顕微鏡写真である。
FIG. 1, FIG. 2 and FIG. 3 are electron micrographs showing the crystal structure of zinc oxide obtained under different conditions.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 英行 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 北野 基 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 佐藤 隆重 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Hideyuki Yoshida 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. Inside the company (72) Inventor Takashige Sato 1006 Kazuma Kadoma, Kadoma City, Osaka Inside Matsushita Electric Industrial Co., Ltd.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多孔質な炉壁を有し、炉内の酸化反応によ
る減圧により新気を炉壁外より炉壁を通して導入する炉
内において亜鉛粉末を焼成することを特徴とする酸化亜
鉛ウイスカの製造法。
A zinc oxide whisker characterized by firing zinc powder in a furnace having a porous furnace wall and introducing fresh air through the furnace wall from outside the furnace wall by decompression due to an oxidation reaction in the furnace. Manufacturing method.
【請求項2】炉壁が非通気性の炉内において、酸素分圧
とその時間的制御をした酸素を含む雰囲気を流通して亜
鉛粉末を焼成することを特徴とする酸化亜鉛ウイスカの
製造法。
2. A process for producing zinc oxide whiskers, characterized in that a zinc powder is fired in an oven having a non-breathable furnace wall through an atmosphere containing oxygen with oxygen partial pressure and its time controlled. .
【請求項3】酸化反応時の雰囲気中の酸素濃度が定濃度
となるように、外部より酸素を調節流入させる雰囲気流
通式反応系とした請求項1または2記載の酸化亜鉛ウイ
スカの製造法。
3. The method for producing a zinc oxide whisker according to claim 1, wherein the reaction system is an atmosphere flow type reaction system in which oxygen is adjusted and supplied from the outside so that the oxygen concentration in the atmosphere during the oxidation reaction becomes constant.
【請求項4】酸化反応完結後の残存酸素濃度が定濃度と
なるように、反応開始前の酸素濃度を調節した雰囲気回
分式反応系とした請求項1または2記載の酸化亜鉛ウイ
スカの製造法。
4. The process for producing zinc oxide whiskers according to claim 1, wherein an atmosphere batch reaction system is used in which the oxygen concentration before the start of the reaction is adjusted so that the residual oxygen concentration after the completion of the oxidation reaction is constant. .
【請求項5】酸化反応開始直後より雰囲気中の残存酸素
濃度が0%になるまでの時間、雰囲気を静止し、その後
に雰囲気を流通する制御を雰囲気ステップ式反応を用い
た請求項1または2記載の酸化亜鉛ウイスカの製造法。
5. The method according to claim 1, wherein the atmosphere is stopped for a period of time from immediately after the start of the oxidation reaction until the residual oxygen concentration in the atmosphere becomes 0%, and then the atmosphere is circulated using an atmosphere step type reaction. A method for producing the zinc oxide whisker described in the above.
JP63324076A 1988-12-16 1988-12-22 Manufacturing method of zinc oxide whisker Expired - Fee Related JP2584033B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63324076A JP2584033B2 (en) 1988-12-22 1988-12-22 Manufacturing method of zinc oxide whisker
PCT/JP1989/001246 WO1990007022A1 (en) 1988-12-16 1989-12-13 Production method of zinc oxide whisker
KR1019900701787A KR930007857B1 (en) 1988-12-16 1989-12-13 Production method of zinc-oxide whisker
US07/566,475 US5158643A (en) 1988-12-16 1989-12-13 Method for manufacturing zinc oxide whiskers
DE68924646T DE68924646T2 (en) 1988-12-16 1989-12-13 METHOD FOR PRODUCING ZINCOXIDE WHISKERS.
EP90900992A EP0407601B1 (en) 1988-12-16 1989-12-13 Production method of zinc oxide whisker
CA002005737A CA2005737C (en) 1988-12-16 1989-12-15 Manufacturing method of zinc oxide whiskers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63324076A JP2584033B2 (en) 1988-12-22 1988-12-22 Manufacturing method of zinc oxide whisker

Publications (2)

Publication Number Publication Date
JPH02167899A JPH02167899A (en) 1990-06-28
JP2584033B2 true JP2584033B2 (en) 1997-02-19

Family

ID=18161880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63324076A Expired - Fee Related JP2584033B2 (en) 1988-12-16 1988-12-22 Manufacturing method of zinc oxide whisker

Country Status (1)

Country Link
JP (1) JP2584033B2 (en)

Also Published As

Publication number Publication date
JPH02167899A (en) 1990-06-28

Similar Documents

Publication Publication Date Title
KR930007857B1 (en) Production method of zinc-oxide whisker
JP2584033B2 (en) Manufacturing method of zinc oxide whisker
US3399980A (en) Metallic carbides and a process of producing the same
US3023115A (en) Refractory material
JP2584034B2 (en) Manufacturing method of zinc oxide whisker
US5110575A (en) Process for producing sinterable crystalline aluminum nitride powder
Hamada et al. Wüstite (Fe1− x O)–Thermodynamics and crystal growth
Tyutyunnik et al. Lithium hydride single crystal growth by bridgman-stockbarger method using ultrasound
JP2697431B2 (en) Zinc oxide crystal and method for producing the same
US4865832A (en) Molybdenum oxide whiskers and a method of producing the same
Suh et al. Kinetics of gas phase reduction of nickel chloride in preparation for nickel nanoparticles
US7247188B2 (en) Particle producing method and particle producing apparatus
JPH0226834A (en) Manufacture of spherical magnetic material
JP3020668B2 (en) Metal halide gas generating method, film forming method, and film forming apparatus
JPS6172630A (en) Preparation of iron oxide powder for magnetic material
RU117153U1 (en) INSTALLATION FOR PREPARATION OF POWDER ALUMINUM NITRIDE OF HIGH PURITY
JP3000150B1 (en) Metal modification method of inorganic substance using metal carbonyl
JPH0517145A (en) Production of tin dioxide whisker
JPS6250466A (en) Production of article having silicon nitride film
JPS6335600B2 (en)
JPH05179514A (en) Method for producing gas-phase method carbon fiber and device for producing gas-phase method carbon fiber used for the production method
Fedyaeva et al. Peculiarities of Bulk Lead Sample Oxidation in a Water–Oxygen Fluid
JPH0497984A (en) Gaseous mixture supply vessel for vapor growth reaction
US3761306A (en) Process for manufacturing a ternary material
JPH0142741B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees