JPH0226834A - Manufacture of spherical magnetic material - Google Patents

Manufacture of spherical magnetic material

Info

Publication number
JPH0226834A
JPH0226834A JP63177442A JP17744288A JPH0226834A JP H0226834 A JPH0226834 A JP H0226834A JP 63177442 A JP63177442 A JP 63177442A JP 17744288 A JP17744288 A JP 17744288A JP H0226834 A JPH0226834 A JP H0226834A
Authority
JP
Japan
Prior art keywords
powder
flame
oxygen
magnetic material
propane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63177442A
Other languages
Japanese (ja)
Inventor
Masataka Matsuo
正孝 松尾
Kazumi Kurayoshi
和美 倉吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63177442A priority Critical patent/JPH0226834A/en
Publication of JPH0226834A publication Critical patent/JPH0226834A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles

Abstract

PURPOSE:To improve properties or flowing, packing and sintering by melting iron oxide powder and/or iron powder in flame to produce Fe3O4 and cooling it rapidly to form spherical particles. CONSTITUTION:Iron oxide powder or metal iron powder or a mixture of these is introduced with a carrier gas into combustion flame gas. The powder material is molten to produce Fe3O4 under the control of the oxygen concentration in the flame, and then rapidly cooled. Thus, spherical magnetic material excellent in properties of flowing, packing and sintering can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、球状磁性材料の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a spherical magnetic material.

(従来の技術) 純度の高いFeJ<は、FezO3、FeO等の酸化鉄
に比し、磁性に優れ、磁性体として適性がある。
(Prior Art) FeJ<, which has high purity, has excellent magnetism compared to iron oxides such as FezO3 and FeO, and is suitable as a magnetic material.

Fe5O4は天然には磁鉄鉱として産するが、他の酸化
物や不純物等が混入しているため磁性材料として適性が
あるとは云い難く一般に工業的に製造したものが使用さ
れる。
Although Fe5O4 occurs naturally as magnetite, it is difficult to say that it is suitable as a magnetic material because it is contaminated with other oxides and impurities, so industrially produced materials are generally used.

従来のFeJ4の製造方法は、鉄線を空気中で焼くか、
赤熱した鉄に水蒸気を作用させるか、或いはFezO=
を水蒸気を含む水素で還元する方法が採られている。こ
れらの方法はいずれも、原料を加熱するための炉、例え
ば電気炉が必要であり、また雰囲気、処理時間等の制御
を必要とし、しかもバッチ的な処理法のため高コストと
なり、大量生産には不向きでかつ、粉体を処理する場合
はそれらが焼結するので、最終的には粉砕工程を付加せ
ざるを得ないという難点がある。
The conventional manufacturing method for FeJ4 is to bake iron wire in air,
By applying steam to red-hot iron, or by applying FezO=
A method has been adopted in which hydrogen is reduced using water vapor. All of these methods require a furnace, such as an electric furnace, to heat the raw materials, and also require control of the atmosphere, processing time, etc. Moreover, they are batch-type processing methods, resulting in high costs and making it difficult to mass-produce. is unsuitable, and when processing powder, it sinters, so there is a drawback that a pulverization step must be added in the end.

一方、工業窯炉例えば、鋳片加熱炉や熱処理炉では、F
e0−Fe3O4を主組成とするミルスケールが多量に
発生しているが、その有効利用法としては、焼結鉱原料
としてリサイクルするか溶銑予備処理用の脱珪・脱燐材
として使用する程度の範囲にとどまっており、磁性材料
用原料としての適性は充分に生かされていない。
On the other hand, in industrial kilns such as slab heating furnaces and heat treatment furnaces, F
A large amount of mill scale whose main composition is e0-Fe3O4 is generated, but its effective use is to recycle it as a raw material for sinter or to use it as a desiliconization/dephosphorization material for hot metal pretreatment. Therefore, its suitability as a raw material for magnetic materials is not fully utilized.

(発明が解決しようとする課題) 本発明はこのような従来技術の現状に鑑み、原料の加熱
炉を必要とせず、また雰囲気、処理時間等の制御をあま
り考慮することなく、連続的に大量生産方式で安価にし
かも原料として例えば工業窯炉等から多量に発生するミ
ルスケールあるいは鉄製品の切削等を用いて、磁性材料
としての特性に優れた球状磁性材料を製造する方法を提
供することを目的とする。
(Problems to be Solved by the Invention) In view of the current state of the prior art, the present invention has been developed to continuously produce large quantities of raw materials without requiring a heating furnace or without much consideration of controlling the atmosphere, processing time, etc. It is an object of the present invention to provide a method for producing a spherical magnetic material that is inexpensive and has excellent properties as a magnetic material, using mill scale or cutting of iron products, which are generated in large quantities from industrial kilns, as a raw material. purpose.

(課題を解決するための手段) 本発明者は、例えばFe0−Fe3O4を主組成とする
ミルスケールあるいは鉄の切削屑等を強磁性材であるF
e2Ogに変化させることによって磁性材料として使用
できることに着目し、その製造方法として、粉体を容易
に加熱することができる溶射による処理法の検討を行っ
た。この溶射処理法によれば、粉体を溶融温度以上に容
易に加熱することができ、溶融状態では酸素との反応速
度も速いため迅速に組成を変化させることが可能なばか
りでなく、急冷後の粉体は、表面張力で球状化し、製品
としての付加価値も高いものとなる。
(Means for Solving the Problems) The present inventor has developed a method for using ferromagnetic material such as mill scale or iron cutting waste, which has a main composition of Fe0-Fe3O4, for example.
Noting that it can be used as a magnetic material by changing it to e2Og, we investigated a thermal spraying treatment method that can easily heat the powder as a manufacturing method. According to this thermal spraying treatment method, the powder can be easily heated above the melting temperature, and the reaction rate with oxygen is fast in the molten state, so it is not only possible to change the composition quickly, but also to The powder becomes spheroidized due to surface tension and has high added value as a product.

本発明の要旨とするところは、粉状の酸化鉄または金属
鉄の単独またはそれらの混合物を輸送用ガスと共に燃焼
火炎ガス中に投入し、火炎中で溶融すると共にFe、0
4化し、象、冷することを特徴とする球状磁性材料の製
造方法にある。
The gist of the present invention is to introduce powdered iron oxide or metallic iron alone or a mixture thereof together with transport gas into combustion flame gas, melt it in the flame, and melt Fe, 0.
The present invention provides a method for producing a spherical magnetic material, which is characterized in that it undergoes quartzization, cooling, and cooling.

以下、本発明を図面に基づいて詳細に説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

第1図(a)は、本発明による球状磁性材料の製造方法
の実施装置を示す概略図、同図[有])は同実施装置に
おける溶射バーナーの正面図である。
FIG. 1(a) is a schematic diagram showing an apparatus for implementing the method for producing a spherical magnetic material according to the present invention, and FIG. 1(a) is a front view of a thermal spray burner in the same apparatus.

第1図(b)に示す如く、火炎バーナー1の正面には、
二つの同心円周上に配列された火炎孔10の列の間に、
同じく同心円周上に配列された粉体孔11の列がサンド
ウィッチ状に配列されている。
As shown in FIG. 1(b), on the front of the flame burner 1,
Between the rows of flame holes 10 arranged on two concentric circles,
Similarly, rows of powder holes 11 arranged on concentric circles are arranged in a sandwich shape.

火炎孔10からは、酸素−プロパンによる火炎2が、粉
体孔11からは酸化鉄粉末3が噴出する。
A flame 2 of oxygen-propane is ejected from the flame hole 10, and iron oxide powder 3 is ejected from the powder hole 11.

酸化鉄粉末は、ホッパー5に貯蔵されており、例えば窒
素ガスと共に粉体輸送管4を通して溶射バーナー1に供
給される。一方、支燃ガス及び燃料ガスとしては、酸素
及びプロパン(またはアセチレン)が、制御語W8を経
由して、酸素供給管6、プロパン供給管7を通じて溶射
バーナー1に供給される。酸素供給管6.プロパン供給
管7は溶射バーナー1の内部で合流しているので、酸素
−プロパンの混合気体が生成し、この混合気体が火炎孔
10より噴出し、火炎2を形成する。形成した火炎2の
熱により、窒素ガスと共に噴出した酸化鉄粉末3が溶融
し、火炎2中に残存している酸素と反応し、Fe:+0
4に変化すると同時に表面張力によって球状化する。球
状化した酸化鉄粉末は冷却容器13内の水12中に落下
して急冷原価され、この凝固した酸化鉄粉末を回収する
ことによって大量の球状磁性粉末を得ることができる。
The iron oxide powder is stored in a hopper 5, and is supplied to the thermal spray burner 1 through a powder transport pipe 4 together with, for example, nitrogen gas. On the other hand, as combustion supporting gas and fuel gas, oxygen and propane (or acetylene) are supplied to the thermal spray burner 1 through the oxygen supply pipe 6 and the propane supply pipe 7 via the control word W8. Oxygen supply pipe 6. Since the propane supply pipes 7 merge inside the thermal spray burner 1, a mixed gas of oxygen and propane is generated, and this mixed gas is ejected from the flame hole 10 to form the flame 2. Due to the heat of the flame 2 formed, the iron oxide powder 3 ejected together with the nitrogen gas melts and reacts with the oxygen remaining in the flame 2, resulting in Fe: +0
At the same time as it changes to 4, it becomes spherical due to surface tension. The spheroidized iron oxide powder falls into the water 12 in the cooling container 13 and is quenched, and by collecting the solidified iron oxide powder, a large amount of spherical magnetic powder can be obtained.

尚、本発明において、Fe30mの生成割合を高めるた
めには、火炎中の酸素濃度をある範囲にする必要がある
が、この酸素濃度の調整は、燃料である例えば酸素−プ
ロパンの混合割合を調整することによって行われ得る。
In the present invention, in order to increase the production rate of Fe30m, it is necessary to keep the oxygen concentration in the flame within a certain range, but this oxygen concentration can be adjusted by adjusting the mixing ratio of the fuel, such as oxygen and propane. This can be done by

又、本発明に用いる支燃用ガスとしては、酸素以外に酸
素と窒素の混合物でも十分使用することができる。一方
燃料ガスとしてはプロパンのほかに、アセチレン等の炭
化水素系のガスや水素、酸化炭素等の気体燃料を単独ま
たは混合して使用することができる。
In addition to oxygen, a mixture of oxygen and nitrogen may also be used as the combustion supporting gas in the present invention. On the other hand, as the fuel gas, in addition to propane, hydrocarbon gases such as acetylene, gaseous fuels such as hydrogen, carbon oxide, etc. can be used alone or in combination.

鋳片加熱炉で発生したミルスケールを粉砕したものを原
料として用い、酸素−プロパンの混合割合を種々変化さ
せFe、0.の生成割合を調査した。
Using pulverized mill scale generated in a slab heating furnace as a raw material, the oxygen-propane mixing ratio was varied to produce Fe, 0. We investigated the generation rate of

本発明では、支燃ガスとして酸素を、燃料としてプロパ
ンを用い、酸化鉄粉末の輸送用ガスに窒素を使用し、酸
化鉄粉末の火炎への供給量を30kg/hrとし、水の
入った容器に噴出した。その時の水面からバーナーまで
の距離は1300mmとした。その結果を第1表に示す
In the present invention, oxygen is used as a combustion supporting gas, propane is used as a fuel, nitrogen is used as a transport gas for iron oxide powder, the amount of iron oxide powder supplied to the flame is 30 kg/hr, and a container containing water is used. gushed out. The distance from the water surface to the burner at that time was 1300 mm. The results are shown in Table 1.

ここで、プロパンと酸素の量は、プロパンを15Nm3
/hr一定とし、酸素の量を30.45,60゜75 
Nm’/hrと変化させ、酸素/プロパン比が2゜3.
4.5となるようにした。又、粉体輸送用ガスとしての
窒素は、22Nm’/hr一定として実施した。第1表
から明らかなように、酸素/プロパン比が高くなるにつ
れて、FeOの酸化が進行し、その比が5の時はとんど
がFe3O4に変化し、さらに第2図に示すようにほと
んどが球状化している。
Here, the amount of propane and oxygen is 15Nm3
/hr constant, and the amount of oxygen is 30.45, 60°75
Nm'/hr, and the oxygen/propane ratio was 2°3.
It was set to 4.5. Further, the nitrogen gas used as the powder transportation gas was kept at a constant rate of 22 Nm'/hr. As is clear from Table 1, as the oxygen/propane ratio increases, FeO oxidation progresses, and when the ratio is 5, most of it changes to Fe3O4, and as shown in Figure 2, FeO oxidation progresses. is spherical.

通常、酸素−プロパンを用い大気中で燃焼させる時の比
は、大気中の空気が支燃用の酸素とじて寄与するため、
理論酸素量よりも低い4〜4.5の範囲で使用されてい
る。それに比べFe50.が得られるときの酸素量(酸
素/プロパン比=5)は高い域にあり、過剰の酸素が火
炎中に含まれており、その火炎雰囲気がPexOaを生
成するのに最適な酸素濃度となっている。このようにP
e5tsの生成割合を最も高(するための酸素−プロパ
ンの割合としては、バーナーの型式や構造によって多少
異なる−が、ノズルミックスタイプで15Nm3/hr
のバーナーであれば、酸素/プロパン=5の状態が最も
好ましい。
Normally, when using oxygen and propane to burn in the atmosphere, the ratio is as follows, since the air in the atmosphere contributes as oxygen to support combustion.
It is used in the range of 4 to 4.5, which is lower than the theoretical oxygen amount. Compared to that, Fe50. When PexOa is obtained, the amount of oxygen (oxygen/propane ratio = 5) is in a high range, and excess oxygen is contained in the flame, and the flame atmosphere has the optimal oxygen concentration to generate PexOa. There is. Like this P
The oxygen-propane ratio to achieve the highest e5ts production rate (which varies somewhat depending on the burner model and structure) is 15Nm3/hr for the nozzle mix type.
burner, the most preferable condition is oxygen/propane=5.

なお、本発明によれば、酸化鉄または金属鉄の大部分を
Fe、10.に変化できるばかりでなく、原料の選択お
よび酸素/プロパン比の調整によりFe+Fed、 F
e104.FezO:+等の生成割合をある程度自由に
制御することも可能である。
According to the present invention, most of the iron oxide or metal iron is Fe, 10. By selecting raw materials and adjusting the oxygen/propane ratio, Fe+Fed, F
e104. It is also possible to freely control the generation rate of FezO:+ and the like to some extent.

第 ■ 表 (実施例) 鋳片加熱炉で発生したミルスケールを粉砕したものを原
料として用い、従来法、すなわち電気炉でs o o 
’cに加熱し水蒸気を作用させてFe50.に変化させ
る方法と本発明法とを比較して調査した。
Table ■ (Example) Using pulverized mill scale generated in a slab heating furnace as a raw material, it was processed using a conventional method, that is, an electric furnace.
Heating to 'c and applying steam to Fe50. A comparison was made between the method of changing the amount of water and the method of the present invention.

ここで本発明法の処理条件は、燃料ガスにプロパン、支
燃ガスに酸素を使用し、プロパンの量を15Nm3/h
r、酸素の量を75 Nm”/hrとした。また、粉体
輸送用ガスには窒素を使用し、窒素の量を22Nm’/
hr、酸化鉄粉末の火炎への供給量を30kg/hrと
し、水の入った容器に噴出した。この時の水面からバー
ナーまでの距離は1300mmとした。
Here, the processing conditions of the method of the present invention are to use propane as a fuel gas and oxygen as a combustion supporting gas, with the amount of propane being 15Nm3/h.
r, the amount of oxygen was set to 75 Nm'/hr. In addition, nitrogen was used as the powder transportation gas, and the amount of nitrogen was set to 22 Nm'/hr.
hr, the amount of iron oxide powder supplied to the flame was 30 kg/hr, and the iron oxide powder was spouted into a container containing water. The distance from the water surface to the burner at this time was 1300 mm.

本発明法と従来法のコスト及び製品の品質を第2表に対
比して示すが、従来法は、その処理量が電気炉の炉容に
より決定され、炉容が大きくなればなるほど粉体を加熱
するための電気炉の昇温に多大な時間と電力を要するば
かりでなく、水蒸気により炉内の発熱帯の消耗が激しく
ランニングコストも高い。しかも、バッチ的な方法のた
め、得ようとする製品の成分が変わればその度に炉内を
洗浄しなければならない。
The cost and product quality of the present invention method and the conventional method are compared in Table 2. In the conventional method, the throughput is determined by the furnace volume of the electric furnace, and the larger the furnace volume, the more powder is processed. Not only does it take a great deal of time and electricity to raise the temperature of the electric furnace for heating, but the heating zone inside the furnace is severely consumed by water vapor, resulting in high running costs. Moreover, since it is a batch method, the inside of the furnace must be cleaned every time the ingredients of the product to be obtained change.

一方、本発明法によれば、粉体を加熱するための電気炉
や水蒸気を発生させるための装置等を全く必要とせず、
溶射バーナーおよびその制御装置さえあればよく、処理
能力としても溶射バーナーの能力を大きくすればよく、
それによる負の要因は全くない。また、火炎により直接
粉体を加熱することから、処理時間が短かく、燃料コス
トも電力に比べれば半分以下ですむ。
On the other hand, according to the method of the present invention, there is no need for an electric furnace for heating the powder, a device for generating steam, etc.
All you need is a thermal spray burner and its control device, and you only need to increase the processing capacity of the thermal spray burner.
There are no negative factors at all. Furthermore, since the powder is directly heated by flame, the processing time is short and the fuel cost is less than half that of electricity.

さらに品質面でも、本発明法によって得られた粉体は球
状粒になっているため流動性に優れ充填性も高いという
特徴を有している。
Furthermore, in terms of quality, the powder obtained by the method of the present invention has spherical particles and is therefore characterized by excellent fluidity and high filling properties.

第   2   表 (発明の効果) 以上の如く、本発明によれば、工業窯炉の副産物として
発生するミルスケールや鉄製品の切削屑等を原料として
使用し、それを容易にFe104に変えることが可能な
ばかりでなく、得られる製品は球状化しているため、粉
末製品としての流動性や充填性、焼結性に優れていると
いう特徴を有している。そのため、本発明による製品は
磁性材料としてだけでなく、電極、アンモニア合成触媒
、黒色顔料、印刷インキ、防振材等の製造用原料として
使用され得る。
Table 2 (Effects of the Invention) As described above, according to the present invention, mill scale generated as a by-product of industrial kilns, cutting waste from iron products, etc. can be used as raw materials and easily converted into Fe104. Not only is this possible, but since the resulting product is spherical, it has excellent fluidity, fillability, and sinterability as a powder product. Therefore, the product according to the present invention can be used not only as a magnetic material but also as a raw material for producing electrodes, ammonia synthesis catalysts, black pigments, printing inks, vibration-proofing materials, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の実施装置の概略説明図、第1図
(b)は本発明の実施装置における溶射バーナーの正面
図、第2図は本発明によって得られた球状磁性材料の金
属顕微鏡組織写真である。 1・・・溶射バーナー、2・・・火炎、3・・・酸化鉄
粉末、4・・・粉体輸送管、5・・・ホッパー 6・・
・酸素供給管、7・・・プロパン供給管、8・・・制御
装置、9・・・窒素ガス供給管、10・・・火炎孔、1
1・・・粉体孔、12・・・水、13・・・冷却容器。
FIG. 1(a) is a schematic explanatory diagram of an apparatus for implementing the present invention, FIG. 1(b) is a front view of a thermal spray burner in the apparatus for implementing the present invention, and FIG. 2 is a schematic illustration of a spherical magnetic material obtained by the present invention. It is a metal microscopic structure photograph. 1...Thermal spray burner, 2...Flame, 3...Iron oxide powder, 4...Powder transport pipe, 5...Hopper 6...
- Oxygen supply pipe, 7... Propane supply pipe, 8... Control device, 9... Nitrogen gas supply pipe, 10... Flame hole, 1
1... Powder hole, 12... Water, 13... Cooling container.

Claims (1)

【特許請求の範囲】[Claims] 粉状の酸化鉄または金属鉄の単独またはそれらの混合物
を輸送用ガスと共に燃焼火炎ガス中に投入し、火炎中で
溶融すると共にFe_3O_4化し、急冷することを特
徴とする球状磁性材料の製造方法。
A method for producing a spherical magnetic material, which comprises introducing powdered iron oxide or metallic iron alone or a mixture thereof together with a transport gas into combustion flame gas, melting it in the flame, converting it into Fe_3O_4, and rapidly cooling it.
JP63177442A 1988-07-16 1988-07-16 Manufacture of spherical magnetic material Pending JPH0226834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63177442A JPH0226834A (en) 1988-07-16 1988-07-16 Manufacture of spherical magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63177442A JPH0226834A (en) 1988-07-16 1988-07-16 Manufacture of spherical magnetic material

Publications (1)

Publication Number Publication Date
JPH0226834A true JPH0226834A (en) 1990-01-29

Family

ID=16031022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63177442A Pending JPH0226834A (en) 1988-07-16 1988-07-16 Manufacture of spherical magnetic material

Country Status (1)

Country Link
JP (1) JPH0226834A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018276A1 (en) * 1993-02-11 1994-08-18 Corveagh Limited Colouring pigment and method of manufacture
GB2438616A (en) * 2006-05-30 2007-12-05 Iop Specialists Sdn Bhd Iron oxide pigments from mill scale
US7347893B2 (en) * 2006-06-02 2008-03-25 Iop Specialists Sdn. Bhd. Iron oxide pigments from mill scale
JP2008216339A (en) * 2007-02-28 2008-09-18 Powdertech Co Ltd Core material of electrophotographic ferrite carrier and method of manufacturing resin coated ferrite carrier
CN102295844A (en) * 2011-07-11 2011-12-28 湖南三环颜料有限公司 Equipment for producing iron oxide pigment
CN105271431A (en) * 2015-10-12 2016-01-27 南京大学 Method for preparing ferriferrous oxide magnetic material and composite material thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018276A1 (en) * 1993-02-11 1994-08-18 Corveagh Limited Colouring pigment and method of manufacture
AU678811B2 (en) * 1993-02-11 1997-06-12 Corveagh Limited Colouring pigment and method of manufacture
GB2438616A (en) * 2006-05-30 2007-12-05 Iop Specialists Sdn Bhd Iron oxide pigments from mill scale
GB2438616B (en) * 2006-05-30 2011-01-05 Iop Specialists Sdn Bhd Iron oxide pigments from mill scale
US7347893B2 (en) * 2006-06-02 2008-03-25 Iop Specialists Sdn. Bhd. Iron oxide pigments from mill scale
JP2008216339A (en) * 2007-02-28 2008-09-18 Powdertech Co Ltd Core material of electrophotographic ferrite carrier and method of manufacturing resin coated ferrite carrier
CN102295844A (en) * 2011-07-11 2011-12-28 湖南三环颜料有限公司 Equipment for producing iron oxide pigment
CN105271431A (en) * 2015-10-12 2016-01-27 南京大学 Method for preparing ferriferrous oxide magnetic material and composite material thereof

Similar Documents

Publication Publication Date Title
US4019895A (en) Method of reducing ore using a plasma burner
US4439410A (en) Method of manufacturing silicon from powdered material containing silica
JPS61122106A (en) Production of metal oxide fine powder
CN102361992A (en) Method for producing metallic iron
US4072504A (en) Method of producing metal from metal oxides
US3765870A (en) Method of direct ore reduction using a short cap arc heater
CA1237149A (en) Conversion process
JPS622602B2 (en)
US3733387A (en) Preparation of finely particulate silicon dioxide
JPH0226834A (en) Manufacture of spherical magnetic material
SU1329623A3 (en) Method of producing ferrosilicon
US3992193A (en) Metal powder production by direct reduction in an arc heater
JPS5950013A (en) Manufacture of calcium carbide
US3989511A (en) Metal powder production by direct reduction in an arc heater
SU1500165A3 (en) Method of controlling blast furnace
US4698214A (en) Method and combustion reactor for converting uranium hexafluoride gas to an oxide of uranium
JP2868039B2 (en) Method for producing lower metal oxide
US4719095A (en) Production of silicon ceramic powders
Zhu et al. A dc plasma-fluidized bed reactor for the production of calcium carbide
US6113668A (en) Process for manufacture of powder compact feed materials for fine grained hardmetal
US3295955A (en) Smelting method and device
JPS63185803A (en) Spherical compound metal oxide particle and production thereof
GB2203170A (en) Producing steel
JPH01286919A (en) Production of fine particle of zinc oxide
JPS5945741B2 (en) Fluid reduction method of nickel oxide