JPH01286919A - Production of fine particle of zinc oxide - Google Patents

Production of fine particle of zinc oxide

Info

Publication number
JPH01286919A
JPH01286919A JP11472288A JP11472288A JPH01286919A JP H01286919 A JPH01286919 A JP H01286919A JP 11472288 A JP11472288 A JP 11472288A JP 11472288 A JP11472288 A JP 11472288A JP H01286919 A JPH01286919 A JP H01286919A
Authority
JP
Japan
Prior art keywords
gas
metallic
temperature
zinc oxide
jetted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11472288A
Other languages
Japanese (ja)
Inventor
Tsuneo Funahashi
舟橋 恒男
Takayuki Hashimoto
橋本 高幸
Shinji Ezaki
江崎 慎二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP11472288A priority Critical patent/JPH01286919A/en
Publication of JPH01286919A publication Critical patent/JPH01286919A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enlarge specific surface area of fine particles of zinc oxide and to reduce excess Zn in a method of burning metallic Zn vapor jetted together with an inert gas into an O2-containing atmosphere, by specifying component and temperature of the jetted gas and combustion temperature. CONSTITUTION:When metallic Zn packed into a graphitic crucible 4 is heated by an electric furnace 2, melted and an N2 gas is introduced by an inlet pipe 5, the N2 gas is mixed with metallic Zn vapor on the surface of the metallic Zn, heated to a desired temperature by the furnace 2 and jetted from a nozzle 3. The jetted gas is ignited in the vicinity of the nozzle 3 by introducing an O2 gas of spiral flow from an air box 6, formed Zn oxide is quenched by intro ducing air from a blow pipe 7 to produce fine particles of zinc oxide. In this method, the jetted gas contains no combustible gas except the metallic Zn vapor, temperature of the jetted gas is >=800 deg.C and combustion temperature is 1,300-1,600 deg.C. By this method, products having >=25m<2>/g specific surface area and <=20ppm excess Zn contained by weight are obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、比表面積が大きく、かつ、過剰亜鉛が少ない
酸化亜鉛微粒子の製造方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an improvement in a method for producing zinc oxide fine particles having a large specific surface area and a small amount of excess zinc.

〔従来の技術〕[Conventional technology]

酸化亜鉛粒子は、広い用途を有する工業製品で、例えば
、ゴムの加硫促進剤、塗料、触媒、医薬品、電子写真用
感光材料、ファンデーション、クリーム等の化粧品、バ
リスター、フェライト等の電子部品材料などに用いられ
ている。
Zinc oxide particles are industrial products with a wide range of uses, such as rubber vulcanization accelerators, paints, catalysts, pharmaceuticals, electrophotographic photosensitive materials, cosmetics such as foundations and creams, and electronic component materials such as varistors and ferrites. It is used for such things.

このような用途に用いられる酸化亜鉛はできるだけ微粒
であること、即ち粒子の比表面積が大きいこと、及びそ
の純度が高いことが必要である。
Zinc oxide used for such purposes needs to be as fine as possible, that is, the particles need to have a large specific surface area and have high purity.

従来、酸化亜鉛の製造方法としては次に述べる乾式法が
知られている。即ち、この方法は、酸素を含有する雰囲
気中に金属亜鉛蒸気をキャリアガスとしての不活性ガス
と共に噴出させて導入して金属亜鉛を酸化燃焼させ、得
られた酸化亜鉛を急冷するというものである。
Conventionally, the following dry method is known as a method for producing zinc oxide. That is, in this method, metallic zinc vapor is jetted and introduced together with an inert gas as a carrier gas into an oxygen-containing atmosphere to oxidize and burn metallic zinc, and the obtained zinc oxide is rapidly cooled. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記方法によって得られる酸化亜鉛の粒子は、
比表面積が25rrf/gより小さく、また、含有され
る過剰亜鉛が重量にて20p9raより大きいために、
粒度においても純度においても充分満足し得るものでは
なかった。
However, the zinc oxide particles obtained by the above method are
Since the specific surface area is smaller than 25rrf/g and the excess zinc contained is larger than 20p9ra by weight,
Both particle size and purity were not fully satisfactory.

本発明の目的は、このような従来の方法を改良して、こ
の方法の問題点を解決し、比表面積が25of/g以上
で、含有される過剰亜鉛が重量にて20ppm以下の酸
化亜鉛微粒子を製造し得る方法を提供することにある。
The purpose of the present invention is to improve the conventional method, solve the problems of this method, and produce zinc oxide fine particles with a specific surface area of 25 of/g or more and an excess zinc content of 20 ppm or less by weight. The objective is to provide a method for manufacturing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記問題点を解決するものとして、酸素を含
有する雰囲気中に金属亜鉛蒸気をキャリアガスとしての
不活性ガスと共に噴出させて金属亜鉛を酸化燃焼させ、
得られた酸化亜鉛を急冷する方法において、該噴出ガス
に該金属亜鉛蒸気以外の可燃性ガスを含有させることな
く、該噴出ガスの温度を800℃以上とし、がっ、該燃
焼の温度を1300〜1600℃とすることを特徴とす
るものである。
The present invention solves the above-mentioned problems by oxidizing and burning metal zinc by spouting metal zinc vapor together with an inert gas as a carrier gas into an oxygen-containing atmosphere.
In the method of rapidly cooling the obtained zinc oxide, the temperature of the ejected gas is set to 800°C or higher without causing the ejected gas to contain any flammable gas other than the metal zinc vapor, and the temperature of the combustion is increased to 1300°C. It is characterized by a temperature of ~1600°C.

〔作 用〕[For production]

金属亜鉛を加熱して蒸発させて得られた金属亜鉛蒸気は
ノズルからキャリアガスとして窒素、アルゴン等の不活
性ガスと共に燃焼室へ噴出する。
Metal zinc vapor obtained by heating and evaporating metal zinc is ejected from a nozzle into a combustion chamber as a carrier gas together with an inert gas such as nitrogen or argon.

燃焼室の雰囲気は酸素を含有するものであり、空気又は
酸素を前記ノズルとは別のノズルより供給する。このよ
うな雰囲気中に噴出された前記金属亜鉛蒸気は直ちに酸
化燃焼して酸化亜鉛を生成する。生成した酸化亜鉛は冷
却するまでに団塊状粒子に焼結するのを抑制するため急
冷した後、捕集される。
The atmosphere in the combustion chamber contains oxygen, and air or oxygen is supplied from a nozzle different from the above-mentioned nozzle. The metallic zinc vapor ejected into such an atmosphere is immediately oxidized and burned to produce zinc oxide. The generated zinc oxide is rapidly cooled to prevent it from sintering into nodular particles before being cooled, and then collected.

本発明においては、前記燃焼室に噴出される金属亜鉛蒸
気および不活性ガスに該金属亜鉛蒸気以外の可燃性ガス
を含有させない。本出願人は、先に、この可燃性ガスを
含有させることにより、比表面積が大きく、過剰亜鉛が
少ない酸化亜鉛微粒子の製造方法を出願した(特願昭6
l−294752)。しかし、本発明は、金属亜鉛蒸気
以外の可燃性ガスを含有させることなく、前記目的を達
成することができる。そのためには、(1)噴出ガスの
温度を800℃以上とすること、(2)燃焼の温度を1
300〜1600℃とすることが必要である。噴出ガス
は、金属亜鉛蒸気と不活性ガスとを、適宜混合した後加
熱するか、あるいは別々に加熱した後混合するかされる
が、この噴出ガスの温度が800℃未満では、前記目的
である比表面積および過剰亜鉛の条件のうち高々、いず
れか1つしか達成され得ない場合が多くなる。また、燃
焼の温度は、前記噴出ガスの温度、噴出ガス中の金属亜
鉛蒸気と不活性ガスの割合などを調整することにより制
御できるが、この温度が1300℃未満では、金属亜鉛
蒸気の酸化反応が充分でなく、生成する粒子中の過剰亜
鉛が多くなり易い。一方、この温度が1600’Cを超
えると、粒子の成長速度が増大し過ぎ、生成する粒子の
比表面積が小さくなり易い、この温度を1300〜16
00℃に制御するためには、噴出ガス中の金属亜鉛蒸気
(重量)と不活性ガス(容it)の比は176〜3/2
g/j!とするのが好ましい。
In the present invention, the metal zinc vapor and inert gas ejected into the combustion chamber do not contain any combustible gas other than the metal zinc vapor. The present applicant previously filed an application for a method for producing zinc oxide fine particles that have a large specific surface area and a small amount of excess zinc by containing this flammable gas (patent application filed in 1983).
l-294752). However, the present invention can achieve the above object without containing any flammable gas other than metal zinc vapor. To achieve this, (1) the temperature of the ejected gas must be set to 800°C or higher, and (2) the combustion temperature must be set to 1.
It is necessary to set it as 300-1600 degreeC. The ejected gas is heated after appropriately mixing metal zinc vapor and inert gas, or heated separately and then mixed, but if the temperature of this ejected gas is less than 800 ° C., the above purpose is not met. In many cases, only one of the specific surface area and excess zinc conditions can be achieved. Furthermore, the combustion temperature can be controlled by adjusting the temperature of the ejected gas, the ratio of metal zinc vapor and inert gas in the ejected gas, etc., but if this temperature is less than 1300°C, the oxidation reaction of the metal zinc vapor will occur. is insufficient, and the resulting particles tend to contain a large amount of excess zinc. On the other hand, if this temperature exceeds 1600'C, the growth rate of particles increases too much and the specific surface area of the generated particles tends to become small.
In order to control the temperature to 00℃, the ratio of metal zinc vapor (weight) to inert gas (volume) in the ejected gas should be 176 to 3/2.
g/j! It is preferable that

このようにすることにより、比表面積および過剰亜鉛の
いずれの条件をも満足させ得るのは、微粒子成長の出発
点である臨界核の径および生成頻度が夫々より小に、よ
り大になったことによるものと推察される。
By doing this, both the specific surface area and excess zinc conditions can be satisfied because the diameter and generation frequency of critical nuclei, which are the starting point for fine particle growth, have become smaller and larger, respectively. It is assumed that this is due to the following.

このような乾式法で得られた微粒で純度の高い酸化亜鉛
粒子は、電子写真用感光材料として好適である。また、
ノビが良いことや皮膚の紫外線防御等に好適である点で
、ファンデーション、日焼は止めクリーム等の化粧品の
原料としても最適である。
Fine and highly pure zinc oxide particles obtained by such a dry method are suitable as a light-sensitive material for electrophotography. Also,
It is also ideal as a raw material for cosmetics such as foundations and sunscreen creams because of its good elasticity and its ability to protect the skin from ultraviolet rays.

〔実施例〕〔Example〕

以下、本発明を実施例および比較例によって具体的に説
明する。
Hereinafter, the present invention will be specifically explained using Examples and Comparative Examples.

実施例1 第1図は本発明方法の実施に用いた装置の概略図である
。図において、燃焼室1は、抵抗発熱体を取り付けた電
気炉2の上に断熱レンガにより内部を一辺50cllの
立方体状に形成した。電気炉2には、上部に金属亜鉛蒸
気を噴出するノズル3を有する黒鉛ルツボ4が載置され
る。この黒鉛ルツボ4内に装入された金属亜鉛(純度9
9.99重量%)が、電気炉2により加熱され溶解され
る。溶解した金属亜鉛浴面上にキャリアガスとしての窒
素を導入することができる導入管5が、黒鉛ルツボ4に
設けられている。窒素が導入管5により導入されると、
黒鉛ルツボ4内の金属亜鉛浴面上で金属亜鉛蒸気と混合
されると同時に、電気炉2により所望温度に加熱された
後、ノズル3から噴出する。ノズル3の周囲には、燃焼
室1内を酸素を含有する雰囲気に維持するために旋回流
の酸素を吹き込むための風箱6が、また、ノズル3付近
で着火して生じたフレームの直上には、生成した酸化亜
鉛を急冷するための冷却用空気吹込管7が設けである。
Example 1 FIG. 1 is a schematic diagram of an apparatus used to carry out the method of the present invention. In the figure, a combustion chamber 1 was formed into a cubic shape of 50 cl on each side using insulating bricks on an electric furnace 2 equipped with a resistance heating element. A graphite crucible 4 is placed in the electric furnace 2 and has a nozzle 3 at the top for spouting metallic zinc vapor. The metal zinc charged in this graphite crucible 4 (purity 9
9.99% by weight) is heated and melted in the electric furnace 2. The graphite crucible 4 is provided with an introduction pipe 5 that can introduce nitrogen as a carrier gas onto the surface of the molten metal zinc bath. When nitrogen is introduced through the introduction pipe 5,
It is mixed with metal zinc vapor on the surface of the metal zinc bath in the graphite crucible 4, heated to a desired temperature by the electric furnace 2, and then jetted out from the nozzle 3. Around the nozzle 3, there is a wind box 6 for blowing swirling oxygen into the combustion chamber 1 to maintain an oxygen-containing atmosphere. A cooling air blowing pipe 7 is provided for rapidly cooling the produced zinc oxide.

燃焼室1の出口8は、グーズネック煙道9、分級ボック
ス10、捕集装置を介して吸引ファンに接続している(
捕集装置と吸引ファンは図示せず)。
The outlet 8 of the combustion chamber 1 is connected to a suction fan via a gooseneck flue 9, a classification box 10 and a collection device (
(Collection device and suction fan not shown).

第1図の装置によって、金属亜鉛を10kg溶解し、風
箱6より酸素を501/分吹き込み、冷却用空気吹込管
7より空気を16717分吹き込むことによって酸化亜
鉛を製造する実験を行なった。
Using the apparatus shown in FIG. 1, an experiment was conducted to produce zinc oxide by melting 10 kg of metallic zinc, blowing oxygen at 501/min from the air box 6, and blowing air at 16,717 min from the cooling air blowing pipe 7.

その他の酸化亜鉛製造条件および実験により得られた酸
化亜鉛の品質特性を第1表に示す。
Other zinc oxide production conditions and quality characteristics of zinc oxide obtained through experiments are shown in Table 1.

なお、第1表中、噴出ガスの温度および燃焼の温度は夫
々黒鉛ルツボ4内のノズル3直下でクロメル−アルメル
熱電対を使用して、ノズル3付近で着火して生じたフレ
ーム内で白金−白金ロジウム熱電対を使用して測定した
もので、燃焼の温度は得られた測定値のうち最も高いも
のである。
In Table 1, the temperature of the ejected gas and the temperature of combustion are determined using a chromel-alumel thermocouple directly below the nozzle 3 in the graphite crucible 4, and a platinum-alumel thermocouple is used in the flame produced by ignition near the nozzle 3. Measured using a platinum-rhodium thermocouple, the temperature of combustion is the highest measured value obtained.

〔発明の効果〕〔Effect of the invention〕

以上から明らかなように、本発明方法によれば、乾式法
により比表面積が25rrr/g以上で、含有される過
剰亜鉛が重量にて20ppm以下の酸化亜鉛微粒子を製
造することができ、この方法は工業的実用性の高いもの
である。
As is clear from the above, according to the method of the present invention, zinc oxide fine particles having a specific surface area of 25 rrr/g or more and containing 20 ppm or less of excess zinc by weight can be produced by a dry method. is of high industrial practicality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に用いた実験装置の概略図であ
る。 1・・・燃焼室、2・・・電気炉、3・・・ノズル、4
・・・黒鉛ルツボ、5・・・導入管、6・・・風箱、7
川冷却用空気吹込管。 特許出願人 住友金属鉱山株式会社 第1図
FIG. 1 is a schematic diagram of an experimental apparatus used in an example of the present invention. 1... Combustion chamber, 2... Electric furnace, 3... Nozzle, 4
...Graphite crucible, 5...Introduction pipe, 6...Wind box, 7
Air blowing pipe for river cooling. Patent applicant Sumitomo Metal Mining Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)酸素を含有する雰囲気中に金属亜鉛蒸気をキャリ
アガスとしての不活性ガスと共に噴出させて金属亜鉛を
酸化燃焼させ、得られた酸化亜鉛を急冷する方法におい
て、該噴出ガスに該金属亜鉛蒸気以外の可燃性ガスを含
有させることなく、該噴出ガスの温度を800℃以上と
し、かつ、該燃焼の温度を1300〜1600℃とする
ことを特徴とする酸化亜鉛微粒子の製造方法。
(1) In a method in which metallic zinc vapor is ejected together with an inert gas as a carrier gas into an oxygen-containing atmosphere to oxidize and burn the metallic zinc, and the resulting zinc oxide is rapidly cooled, the ejected gas is mixed with the metallic zinc. A method for producing zinc oxide fine particles, characterized in that the temperature of the ejected gas is 800°C or higher, and the combustion temperature is 1300 to 1600°C, without containing any flammable gas other than steam.
JP11472288A 1988-05-13 1988-05-13 Production of fine particle of zinc oxide Pending JPH01286919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11472288A JPH01286919A (en) 1988-05-13 1988-05-13 Production of fine particle of zinc oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11472288A JPH01286919A (en) 1988-05-13 1988-05-13 Production of fine particle of zinc oxide

Publications (1)

Publication Number Publication Date
JPH01286919A true JPH01286919A (en) 1989-11-17

Family

ID=14644983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11472288A Pending JPH01286919A (en) 1988-05-13 1988-05-13 Production of fine particle of zinc oxide

Country Status (1)

Country Link
JP (1) JPH01286919A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618580A (en) * 1992-12-28 1997-04-08 Kao Corporation Method for producing ceramic fine particles and apparatus used therefor
WO2000046152A1 (en) * 1999-02-05 2000-08-10 Showa Denko K.K. Ultra-fine particles of zinc oxide, method for preparing the same and cosmetic comprising the same
US6827758B2 (en) 2001-05-30 2004-12-07 Tdk Corporation Method for manufacturing magnetic metal powder, and magnetic metal powder
JP2010105907A (en) * 2008-09-30 2010-05-13 Ube Material Industries Ltd Method and apparatus for producing zinc oxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618580A (en) * 1992-12-28 1997-04-08 Kao Corporation Method for producing ceramic fine particles and apparatus used therefor
WO2000046152A1 (en) * 1999-02-05 2000-08-10 Showa Denko K.K. Ultra-fine particles of zinc oxide, method for preparing the same and cosmetic comprising the same
JP4462523B2 (en) * 1999-02-05 2010-05-12 昭和電工株式会社 Ultrafine zinc oxide, method for producing the same, and cosmetics using the same
US6827758B2 (en) 2001-05-30 2004-12-07 Tdk Corporation Method for manufacturing magnetic metal powder, and magnetic metal powder
US7416795B2 (en) 2001-05-30 2008-08-26 Tdk Corporation Method for manufacturing magnetic metal powder, and magnetic metal powder
JP2010105907A (en) * 2008-09-30 2010-05-13 Ube Material Industries Ltd Method and apparatus for producing zinc oxide

Similar Documents

Publication Publication Date Title
US3486913A (en) Process for the production of finely divided oxides from halides
US2862792A (en) Process and apparatus for the production of finely divided powders
JP3170094B2 (en) Method for producing titanium oxide
JPS60255602A (en) Preparation of ultrafine particle of oxide
KR20100024663A (en) Method and plasma torch for direct and continous synthesis of nano-scaled composite powders using thermal plasmas
US8147793B2 (en) Process for the manufacture of nano-sized powders
JP2010013713A (en) Composite particle, and method for manufacturing composite particle
JPH01286919A (en) Production of fine particle of zinc oxide
JP3242469B2 (en) Method for producing conductive zinc oxide
US4755368A (en) Silica fillers from silicon powder
JP2868039B2 (en) Method for producing lower metal oxide
JPS63147823A (en) Production of zinc oxide fine particle
JPS605529B2 (en) Method for producing acicular oxidized smoke
JPH1192136A (en) Production of low alpha-dose alumina powder and low alpha-dose alumina powder
CN109019668B (en) Method for preparing superfine active zinc oxide powder by hot ball milling oxidation
JPH0226834A (en) Manufacture of spherical magnetic material
KR100839020B1 (en) Method and equipment for production of magnesium oxide nanopowder
JP3225073B2 (en) Method for producing metal oxide powder
RU2547490C2 (en) Method for synthesis of nanosize particles of titanium dioxide powder
JP2001106521A (en) Producing method of amorphous silica particle
JP4231014B2 (en) Method for producing spherical inorganic oxide powder
JP2962891B2 (en) Method and apparatus for producing ferrite powder by spray roasting method
WO2023167268A1 (en) Method for producing silicon monoxide
CN115947378A (en) Method for preparing spherical iron oxide by flame method
JPS6197109A (en) Manufacture of vanadium nitride