JPS60255602A - Preparation of ultrafine particle of oxide - Google Patents

Preparation of ultrafine particle of oxide

Info

Publication number
JPS60255602A
JPS60255602A JP59109108A JP10910884A JPS60255602A JP S60255602 A JPS60255602 A JP S60255602A JP 59109108 A JP59109108 A JP 59109108A JP 10910884 A JP10910884 A JP 10910884A JP S60255602 A JPS60255602 A JP S60255602A
Authority
JP
Japan
Prior art keywords
gas
ultrafine
opened
burner
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59109108A
Other languages
Japanese (ja)
Other versions
JPH0155201B2 (en
Inventor
Kazuhide Oota
和秀 太田
San Abe
賛 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59109108A priority Critical patent/JPS60255602A/en
Priority to DE8585101305T priority patent/DE3581293D1/en
Priority to EP85101305A priority patent/EP0151490B1/en
Priority to US06/699,909 priority patent/US4705762A/en
Publication of JPS60255602A publication Critical patent/JPS60255602A/en
Publication of JPH0155201B2 publication Critical patent/JPH0155201B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/08Application of shock waves for chemical reactions or for modifying the crystal structure of substances
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0602Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with two or more other elements chosen from metals, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0612Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with alkaline-earth metals, beryllium or magnesium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/0622Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Abstract

PURPOSE:In preparation of ultrafine particles of oxide using dust explosion, to make dust explosion take place stably, and to aim improvement in heat efficiency and mass production, by contriving a heat source. CONSTITUTION:In preparing ultrafine particles of oxide such as ultrafine particles of SiO2, the hopper 6 is equipped with Si powder as a raw material, the valve 15 is opened, a mixed gas of Ar and O2 is introduced into the closed container 1, and atmosphere is replaced with the gas. Then, the valves 12 and 13 are opened, O2 and H2 are fed to the burner 2, it is ignited by the igniter 4, and the chemical flame 18 is formed in an O2-containing atmosphere. Then, the lower part of the hopper 6 is opened, the valve 9 is opened and the Si powder is fed to the burner 2 by H2 that is pressurized by gas pressure at about 1kg/cm<2> while the ball valve 7 is opened and closed at about 0.5sec interval by the control device 8. The Si powder is blown up from the mouth of the burner 2 to form a dust cloud. The cloud is ignited with the flame 18, a large amount of ultrafine particles of SiO2 are obtained by deflagration, and the cloud 19 is collected by the electric dust collector 17.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は粉塵爆発を利用した酸化物超微粒子の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing ultrafine oxide particles using dust explosion.

〔従来技術〕[Prior art]

粒径1000Å以下のセラミック超微粒子は、表面エネ
ルギの寄与が大きく、そのため低温で容易に焼結したり
、触媒活性が増大するという利点を有しており、かかる
セラミック超微粒子の量産、低コスト化が望まれている
Ceramic ultrafine particles with a particle size of 1000 Å or less have a large contribution of surface energy, and therefore have the advantage of being easily sintered at low temperatures and increasing catalytic activity, making it possible to mass produce such ceramic ultrafine particles and reduce costs. is desired.

かかるセラミック超微粒子を気相から製造する方法とし
て、例えば[化学工学J 1982年10月刊の525
頁〜529頁の「微粉体材料の製造と表面改質の技術」
に示されている気相化学反応法等が公知である。この気
相化学反応法の熱源としてはアーク、プラズマ、化学炎
等を用いることができる。この化学炎法には、Ha O
t炎やCxHy−0,炎による揮発性金属ハロゲン化物
からの酸化物超微粒子の合成例がある。例えば、光フア
イバ用母材としての超高純度シリカは次式に示すような
反応で合成されている。
As a method for producing such ultrafine ceramic particles from a gas phase, for example, [Chemical Engineering J, 525, October 1982 issue]
"Technology for manufacturing fine powder materials and surface modification" from pages 529 to 529
The gas phase chemical reaction method shown in , etc. are well known. Arc, plasma, chemical flame, etc. can be used as a heat source for this gas phase chemical reaction method. In this chemical flame method, HaO
There are examples of synthesis of ultrafine oxide particles from volatile metal halides using t-flames, CxHy-0, and flames. For example, ultra-high purity silica as a base material for optical fibers is synthesized by the reaction shown in the following formula.

SiCβ4 (気体)+2H2(気体)+02(気体)
→3i0x(超微粒子)+4H′Cl(気体)上記反応
では、四塩化珪素(S i Cβ4)と水素(H3)と
酸素(0,)が反応して、二酸化珪素(S iO2)の
超微粒子と塩化水素(MCIりが生成される。この反応
では、四塩化珪素自体が高価なことと四塩化珪素中にお
ける珪素の重量比が小さいことにより大量生産に向かず
、また塩化水素のような有害な副産物が発生するという
問題がある。
SiCβ4 (gas) + 2H2 (gas) + 02 (gas)
→3i0x (ultrafine particles) + 4H'Cl (gas) In the above reaction, silicon tetrachloride (S i Cβ4), hydrogen (H3), and oxygen (0,) react to form ultrafine particles of silicon dioxide (S iO2). Hydrogen chloride (MCI) is produced. In this reaction, silicon tetrachloride itself is expensive and the weight ratio of silicon in silicon tetrachloride is small, making it unsuitable for mass production. There is a problem in that by-products are generated.

そこで、本件出願人は上記問題を解決するため、粉塵爆
発を利用してセラミック超微粒子を効率良く低コストで
得る製造方法を提案した(願番未着二未公知)。このセ
ラミック超微粒子の製造方法は、目的とするセラミック
超微粒子の一部を形成する元素を含んだ反応ガス中で、
目的とするセラミック超微粒子の他の一部を形成する金
属粉末の粉塵雲を形成し、着火させることにより爆燃を
起こさせてセラミック超微粒子を合成することを特徴と
しており、反応ガスとして酸素、塩素、窒素を用いるこ
とにより、それぞれ酸化物、塩化物、窒化物を得ること
ができた。
Therefore, in order to solve the above-mentioned problem, the applicant of the present application has proposed a production method for efficiently obtaining ultrafine ceramic particles at low cost by using dust explosion (application number 2, 2, and 3). This method for producing ultrafine ceramic particles consists of:
It is characterized by forming a dust cloud of metal powder that forms another part of the target ceramic ultrafine particles, and igniting it to cause deflagration and synthesize ceramic ultrafine particles. Oxygen and chlorine are used as reaction gases. , by using nitrogen, we were able to obtain oxides, chlorides, and nitrides, respectively.

ところで、上記出願に係るセラミック超微粒子の製造方
法においては、実施例において熱源として火花放電を利
用した例を示した。この火花放電を利用する方法は、装
置自体は簡単なものになるものの、fa) 高温部分が
小さな領域であるため、粉塵雲に燃焼が広がらない場合
がある、(b) 燃焼が瞬間的で、金属粉末の表面酸化
のみで終わる場合がある、(C) 金属粉末の均一分散
が困難である、等の不十分な点があった。
By the way, in the method for manufacturing ultrafine ceramic particles according to the above-mentioned application, an example in which spark discharge is used as a heat source is shown in the embodiment. Although this method of using spark discharge makes the device itself simpler, it also has the following drawbacks: (b) combustion is instantaneous; There were some inadequacies, such as (C) it was difficult to uniformly disperse the metal powder, and (C) the process ended with only surface oxidation of the metal powder.

このため、粉塵爆発を利用する超微粒子の製造方法にお
いて、更に望ましい熱源がめられている。
For this reason, a more desirable heat source is being sought in a method for producing ultrafine particles that utilizes dust explosion.

〔発明の目的〕[Purpose of the invention]

本発明は上記要望に基づきなされたもので、本発明は、
酸化物超微粒子の製造において、熱源を工夫することに
より粉塵爆発を安定的に生じさせ、もって熱効率および
量産性の向上を図ることにある。
The present invention was made based on the above demand, and the present invention includes:
In the production of ultrafine oxide particles, the aim is to stably generate dust explosion by devising a heat source, thereby improving thermal efficiency and mass productivity.

〔発明の構成〕[Structure of the invention]

かかる目的は、本発明によれば、次の酸化物超微粒子の
製造方法によって達成される。
According to the present invention, this object is achieved by the following method for producing ultrafine oxide particles.

即ち、本発明の酸化物超微粒子の製造方法は、酸素を含
む雰囲気内においてバーナにより化学炎を形成し、この
化学炎中に目的とする酸化物超微粒子の一部を形成する
金属粉末を粉塵雲が形成される程度の雪投入し、爆燃を
起こさせて酸化物超微粒子を合成することを特徴として
いる。
That is, in the method for producing ultrafine oxide particles of the present invention, a chemical flame is formed by a burner in an atmosphere containing oxygen, and metal powder forming a part of the target ultrafine oxide particles is dusted into this chemical flame. It is characterized by injecting enough snow to form a cloud and causing deflagration to synthesize ultrafine oxide particles.

本発明において得られる酸化物超微粒子としては、酸化
チタン(Tie、)、酸化ジルコニウム(ZrO2)、
酸化アルミニウム(AJ20.)、二酸化珪素(Si0
2)等がある。
The oxide ultrafine particles obtained in the present invention include titanium oxide (Tie), zirconium oxide (ZrO2),
Aluminum oxide (AJ20.), silicon dioxide (Si0
2) etc.

本発明において、酸化物超微粒子の一部を形成する金属
としては、珪素、アルミニウム、チタン、ジルコニウム
等を用いることができる。
In the present invention, silicon, aluminum, titanium, zirconium, etc. can be used as the metal forming a part of the oxide ultrafine particles.

この反応ガスと反応する金属粉末は、酸化物超微粒子を
製造するためには、粒径が400μm以下であることが
望ましく、できるだけ小さい方がより望ましい。また、
金属粉末は可能な限り不純物の少ないものが望ましい。
In order to produce ultrafine oxide particles, the metal powder that reacts with this reaction gas preferably has a particle size of 400 μm or less, and is more preferably as small as possible. Also,
It is desirable that the metal powder contains as few impurities as possible.

この金属粉末は反応に際しては粉塵雲と称される状態と
される。この粉塵雲は、金属粉末の種類にもよるが少な
くとも濃度が20g’/rrr以上であることが必要で
あり、通常は500 g/n?以上が望ましく、100
0 g/rd以上とすることがより望ましい。通常は5
00 g/nr以上でないと安定な着火が得られない。
This metal powder is brought into a state called a dust cloud during the reaction. This dust cloud needs to have a concentration of at least 20 g'/rrr, although it depends on the type of metal powder, and usually 500 g/n? More than 100 is desirable.
It is more desirable to set it to 0 g/rd or more. Usually 5
Stable ignition cannot be obtained unless it is 00 g/nr or more.

即ち、粉塵雲の濃度は濃い方が望ましい。That is, it is desirable that the dust cloud be denser.

着火の熱源としては、抵抗加熱、アーク放電、プラズマ
フレーム、レーザ、高周波誘導加熱、電子ビーム等が考
えられるが、本発明においては化学炎を用いることに特
徴がある。化学炎としては、H202炎、CxYz O
2炎等があり、通常バーナを用いて形成する。
Possible heat sources for ignition include resistance heating, arc discharge, plasma flame, laser, high frequency induction heating, and electron beam, but the present invention is characterized by the use of chemical flame. Chemical flames include H202 flame, CxYzO
There are two flames, etc., and they are usually formed using a burner.

化学炎を熱源とした場合、従来技術のところで述べた火
花放電の欠点はなく、またプラズマフレームを利用した
場合には、次のような欠点があるが、化学炎ではこのよ
うな欠点が解消される。
When a chemical flame is used as a heat source, there is no disadvantage of spark discharge mentioned in the conventional technology, and when a plasma flame is used, there are the following disadvantages, but with a chemical flame, these disadvantages are eliminated. Ru.

(a) 設備のためのイニシャルコストが大きい。(a) The initial cost for equipment is large.

山) ガス、電気を大量に消費し、かつ電極も寿命が数
百時間と短いためランニングコストが大きい。
Yama) It consumes large amounts of gas and electricity, and the electrodes have a short lifespan of several hundred hours, so running costs are high.

[C) プラズマの流速が音速を越え非常に速いため金
属粉末の投入方法が難しく、一部はじき出されるため未
燃焼のものができる。
[C] Since the flow velocity of plasma is extremely fast, exceeding the speed of sound, it is difficult to introduce metal powder, and some of it is thrown out, leaving unburned material.

(dl 酸化は発熱反応であり連鎖的に生じるため、本
来プラズマのような高温は必要とせず、プラズマの熱量
を有効に活用していない。
(dl Oxidation is an exothermic reaction and occurs in a chain reaction, so it does not originally require high temperatures like plasma, and does not utilize the heat of plasma effectively.

本発明の反応は、大気圧で行うことができる。The reactions of the invention can be carried out at atmospheric pressure.

但し、加圧下、減圧下でも行うことができる。However, it can also be carried out under increased pressure or reduced pressure.

〔発明の作用〕[Action of the invention]

本発明においては、まず容器中に反応ガスである酸素を
含有するガスを充満させ、この反応ガス中で化学炎を形
成する。次いで、この化学炎に金属粉末を投入し高濃度
(500g/nr以上)の粉塵雲を形成する。すると、
化学炎により金属粉末表面に熱エネルギが与えられ、金
属粉末の表面温度が上昇し、金属粉末表面から金属の蒸
気が周囲に広がる。この金属蒸気が酸素ガスと反応して
発火し火炎を生じる。この火炎により生じた熱は、更に
金属粉末の気化を促進し、生じた金属蒸気と反応ガスが
混合され、連鎖的に発火伝播する。このとき、金属粉末
自体も破裂して飛散し、火炎伝播を促す。燃焼後に、生
成ガスが自然冷却されることにより、酸化物超微粒子の
雲ができる。得られた酸化物超微粒子は、通常電気集塵
器等により帯電させて捕集する。
In the present invention, first, a container is filled with a gas containing oxygen, which is a reactive gas, and a chemical flame is formed in this reactive gas. Next, metal powder is introduced into this chemical flame to form a highly concentrated dust cloud (500 g/nr or more). Then,
The chemical flame imparts thermal energy to the surface of the metal powder, increasing the surface temperature of the metal powder and causing metal vapor to spread from the surface of the metal powder to the surrounding area. This metal vapor reacts with oxygen gas and ignites, producing a flame. The heat generated by this flame further promotes vaporization of the metal powder, and the generated metal vapor and reaction gas are mixed, causing a chain reaction of ignition and propagation. At this time, the metal powder itself also ruptures and scatters, promoting flame propagation. After combustion, the resulting gas is naturally cooled, creating a cloud of ultrafine oxide particles. The obtained ultrafine oxide particles are usually charged and collected using an electric precipitator or the like.

〔発明の効果〕〔Effect of the invention〕

以上より、本発明によれば、以下の効果を奏する。 As described above, according to the present invention, the following effects are achieved.

(イ)原料の金属粉末蒸気と反応ガスの反応の際生じる
発熱により、他の金属粉末の気化が促進されるので、外
部から与える熱エネルギは着火を生ぜしめるだけのごく
僅かでよく、熱効率(100%以上)が極めてよい。
(b) The heat generated during the reaction between the raw material metal powder vapor and the reaction gas promotes the vaporization of other metal powders, so only a small amount of external heat energy is needed to cause ignition, and thermal efficiency ( 100% or more) is extremely good.

(ロ)粉塵爆発の原理を利用しているため、瞬時に大量
の酸化物超微粒子が得られ、量産性が高い。
(b) Since it uses the principle of dust explosion, a large amount of ultrafine oxide particles can be obtained instantly, making it highly suitable for mass production.

(ハ)熱源として化学炎を用いるため、未燃焼、不完全
燃焼が防止され、完全な酸化物超微粒子が得られる。
(c) Since a chemical flame is used as a heat source, unburned and incomplete combustion is prevented, and perfect ultrafine oxide particles can be obtained.

(ニ)化学炎への金属粉末の投入が容易であり、バーナ
の火口付近は低温であるため、プラズヤの、ように金属
粉末が溶けて詰ることがない。
(d) It is easy to introduce metal powder into a chemical flame, and the area near the burner's crater is at a low temperature, so metal powder does not melt and cause clogging like in Plasya.

(ホ)流速がプラズマより遅いため、化学炎を形成する
可燃物質の高温領域で、プラズマより金属粉末が長(留
まることができる。
(e) Since the flow velocity is slower than plasma, metal powder can stay longer than plasma in the high temperature region of combustible materials that form chemical flames.

(へ)製造工程が比較的単純なため自動化が容易であ不
(f) The manufacturing process is relatively simple, making it easy to automate.

〔実施例〕〔Example〕

次に、本発明の実施例を図面を参考にして説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

この実施例は酸化物超微粒子として二酸化珪素超微粒子
を製造した例を示す。
This example shows an example in which ultrafine silicon dioxide particles were produced as ultrafine oxide particles.

ここで、第1図は本発明の実施例に使用した酸化物超微
粒子製造装置の概要を示す概略構成図である。
Here, FIG. 1 is a schematic configuration diagram showing an outline of an oxide ultrafine particle manufacturing apparatus used in an example of the present invention.

図中、1は酸化物超微粒子製造装置の外殻を形成する密
閉容器であり、この密閉容aI内の底部シこはガスバー
ナ2が取り付けられている。このガスバーナ2の先端に
は石英からなる燃焼筒3が装着されており、この燃焼筒
3内のガスバーナ2の火口近傍には点火装置4の先端が
取り付けられている。
In the figure, reference numeral 1 denotes a closed container forming the outer shell of the ultrafine oxide particle manufacturing apparatus, and a gas burner 2 is attached to the bottom of the closed container aI. A combustion tube 3 made of quartz is attached to the tip of the gas burner 2, and the tip of an igniter 4 is attached near the mouth of the gas burner 2 inside the combustion tube 3.

ガスバーナ2の内部は実質的に2重管とされ、内側の空
間部は導入管5の一端と接続されている。
The inside of the gas burner 2 is substantially a double pipe, and the inner space is connected to one end of the introduction pipe 5.

、この導入管5の途中には、金属粉末を供給するホッパ
6が設けられ、ホッパ6^ガスバーナ2の間の導入管5
にはポールバルブ7が設けられている。
A hopper 6 for supplying metal powder is provided in the middle of the introduction pipe 5, and the introduction pipe 5 between the hopper 6 and the gas burner 2
is provided with a pole valve 7.

このボールバルブ7は制御装置8により開閉を制御され
る。この導入管5の他端は金属粉末のキャリアガスとし
ての水素供給源と接続されており、バルブ9によりその
供給が1iIJrIIIされる。
The opening and closing of this ball valve 7 is controlled by a control device 8. The other end of the introduction pipe 5 is connected to a hydrogen supply source as a carrier gas for metal powder, and the supply is controlled by a valve 9.

ガスバーナ2の外側の空間部には、第1のガス管10と
第2のガス管11の一端が開口しており、第1のガス管
10の他端は酸素供給源と、第2のガス管11の他端は
水素供給源と接続され、それぞれバルブ121.13を
介してガス量が制御される。
One end of a first gas pipe 10 and a second gas pipe 11 are opened in the space outside the gas burner 2, and the other end of the first gas pipe 10 is connected to an oxygen supply source and a second gas pipe. The other end of the tube 11 is connected to a hydrogen supply source and the gas amount is controlled via a respective valve 121.13.

また、第3のガス管14の一端は上記燃焼筒3の内部に
開口しており、他端はアルゴンと酸素の供給源と接続さ
れ、バルブ15によりガス量が制御される。
Further, one end of the third gas pipe 14 opens into the interior of the combustion tube 3, and the other end is connected to a supply source of argon and oxygen, and the gas amount is controlled by a valve 15.

燃焼筒3の上方に位置する密閉容器1の上部には、排気
管1Gが取り付けられ、この排気管16の途中には電気
集塵器17が取り付けられている。
An exhaust pipe 1G is attached to the upper part of the closed container 1 located above the combustion tube 3, and an electrostatic precipitator 17 is attached in the middle of this exhaust pipe 16.

かかる酸化物超微粒子接続装置を用いて酸化物超微粒子
の製造を行った。
Ultrafine oxide particles were produced using this ultrafine oxide particle connection device.

まず、ホッパ6に原料となる金属粉末を装填する0次い
で、バルブ15を開き、第3のガス管14を介してアル
ゴンガスと酸素の混合ガスを密閉容器1内へ導入し、大
気と置換させる。このとき、アルゴンガスと酸素の体積
比は4:1とした。続いて、バルブ12.13を開き、
第1のガス管10から酸素を20Il/l1inで、ま
た第2のガス管11から水素を10j2/sinでガス
バーナ2に供給し、点火装置4により着火して酸水素炎
からなる燃焼炎を形成する。次いで、ホッパ6の下部を
開き、制御語W8によりボールバルブ7を0.5 秒間
隔で開閉しつつ、バルブ9を開いて1眩/−のガス圧を
かけた水素で金属粉末をガスバーナ2に供給する。する
と、金属粉末はガスバーナ2の火口から舞い上がって粉
塵雲を形成する。この粉塵雲は上記燃焼炎18により着
火し、爆燃により大量の酸化物超微粒子が得られる。合
成により生じた酸化物超微粒子の雲19を電気集塵器1
7に通すことにより酸化物超微粒子が捕集される。
First, metal powder as a raw material is loaded into the hopper 6. Next, the valve 15 is opened, and a mixed gas of argon gas and oxygen is introduced into the closed container 1 through the third gas pipe 14 to replace it with the atmosphere. . At this time, the volume ratio of argon gas and oxygen was set to 4:1. Next, open valves 12 and 13,
Oxygen is supplied from the first gas pipe 10 at a rate of 20 Il/l1 inch, and hydrogen is supplied from the second gas pipe 11 at a rate of 10 j2/sin to the gas burner 2, and ignited by the ignition device 4 to form a combustion flame consisting of an oxyhydrogen flame. do. Next, the lower part of the hopper 6 is opened, and while the ball valve 7 is opened and closed at 0.5 second intervals using the control word W8, the valve 9 is opened and the metal powder is heated to the gas burner 2 using hydrogen with a gas pressure of 1/-. supply Then, the metal powder flies up from the crater of the gas burner 2 and forms a dust cloud. This dust cloud is ignited by the combustion flame 18, and a large amount of ultrafine oxide particles are obtained by deflagration. The cloud 19 of ultrafine oxide particles generated by the synthesis is transferred to an electrostatic precipitator 1.
7 to collect ultrafine oxide particles.

かかる酸化物超微粒子の製造を、金属粉末の材料を後掲
の第1表に示すように、種々変えて行った。この結果得
られた酸化物超微粒子を透過型電子顕微鏡(TEM)で
観察し、粒径、形状、結晶性を調べた。この結果を第1
表に併せ示す。
The production of such ultrafine oxide particles was carried out using various metal powder materials as shown in Table 1 below. The resulting ultrafine oxide particles were observed using a transmission electron microscope (TEM) to examine particle size, shape, and crystallinity. This result is the first
Also shown in the table.

第1表から明らかなように、本実施例によれば、球形ま
たは球状多面体をした粒径5〜1100nの酸化物超微
粒子が得られるのが判る。
As is clear from Table 1, according to this example, ultrafine oxide particles having a particle size of 5 to 1100 nm and having a spherical or spherical polyhedral shape can be obtained.

また、従来技術のところで述べた放電着火したものに比
べ、合成率が30%以上向上した。
Furthermore, the synthesis rate was improved by more than 30% compared to the one using discharge ignition as described in the section of the prior art.

以上、本発明の特定の実施例について説明したが、本発
明は、この実施例に限定されるものではなく、特許請求
の範囲に記載の範囲内で種々の実施態様が包含されるも
のである。
Although specific embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and includes various embodiments within the scope of the claims. .

第1表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に使用した酸化物超微粒子製造
装置の概要を示す概略構成図である。 1・−・・−密閉容器 2・・・−・・ガスバーナ 3−一一一・・燃焼筒 4−・一点火装置 5・−・−・・導入管 6・−・−ホッパ ?−−−−−−ボールバルプ 8−−−−−・制御装置 9.12.13.15−・・−バルブ 10・・−・−第1のガス管 11・−・・・第2のガス管 14−・−−−一第3のガス管 16・−・・排気管 17−−−−・−電気集塵器 1s−−−−−一燃焼炎 19−−−−−一酸化物超微粒子の雲
FIG. 1 is a schematic diagram showing the outline of an oxide ultrafine particle manufacturing apparatus used in an example of the present invention. 1...- Sealed container 2... Gas burner 3-111 Combustion tube 4--1 Ignition device 5--Introduction pipe 6--Hopper? --------Ball valve 8----Control device 9.12.13.15---Valve 10---First gas pipe 11---Second gas pipe 14--Third gas pipe 16--Exhaust pipe 17--Electrostatic precipitator 1s--Combustion flame 19--Monoxide ultrafine particles cloud of

Claims (1)

【特許請求の範囲】[Claims] (11酸素を含む雰囲気内においてバーナにより化学炎
を形成し、この化学炎中に目的とする酸化物超微粒子の
一部を形成する金属粉末を粉塵雲が形成される程度の量
投入し、爆燃を起こさせて酸化物超微粒子を合成する9
とを特徴とする酸化物超微粒子の製造方法。
(11) Form a chemical flame with a burner in an oxygen-containing atmosphere, add metal powder that will form part of the target oxide ultrafine particles in an amount sufficient to form a dust cloud, and deflagrate. Synthesizing ultrafine oxide particles by causing
A method for producing ultrafine oxide particles, characterized by:
JP59109108A 1984-02-09 1984-05-29 Preparation of ultrafine particle of oxide Granted JPS60255602A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59109108A JPS60255602A (en) 1984-05-29 1984-05-29 Preparation of ultrafine particle of oxide
DE8585101305T DE3581293D1 (en) 1984-02-09 1985-02-07 METHOD FOR PRODUCING ULTRAFINE CERAMIC PARTICLES.
EP85101305A EP0151490B1 (en) 1984-02-09 1985-02-07 Process for producing ultra-fine ceramic particles
US06/699,909 US4705762A (en) 1984-02-09 1985-02-08 Process for producing ultra-fine ceramic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59109108A JPS60255602A (en) 1984-05-29 1984-05-29 Preparation of ultrafine particle of oxide

Publications (2)

Publication Number Publication Date
JPS60255602A true JPS60255602A (en) 1985-12-17
JPH0155201B2 JPH0155201B2 (en) 1989-11-22

Family

ID=14501769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59109108A Granted JPS60255602A (en) 1984-02-09 1984-05-29 Preparation of ultrafine particle of oxide

Country Status (1)

Country Link
JP (1) JPS60255602A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205604A (en) * 1985-03-07 1986-09-11 Res Dev Corp Of Japan Production of ultrafine particle of oxide and device therefor
JPS6227308A (en) * 1985-07-24 1987-02-05 Nippon Denso Co Ltd Method and apparatus for producing ultrafine particle
JPS6246905A (en) * 1985-08-26 1987-02-28 Res Dev Corp Of Japan Method and apparatus for producing ultrafine oxide particles
JPS6424004A (en) * 1987-07-15 1989-01-26 Toyota Motor Corp Production of oxide powder
US5256720A (en) * 1991-05-27 1993-10-26 Shin-Etsu Chemical Co., Ltd. Polypropylene resin composition
JP2003034521A (en) * 2001-07-18 2003-02-07 Denki Kagaku Kogyo Kk Method for manufacturing fine spherical silica powder
JP2006022278A (en) * 2004-07-09 2006-01-26 Dow Corning Toray Co Ltd Room temperature-curable organopolysiloxane composition and electric/electronic apparatus
WO2007142047A1 (en) 2006-06-09 2007-12-13 Tokuyama Corporation Dry-process fine silica particle
JP2008120673A (en) * 2006-10-19 2008-05-29 Showa Denko Kk Spherical inorganic oxide powder, method for producing the same and use thereof
WO2009017058A1 (en) * 2007-08-01 2009-02-05 Denki Kagaku Kogyo Kabushiki Kaisha Silica powder, method for production of the same, and composition using the same
JP2010202490A (en) * 2009-02-04 2010-09-16 Ngk Insulators Ltd Method for producing transition metal oxide having spinel structure
JP2010538811A (en) * 2007-09-10 2010-12-16 エスデー リ−ツェンスフェルヴェールトゥングスゲゼルシャフト エムベーハー ウント コー. カーゲー Optimization method of chemical treatment considering safety of chemical treatment plant
JP2010540384A (en) * 2007-09-28 2010-12-24 セーウーエフィ−コンパニア ウニアン ファブリル エスィジェーペーエスィ,ソシエダッド アノニマ Nanocrystalline spherical oxide ceramics, synthesis method and use thereof
EP2589580A1 (en) 2011-11-01 2013-05-08 Shinano Electric Refining Co., Ltd. A spherical alpha-type crystal silicon carbide, the method for manufacturing the same, and a sintered body as well as an organic resin-based composite made from the silicon carbide
EP2857375A1 (en) 2013-10-07 2015-04-08 Shinano Electric Refining Co., Ltd. Spherical crystalline silicon carbide powder and a method for manufacturing same
JP2016023853A (en) * 2014-07-18 2016-02-08 大陽日酸株式会社 Inorganic spheroidized particle manufacturing burner, inorganic spheroidized particle manufacturing device, inorganic spheroidized particle manufacturing method and inorganic spheroidized particle
KR102103119B1 (en) 2019-02-27 2020-04-21 가부시키가이샤 아도마텍쿠스 Method of manufacturing metal oxide particle material
WO2021049154A1 (en) * 2019-09-11 2021-03-18 株式会社フジミインコーポレーテッド Polishing composition and polishing method using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6506940B2 (en) * 2014-10-15 2019-04-24 株式会社アドマテックス Method of producing inorganic filler, method of producing resin composition, and method of producing molded article
JP2016121294A (en) 2014-12-25 2016-07-07 信越化学工業株式会社 Liquid underfill material composition for semiconductor encapsulation, and flip chip type semiconductor device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553722B2 (en) * 1985-03-07 1993-08-10 Shingijutsu Kaihatsu Jigyodan
JPS61205604A (en) * 1985-03-07 1986-09-11 Res Dev Corp Of Japan Production of ultrafine particle of oxide and device therefor
JPS6227308A (en) * 1985-07-24 1987-02-05 Nippon Denso Co Ltd Method and apparatus for producing ultrafine particle
JPS6246905A (en) * 1985-08-26 1987-02-28 Res Dev Corp Of Japan Method and apparatus for producing ultrafine oxide particles
JPH0577601B2 (en) * 1985-08-26 1993-10-27 Shingijutsu Kaihatsu Jigyodan
JPS6424004A (en) * 1987-07-15 1989-01-26 Toyota Motor Corp Production of oxide powder
US5256720A (en) * 1991-05-27 1993-10-26 Shin-Etsu Chemical Co., Ltd. Polypropylene resin composition
JP2003034521A (en) * 2001-07-18 2003-02-07 Denki Kagaku Kogyo Kk Method for manufacturing fine spherical silica powder
JP2006022278A (en) * 2004-07-09 2006-01-26 Dow Corning Toray Co Ltd Room temperature-curable organopolysiloxane composition and electric/electronic apparatus
US7803341B2 (en) 2006-06-09 2010-09-28 Tokuyama Corporation Fine dry silica particles
WO2007142047A1 (en) 2006-06-09 2007-12-13 Tokuyama Corporation Dry-process fine silica particle
JP2008120673A (en) * 2006-10-19 2008-05-29 Showa Denko Kk Spherical inorganic oxide powder, method for producing the same and use thereof
WO2009017058A1 (en) * 2007-08-01 2009-02-05 Denki Kagaku Kogyo Kabushiki Kaisha Silica powder, method for production of the same, and composition using the same
US8480990B2 (en) 2007-08-01 2013-07-09 Denki Kagaki Kogyo Kabushiki Kaisha Silica powder, process for its production, and composition employing it
JP5380290B2 (en) * 2007-08-01 2014-01-08 電気化学工業株式会社 Method for producing silica powder
JP2010538811A (en) * 2007-09-10 2010-12-16 エスデー リ−ツェンスフェルヴェールトゥングスゲゼルシャフト エムベーハー ウント コー. カーゲー Optimization method of chemical treatment considering safety of chemical treatment plant
JP2010540384A (en) * 2007-09-28 2010-12-24 セーウーエフィ−コンパニア ウニアン ファブリル エスィジェーペーエスィ,ソシエダッド アノニマ Nanocrystalline spherical oxide ceramics, synthesis method and use thereof
JP2010202490A (en) * 2009-02-04 2010-09-16 Ngk Insulators Ltd Method for producing transition metal oxide having spinel structure
EP2589580A1 (en) 2011-11-01 2013-05-08 Shinano Electric Refining Co., Ltd. A spherical alpha-type crystal silicon carbide, the method for manufacturing the same, and a sintered body as well as an organic resin-based composite made from the silicon carbide
EP2857375A1 (en) 2013-10-07 2015-04-08 Shinano Electric Refining Co., Ltd. Spherical crystalline silicon carbide powder and a method for manufacturing same
JP2016023853A (en) * 2014-07-18 2016-02-08 大陽日酸株式会社 Inorganic spheroidized particle manufacturing burner, inorganic spheroidized particle manufacturing device, inorganic spheroidized particle manufacturing method and inorganic spheroidized particle
KR102103119B1 (en) 2019-02-27 2020-04-21 가부시키가이샤 아도마텍쿠스 Method of manufacturing metal oxide particle material
WO2021049154A1 (en) * 2019-09-11 2021-03-18 株式会社フジミインコーポレーテッド Polishing composition and polishing method using same

Also Published As

Publication number Publication date
JPH0155201B2 (en) 1989-11-22

Similar Documents

Publication Publication Date Title
JPS60255602A (en) Preparation of ultrafine particle of oxide
US4705762A (en) Process for producing ultra-fine ceramic particles
Akashi Progress in thermal plasma deposition of alloys and ceramic fine particles
US4719095A (en) Production of silicon ceramic powders
JPH05193928A (en) Production of silica glass powder
US4917866A (en) Production process of silicon carbide short fibers
JPS63147812A (en) Production of silicon carbide powder
JP3225073B2 (en) Method for producing metal oxide powder
JP3723022B2 (en) Method for producing amorphous silica fine particles
JPS60166025A (en) Preparation of ceramic ultrafine particle
JP2600181B2 (en) Method for producing oxide powder
JPH052604B2 (en)
EP1204591B1 (en) Production of silica particles
JPS63185803A (en) Spherical compound metal oxide particle and production thereof
KR100257478B1 (en) Method for forming a tungsten powder having a high degree of purity from (5(nh4)2o 12wo3 5h2o) by self-propargating high-temperature synthesis
JPH05193908A (en) Production of metal oxide powder
JPH01286919A (en) Production of fine particle of zinc oxide
JPS63129009A (en) Production of metallic silicon
JPS63147823A (en) Production of zinc oxide fine particle
JPH0723201B2 (en) Method for producing complex oxide powder
JP2929815B2 (en) Method for producing carbide powder
KR100273197B1 (en) Method of manufacturing high-purity tungsten powder by self-propagating high-temperature synthesis
JPH01275410A (en) Production of metal oxide fine powder
JPS5950003A (en) Manufacture of fine metallic oxide
JPH0723202B2 (en) Method for producing complex oxide powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term