WO2021049154A1 - Polishing composition and polishing method using same - Google Patents

Polishing composition and polishing method using same Download PDF

Info

Publication number
WO2021049154A1
WO2021049154A1 PCT/JP2020/027089 JP2020027089W WO2021049154A1 WO 2021049154 A1 WO2021049154 A1 WO 2021049154A1 JP 2020027089 W JP2020027089 W JP 2020027089W WO 2021049154 A1 WO2021049154 A1 WO 2021049154A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
alumina particles
polishing composition
polished
less
Prior art date
Application number
PCT/JP2020/027089
Other languages
French (fr)
Japanese (ja)
Inventor
正悟 大西
康登 石田
僚太 前
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020048332A external-priority patent/JP7437199B2/en
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Publication of WO2021049154A1 publication Critical patent/WO2021049154A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition and a polishing method using the same.
  • CMP chemical mechanical polishing
  • This CMP method is also used for polishing the surface of a resin, and by applying the CMP method, a resin product with few surface defects can be obtained. From this, various studies have been made as polishing compositions for polishing various materials including resins.
  • Japanese Unexamined Patent Publication No. 2016-183212 discloses a polishing composition for polishing an object to be polished, which contains a resin having high rigidity and high strength. More specifically, Japanese Patent Application Laid-Open No. 2016-183212 has high rigidity and high strength due to a polishing composition containing an abrasive grain having a Mohs hardness and a surface acid amount of a predetermined value or more and a dispersion medium. It is disclosed that even a resin can be polished at a high polishing rate. Further, Japanese Patent Application Laid-Open No. 2016-183212 also discloses that the abrasive grains preferably contain ⁇ -alumina as a main component from the viewpoint of polishing speed.
  • Japanese Patent Application Laid-Open No. 2007-063442 discloses a polishing composition of a synthetic resin object to be polished. More specifically, Japanese Patent Application Laid-Open No. 2007-063442 describes polishing of synthetic resins by using a polishing composition containing a polyurethane-based polymer surfactant having a specific structure and having a predetermined viscosity range. It is disclosed that the reduction of the composition for use and the reduction of the polishing ability can be suppressed. Further, Japanese Patent Application Laid-Open No. 2007-063442 also discloses that the polishing composition preferably contains ⁇ -alumina as abrasive grains from the viewpoint of polishing speed.
  • an object of the present invention is to provide a means capable of achieving a higher polishing rate than the conventional one in a polishing composition used for polishing various materials, particularly various materials including a resin.
  • the present inventors have conducted diligent studies to solve the above problems. As a result, the present inventors have found that a remarkable effect of improving the polishing rate can be obtained by using alumina particles having a fracture strength of a predetermined value or more as the abrasive grains, and have completed the present invention.
  • a polishing composition having a breaking strength of the alumina particles of 0.5 GPa or more.
  • alumina particles and a dispersion medium A polishing composition in which the alumina particles are alumina particles produced by an explosive combustion method.
  • XY indicating a range means “X or more and Y or less”.
  • the operation and physical properties are measured under the conditions of room temperature (range of 20 ° C. or higher and 25 ° C. or lower) / relative humidity of 40% RH or more and 50% RH or less.
  • (meth) acrylate is a general term for acrylate and methacrylate.
  • compounds containing (meta) such as (meth) acrylic acid are a general term for compounds having "meta” in their names and compounds having no "meta”.
  • One embodiment of the present invention relates to a polishing composition containing alumina particles and a dispersion medium and having a breaking strength of the alumina particles of 0.5 GPa or more.
  • another embodiment of the present invention relates to a polishing composition containing alumina particles and a dispersion medium, wherein the alumina particles are alumina particles produced by an explosive combustion method.
  • a means capable of achieving a higher polishing rate than before can be provided.
  • the polishing composition according to one embodiment of the present invention has alumina particles having a breaking strength of a predetermined value or more.
  • the fracture strength of the abrasive grains is an index of the amount of deformation of the abrasive grains that can be tolerated when stress is applied, but the fracture strength of the abrasive grains having a fracture strength of a predetermined value or more is unlikely to cause fracture due to deformation when stress is applied.
  • the polishing composition according to another embodiment of the present invention has alumina particles produced by an explosive combustion method. Alumina particles produced by the explosive combustion method have a large amount of deformability and sphericity when stress is applied, and are unlikely to be destroyed by deformation when stress is applied.
  • alumina particles have sufficient hardness. Therefore, when these alumina particles are used as the abrasive grains, the contact area between the abrasive grains and the object to be polished becomes larger due to the deformation of the abrasive grains when stress is applied, and the elastic force of the abrasive grains causes the object to be polished. A large stress will be transmitted.
  • the polishing composition according to the present invention contains alumina particles as abrasive grains.
  • the alumina particles are alumina particles produced by an explosive combustion method described later, or are alumina particles having a breaking strength of 0.5 GPa or more.
  • Abrasive grains mechanically polish the object to be polished and improve the polishing speed. Since the alumina particles have sufficient hardness, the effect of improving the polishing rate, particularly the effect of improving the polishing rate of various materials including resin is high.
  • the breaking strength of the alumina particles is not particularly limited, but is preferably 0.5 GPa or more, more preferably 0.6 GPa or more, further preferably 0.65 GPa or more, and 0.7 GPa or more. It is even more preferably 0.75 GPa or more, and even more preferably 0.8 GPa or more. Within the above range, the polishing speed is further improved.
  • the breaking strength of the alumina particles is preferably 2 GPa or less. Within the above range, the production suitability is further improved while maintaining a high polishing rate.
  • a preferable example of the breaking strength of the alumina particles is 0.8 GPa or more and 2 GPa or less.
  • a preferable example of the breaking strength of the alumina particles is 0.8 GPa or more and 2 GPa or less.
  • a preferable example of the breaking strength of the alumina particles is 0.7 GPa or more and 2 GPa or less, more preferably 0.75 GPa or more and 2 GPa or less, and further preferably 0.8 GPa or more. It is 2 GPa or less.
  • the object to be polished contains an acrylic resin
  • a preferable example of the breaking strength of the alumina particles is 0.7 GPa or more and 2 GPa or less, and more preferably 0.75 GPa or more and 2 GPa or less.
  • the breaking strength of alumina particles can be controlled by the manufacturing method and manufacturing conditions.
  • the alumina particles produced by the explosive combustion method described later have higher breaking strength.
  • the value of the fracture strength can be increased by pretreating the powder fluid of the metal alumina as the pre-raw material at a heating temperature of more than 1200 ° C. Further, from the viewpoint of ease of control, the heating temperature is preferably between 1250 and 1275 ° C.
  • the fracture strength of alumina particles is "Rapid test of tensile strength of rock by unshaped test piece, Yoshio Hiramatsu, Yukitoshi Oka, Hideo Kiyama, Journal of Japan Mining Association, Vol. 81, No. 932, 1024-1030, 1965". Can be calculated with reference to. Specifically, when particles (particularly spherical particles) are compressed, compressive stress is distributed near the loading point, but tensile stress is distributed almost all over the other parts. Therefore, the fracture strength of the alumina particles can be calculated according to the following formula by recording the obtained load-push displacement diagram and assuming that the point where the displacement increases rapidly is the point where the particles are fractured on a large scale.
  • the method for measuring the average particle size d will be described later in the description of the average particle size. Details of the method for measuring and calculating the breaking strength of alumina particles will be described in Examples.
  • the breaking strength of the alumina particles calculated based on the above measurement can be obtained by taking out the alumina particles from the prepared polishing composition even if the powdered alumina particles which are the raw materials of the polishing composition are measured. Even if measured, the values are the same.
  • the alumina particles are preferably particles having a large sphericity, and more preferably spherical particles.
  • the spherical particle represents a particle having a sphericity of 90% or more. With spherical particles, the polishing rate is further improved. It is presumed that spherical particles are less likely to be deformed when stress is applied or to be destroyed due to deformation, and can transmit a larger stress to the object to be polished.
  • the sphericity of the alumina particles is preferably more than 50%, more preferably 60% or more, further preferably 65% or more, still more preferably 70% or more. It is preferably 80% or more, and extremely preferably 90% or more. Within the above range, the polishing speed is further improved. The sphericity of the alumina particles is preferably 99.9% or less. Within the above range, the production suitability is further improved.
  • a preferable example of the sphericity of the alumina particles is 98% or more and less than 99.5%.
  • a preferable example of the sphericity of the alumina particles is 98% or more and less than 99.5%.
  • a preferable example of the sphericity of the alumina particles is 90% or more and 99.9% or less, more preferably 95% or more and 99.9% or less, and further preferably. , 98% or more and less than 99.5%.
  • the object to be polished contains an acrylic resin
  • a preferable example of the sphericity of the alumina particles is 99.5% or more and 99.9% or less, and more preferably 99.5% or more and 99.9% or less. ..
  • the sphericity of alumina particles can be controlled by the manufacturing method and manufacturing conditions.
  • the alumina particles produced by the explosive combustion method described later have a higher sphericity, and the sphericity generally exceeds 50%.
  • the value of sphericity can be increased by lowering the heating temperature after the detonation reaction to 1225 ° C. or lower.
  • a known device / method such as a rotary kiln can be adopted.
  • sphericity of alumina particles 100 particles are randomly selected from the images measured by a scanning electron microscope (SEM) (manufactured by Hitachi High-Tech Co., Ltd., product name: SU8000), and the average major axis and average minor axis of these particles are measured. After calculating, it can be calculated according to the following formula. Details of the method for measuring and calculating the sphericity of the alumina particles will be described in Examples.
  • the sphericity calculated based on the above measurement can be measured by taking out the alumina particles from the prepared polishing composition even if the sphericity is measured in the state of powdered alumina particles which are the raw materials of the polishing composition. Even so, the values are equivalent.
  • the alumina particles are not particularly limited as long as they are alumina particles produced by the explosive combustion method or the alumina particles have a breaking strength of 0.5 GPa or more.
  • alumina particles containing at least one selected from ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina and ⁇ -alumina can be mentioned.
  • alumina particles containing a ⁇ phase are preferable as the crystal phase
  • alumina particles containing a ⁇ phase as the main crystal phase alumina containing ⁇ -alumina as a main component. It is more preferable that it is a particle).
  • the alumina particles “set the ⁇ phase as the crystal phase”. Including ". Further, in the present specification, when the ⁇ conversion rate described later is more than 50%, it is determined that the alumina particles "include the ⁇ phase as the main crystal phase” (upper limit 100%). By using alumina particles containing a ⁇ phase as the crystal phase, the polishing rate is further improved, and when the crystal phase is mainly the ⁇ phase, the effect is further enhanced.
  • ⁇ phase has a large deformable amount when stress is applied and contributes to the improvement of fracture strength.
  • the pregelatinization rate of the alumina particles is preferably less than 50%, more preferably less than 45%, and further preferably less than 40% (lower limit 0%). Within the above range, the polishing speed is further improved.
  • the ⁇ phase has high hardness, it tends to be brittle, and it is presumed that keeping the content below a certain level contributes to the improvement of fracture strength when stress is applied.
  • the main crystal phase contains a ⁇ phase
  • the hardness is further improved and the polishing speed is further improved.
  • the pregelatinization rate is preferably more than 0% and less than 40%.
  • the type of crystal phase in the alumina particles and the content ratio thereof can be controlled by the production method and production conditions.
  • the alumina particles produced by the explosive combustion method described later have a higher gamma conversion rate and a lower pregelatinization rate.
  • the pregelatinization rate can be lowered by lowering the heating temperature after the detonation reaction to 1225 ° C.
  • the pregelatinization rate and the gamma conversion rate calculated based on the above measurement can be obtained from the prepared polishing composition even if the powdery alumina particles which are the raw materials of the polishing composition are measured. Even if the values are taken out and measured, the values are the same.
  • the average particle size of the alumina particles is not particularly limited, but is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, further preferably 5 ⁇ m or more, and more preferably 8 ⁇ m or more. It is more preferably 10 ⁇ m or more, and particularly preferably 10 ⁇ m or more. Within the above range, the polishing speed is further improved.
  • the average particle size of the alumina particles is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, further preferably 50 ⁇ m or less, further preferably 20 ⁇ m or less, and further preferably 15 ⁇ m or less. Is particularly preferred. Within the above range, defects such as scratches on the object to be polished are further reduced.
  • a preferable example of the average particle size of the alumina particles is 5 ⁇ m or more and 20 ⁇ m or less, and more preferably 12 ⁇ m or more and 20 ⁇ m or less.
  • a preferable example of the average particle size of the alumina particles is 5 ⁇ m or more and 20 ⁇ m or less, and more preferably 12 ⁇ m or more and 20 ⁇ m or less.
  • a preferable example of the average particle size of the alumina particles is 10 ⁇ m or more and 20 ⁇ m or less, and more preferably 12 ⁇ m or more and 20 ⁇ m or less.
  • the object to be polished contains an acrylic resin
  • a preferable example of the average particle size of the alumina particles is 8 ⁇ m or more and 20 ⁇ m or less, and more preferably 8 ⁇ m or more and 10 ⁇ m or less.
  • the average particle size of alumina particles can be measured using a particle size distribution measuring device (Microtrack MT3000II manufactured by Microtrack Bell Co., Ltd.). The details of the method for measuring the average particle size of the alumina particles will be described in Examples.
  • the average particle size obtained based on the above measurement can be measured by using the polishing composition containing the alumina particles even if it is measured by using the powdered alumina particles which are the raw materials of the polishing composition.
  • the values are the same.
  • the content of the alumina particles is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and more preferably 0.5, based on the total mass of the polishing composition. It is more preferably mass% or more, and particularly preferably 2 mass% or more.
  • the content of the alumina particles is preferably 25% by mass or less, more preferably 15% by mass or less, still more preferably 10% by mass or less, based on the total mass of the polishing composition. , 8% by mass or less, and particularly preferably 6% by mass or less. Within the above range, the occurrence of defects such as scratches on the object to be polished is further reduced.
  • the method for producing the alumina particles is not particularly limited, and a known method can be appropriately used.
  • the method for producing the alumina particles is preferably a method for obtaining alumina particles having a higher breaking strength, for example, alumina particles having a breaking strength of 0.5 GPa or more.
  • the explosion method VMC method: Vaporized Metal Combustion Method
  • the alumina particles are preferably alumina particles produced by the explosive combustion method.
  • the explosive combustion method can obtain alumina particles having high fracture strength and sphericity, and the polishing speed is further improved by using the particles.
  • the explosive combustion method is "a chemical flame is formed in an atmosphere containing oxygen, and a metal powder that forms a part of the target oxide ultrafine particles is added into the chemical flame in an amount sufficient to form a dust cloud. , A method of synthesizing ultrafine oxide particles by causing explosion. " Details of the explosion method are described in known documents such as JP-A-60-255602 (corresponding to US Pat. No. 4,705,762), and alumina particles are produced with reference to these descriptions. can do.
  • the polishing composition according to the present invention contains a dispersion medium.
  • the dispersion medium disperses or dissolves each component.
  • the dispersion medium preferably contains water. Further, from the viewpoint of preventing the influence of impurities on other components of the polishing composition, it is preferable to use water having the highest possible purity. Specifically, pure water, ultrapure water, or distilled water from which impurity ions have been removed with an ion exchange resin and then foreign substances have been removed through a filter is preferable. Further, as the dispersion medium, an organic solvent or the like may be further contained for the purpose of controlling the dispersibility of other components of the polishing composition.
  • the polishing composition according to one embodiment of the present invention preferably further contains a pH adjuster.
  • the pH adjuster can contribute to the pH adjustment of the polishing composition by selecting the type and the amount of the addition.
  • the pH adjusting agent is not particularly limited as long as it is a compound having a pH adjusting function, and known compounds can be used.
  • Examples of the pH adjuster include acids and alkalis.
  • the acid either an inorganic acid or an organic acid may be used.
  • the inorganic acid is not particularly limited, and examples thereof include sulfuric acid, nitric acid, boric acid, carbonic acid, hypophosphorous acid, phosphoric acid, and phosphoric acid.
  • the organic acid is not particularly limited, and is, for example, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentane.
  • Acids n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, Examples thereof include carboxylic acids such as pimelic acid, maleic acid, phthalic acid, malic acid, tartaric acid, citric acid and lactic acid, and sulfonic acids such as methanesulfonic acid, ethanesulfonic acid and isethionic acid. Among these, inorganic acids are preferable, and nitric acid is more preferable.
  • the alkali is not particularly limited, and examples thereof include hydroxides of alkali metals such as potassium hydroxide, quaternary ammonium salts such as ammonia, tetramethylammonium and tetraethylammonium, and amines such as ethylenediamine and piperazine. Of these, ammonia is preferable.
  • the pH adjuster can be used alone or in combination of two or more.
  • the content of the pH adjuster is not particularly limited, and it is preferable that the pH value is an amount within a preferable range described later.
  • the polishing composition according to one embodiment of the present invention preferably further contains a processing accelerator.
  • a processing accelerator a graft polymer having an anionic functional group in the stem polymer portion (hereinafter, simply referred to as “graft polymer A”) is preferable.
  • graft polymer A When the graft polymer A is used in combination with the above-mentioned alumina particles which are abrasive grains, it acts to improve the polishing rate, particularly when the material to be polished is a resin. It is presumed that the reason for this is that the graft polymer A adjusts the zeta potential and wettability of the object to be polished, and facilitates the contact between the alumina abrasive grains and the object to be polished.
  • the anionic functional group contained in the graft polymer A is not particularly limited, and is, for example, a carboxy group or a salt group thereof, a sulfo group or a salt group thereof, a phosphonic acid group or a salt group thereof, a phosphoric acid group or a salt thereof.
  • the stem polymer portion is preferably a (co) polymer containing a structural unit derived from a monomer having a carboxy group or a salt group thereof.
  • a (co) polymer containing at least a structural unit derived from (meth) acrylic acid or a salt thereof.
  • a (co) polymer means a generic term including a copolymer and a homopolymer.
  • the (co) polymer containing at least a structural unit derived from (meth) acrylic acid or a salt thereof may further contain a structural unit derived from another monomer.
  • the other monomer is not particularly limited, and a monomer having a carbon-carbon double bond such as a known monomer having a vinyl group or a known monomer having a (meth) acryloyl group can be used. A preferred example is given.
  • alkyl esters of (meth) acrylic acids such as methyl (meth) acrylate and ethyl (meth) acrylate
  • Amino alkyl ester of (meth) acrylic acid monoester of (meth) acrylic acid such as hydroxyethyl methacrylate
  • vinyl alkyl ether such as vinyl methyl ether and vinyl ethyl ether
  • vinyl sulfonic acid or a salt thereof styrene sulfonic acid Or a salt thereof; allyl sulfonic acid or a salt thereof; metharyl sulfonic acid or a salt thereof
  • (meth) acrylamide alkyl sulfonic acid or a salt thereof vinyl acetate; vinyl esterate; N-vinylimidazole; N-vinylacetamide; N-vinyl Formamide; N-vinylcaprolactam; N-vinylcarbazole;
  • the form of the above poly (meth) acrylate salt and the form when the other monomer is a salt are not particularly limited, but are preferably an alkali metal salt or an ammonium salt.
  • the number of anionic functional groups contained in the graft polymer A is not particularly limited as long as it is 1 or more per stem polymer portion, but it is preferably 2 or more.
  • the branch portion (graft chain) constituting the graft polymer A is preferably a polymer containing a polyoxyalkylene chain such as a polyoxyethylene chain, a polyoxypropylene chain, and a polyoxybutylene chain in the molecule.
  • a polyoxyalkylene chain such as a polyoxyethylene chain, a polyoxypropylene chain, and a polyoxybutylene chain in the molecule.
  • the branch portion is such a polymer, the effect of improving the polishing speed, particularly the polishing speed when the material to be polished is a resin, is further enhanced.
  • the polymer containing a polyoxyalkylene chain in the molecule that can form a branch portion is not particularly limited, but for example, it has a hydroxy group at the terminal and undergoes an esterification reaction with the carboxy group of the stem polymer portion, or the stem.
  • Examples thereof include a polymer capable of forming a graft bond by an addition reaction with a hydroxy group in the polymer portion.
  • Specific examples thereof are not particularly limited, but are, for example, oxyalkylenes such as polyethylene glycol, polypropylene glycol, polybutylene glycol, polyoxyethylene alkyl ether, polyoxypropylene alkyl ether, polyoxyethylene alkenyl ether, and polyoxypropylene alkenyl ether.
  • Examples include (co) polymers having a group.
  • a polymer containing a polyoxyalkylene chain in the molecule that can form a branch portion for example, a polymer having an amino group at the terminal and forming a graft bond by an amidation reaction with a carboxy group of the stem polymer portion is formed.
  • examples include the polymer to be obtained. Specific examples thereof are not particularly limited, and examples thereof include polyoxyethylene alkylamines and polyoxypropylene alkylamines. From these facts, an example of a preferable graft polymer A is a graft polymer having an anionic functional group in the stem polymer portion and a polyoxyalkylene chain in the branch portion.
  • the number of branch portions of the graft polymer A is not particularly limited as long as it is one or more for one trunk polymer portion, but it is preferably two or more.
  • graft polymer A is a polymer containing a repeating unit represented by the following general formula (1).
  • R 1 independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
  • R 2 independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms.
  • R 3 , R 4 , and R 5 are each independently selected from -C 2 H 4 O-, -C 3 H 6 O-, and -C 4 H 8 O-, respectively.
  • Represents a unit R 6 independently represents a hydrogen atom or a carboxy group, respectively.
  • A is an independently single bond, -O-, -COO-, an oxyalkylene group having 1 to 9 carbon atoms (-C q H 2q O- (q is an arbitrary integer of 1 to 9)), Represents an amide group (-CONH-), or -NH- l, m, and n independently represent arbitrary integers from 0 to 100, and l + m + n> 0. * Represents a bond.
  • graft polymer A in addition to the repeating unit represented by the above general formula (1), a polymer further containing at least one of the repeating units represented by the following general formulas (2) to (4) may be used. Can be mentioned.
  • R 7 independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
  • R 8 independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms.
  • A'independently represents a single bond, -O-, or -NH-, respectively.
  • the bond * is bonded to another repeating unit or a hydrogen atom.
  • the graft polymer A is a polymer containing both the repeating unit represented by the general formula (1) and the repeating unit represented by at least one of the general formulas (2) to (4), the moles thereof.
  • the weight average molecular weight of the graft polymer A is not particularly limited, but is preferably 500 or more, more preferably 1,000 or more, further preferably 5,000 or more, and particularly preferably 7,000 or more. Within the above range, the adhesion rate of the graft polymer A to the base material becomes higher, so that the expected surface characteristics of the base material can be obtained better.
  • the weight average molecular weight of the graft polymer A is preferably 2,000,000 or less, more preferably 100,000 or less, and even more preferably 30,000 or less. Within the above range, the graft polymer A can be more appropriately removed from the surface of the base material during polishing, so that the expected polishing rate can be obtained more stably.
  • the weight average molecular weight can be determined by gel permeation chromatography (GPC) in terms of polyethylene glycol using a GPC device (model: Prominence + ELSD detector (ELSD-LTII) manufactured by Shimadzu Corporation) or the like. The details of the method for measuring the weight average molecular weight will be described in Examples.
  • a synthetic product or a commercially available product may be used as the processing accelerator.
  • Examples of commercially available products include, but are not limited to, Marialim (registered trademark) AKM0531, SC0505K, SC0708A, SC1015F manufactured by NOF CORPORATION.
  • the processing accelerator can be used alone or in combination of two or more.
  • the content of the processing accelerator is not particularly limited, but is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, based on the total mass of the polishing composition. It is more preferably 01% by mass or more, further preferably 0.1% by mass or more, and particularly preferably 0.5% by mass or more. Within the above range, the polishing speed, particularly when the material to be polished is a resin, is further improved.
  • the content of the processing accelerator is preferably 25% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less, based on the total mass of the polishing composition. preferable. Within the above range, the contact frequency between the abrasive grains and the base material can be further increased.
  • the ratio of the content of the processing accelerator to the content of the abrasive grains is not particularly limited, but must be 0.01 or more. Is more preferable, 0.05 or more is more preferable, and 0.15 or more is further preferable.
  • the ratio of the content of the processing accelerator to the content of the abrasive grains is preferably 10 or less, and is 5 or less. Is more preferable, and 1.5 or less is further preferable. Within these ranges, the frequency of contact between the abrasive grains and the substrate can be further increased.
  • the polishing composition according to one embodiment of the present invention may further contain other components other than those described above as long as the effects of the present invention are not impaired.
  • the other components are not particularly limited, and components used in known polishing compositions can be used. Examples thereof include wetting agents, surfactants, chelating agents, preservatives, fungicides, dissolved gases, oxidizing agents, reducing agents and the like.
  • the pH of the polishing composition according to one embodiment of the present invention is not particularly limited, but is preferably 1 or more, and more preferably 2 or more. Within the above range, a higher polishing rate can be obtained while considering safety.
  • the pH of the polishing composition is preferably 12 or less, more preferably 10 or less.
  • a resin such as glass epoxy, polyimide, or acrylic is to be polished, it is more preferably 9 or less, further preferably 7 or less, particularly preferably 6 or less, and preferably 4 or less. Most preferred. Within the above range, higher safety and higher polishing rate can be obtained. From this, a preferable example of the pH range is 1 or more and 12 or less, and more preferably 2 or more and 10 or less.
  • a preferable example of the pH range is 2 or more and less than 7, more preferably 2 or more and 5 or less, and further preferably 2 or more and 4 or less.
  • a preferable example of the pH range is 2 or more and less than 7, more preferably 2 or more and 5 or less, and further preferably 2 or more and 4 or less.
  • the pH value can be confirmed with a pH meter (HORIBA, Ltd. model number: LAQUA (registered trademark)).
  • the method for producing the polishing composition is not particularly limited, and for example, a production method including stirring and mixing alumina particles having a breaking strength of 0.5 GPa or more and a dispersion medium can be appropriately adopted. .. Further, for example, a production method including producing alumina particles by an explosive combustion method and stirring and mixing the alumina particles and a dispersion medium can be appropriately adopted. In these methods, the pH adjuster and other components may be further stirred and mixed. Details of each component added are as described above.
  • the production of alumina particles having a breaking strength of 0.5 GPa or more by the explosive combustion method, and the stirring and mixing of the alumina particles and the dispersion medium are performed.
  • Examples include manufacturing methods including.
  • the details of the explosion method are the same as those described above for the polishing composition.
  • the temperature at which each component is mixed is not particularly limited, but is preferably 10 to 40 ° C., and may be heated to increase the dissolution rate. Further, the mixing time is not particularly limited.
  • the polishing composition may be adjusted by diluting the stock solution of the polishing composition with a diluting solution such as water, for example, 10 times or more.
  • the object to be polished by the polishing composition according to the present invention is not particularly limited, and an object to be polished in a known CMP step can be appropriately selected.
  • the Si element-containing material is not particularly limited, and is, for example, polysilicon, amorphous silicon, single crystal silicon, n-type doped single crystal silicon, p-type doped single crystal silicon, Si-based alloys such as SiGe, silicon oxide (SiO 2). ), BD (Black Diamond: SiOCH), FSG (Fluorosilicate Glass), HSQ (Hydrogen silsesquioxane), CYCLOTENE, SiLK, MSQ (Methylsilsesquioxane), Silicon Nitride (SiN), Silicon Carbonide (SiCN), etc. Be done.
  • the silicon oxide is preferably silicon oxide derived from tetraethyl orthosilicate (TEOS).
  • the resin is not particularly limited, and is, for example, an acrylic resin such as methyl poly (meth) acrylate, methyl methacrylate-methyl acrylate copolymer, urethane (meth) acrylate resin; epoxy resin; ultra-high molecular weight polyethylene (UHPE). ) Etc.
  • an acrylic resin such as methyl poly (meth) acrylate, methyl methacrylate-methyl acrylate copolymer, urethane (meth) acrylate resin
  • epoxy resin epoxy resin
  • UHPE ultra-high molecular weight polyethylene
  • olefin resin phenol resin; polyamide resin (PA); polyimide resin (PI); polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyester resin such as unsaturated polyester resin; polycarbonate resin (PC); Polystyrene resin such as otakutic polystyrene (SPS); polynorbornene resin; polybenzoxazole (PBO); polyacetal (POM); modified polyphenylene ether (m-PPE); amorphous polyarylate (PAR); polysulfone (PSF); poly Examples thereof include ether sulfone (PES); polyphenylene sulfide (PPS); polyether ether ketone (PEEK); polyetherimide (PEI); fluororesin; liquid crystal polymer (LCP).
  • PA polyamide resin
  • PI polyimide resin
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • polyester resin such as unsaturated polyester
  • the resin shall also include reinforced plastic in which fibers such as glass fiber and carbon fiber are compounded to improve the strength.
  • the polishing target is preferably a polishing target containing a Si element-containing material or a resin on the polishing surface, and more preferably a polishing target containing silicon oxide or a resin on the polishing surface.
  • the object to be polished contains a resin on the polished surface, and it is even more preferable that the object to be polished contains an epoxy resin, a polyimide resin or an acrylic resin on the polished surface.
  • the object to be polished contains a polyimide resin or an acrylic resin on the polished surface.
  • the resin is calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, titanium oxide, alumina, zinc oxide, silicon dioxide, kaolin, talc, glass beads, seri.
  • Inorganic fillers such as site-active clay, bentonite, and aluminum nitride, and organic fillers such as polyester fine particles, polyurethane fine particles, and rubber fine particles may be further contained.
  • Si element-containing materials or resins can be used alone or in combination of two or more.
  • the object to be polished may contain a material different from the Si element-containing material or resin as the polishing surface.
  • a material different from the Si element-containing material or resin examples include copper (Cu), aluminum (Al), tantalum (Ta), tantalum nitride (TaN), titanium (Ti), titanium nitride (TiN), nickel (Ni), ruthenium (Ru), and the like.
  • Examples thereof include cobalt (Co), tungsten (W), and tungsten nitride (WN).
  • ⁇ Polishing method> Another aspect of the present invention relates to a polishing method for polishing an object to be polished using the above-mentioned polishing composition.
  • Preferred examples of the object to be polished according to this embodiment are the same as those mentioned in the above description of the polishing composition.
  • a general polishing device When polishing the object to be polished using the polishing composition, it can be performed using the equipment and conditions used for normal polishing.
  • Examples of a general polishing device include a single-sided polishing device and a double-sided polishing device.
  • a single-sided polishing device generally, a holder called a carrier is used to hold the object to be polished, and while supplying the polishing composition from above, a surface plate having a polishing pad attached to one side of the object to be polished is formed. One side of the object to be polished is polished by pressing and rotating the surface plate.
  • a holder called a carrier is used to hold an object to be polished, and while supplying a polishing composition from above, a surface plate having a polishing pad attached to the facing surface of the object to be polished. And rotate them in the relative direction to polish both sides of the object to be polished. At this time, polishing is performed by the physical action of friction between the polishing pad and the polishing composition and the object to be polished, and the chemical action that the polishing composition brings to the object to be polished.
  • the polishing pad a porous material such as non-woven fabric, polyurethane, or suede can be used without particular limitation. It is preferable that the polishing pad is processed so that the polishing liquid collects.
  • Polishing conditions include, for example, polishing load, surface plate rotation speed, carrier rotation speed, flow rate of polishing composition, polishing time, and the like. These polishing conditions are not particularly limited, but for example, the polishing load is preferably 0.1 psi or more and 10 psi or less, and more preferably 0.5 psi or more and 8.0 psi or less per unit area of the object to be polished. More preferably, it is 1.0 psi or more and 6.0 psi or less. Generally, the higher the load, the higher the frictional force due to the abrasive grains, and the higher the mechanical processing force, so that the polishing speed increases.
  • the surface plate rotation speed and the carrier rotation speed are preferably 10 to 500 rpm.
  • the supply amount of the polishing composition may be any supply amount (flow rate) that covers the entire polishing object, and may be adjusted according to conditions such as the size of the polishing object.
  • the method of supplying the polishing composition to the polishing pad is also not particularly limited, and for example, a method of continuously supplying the polishing composition with a pump or the like is adopted. Further, the processing time is not particularly limited as long as the desired processing result can be obtained, but it is preferably a shorter time due to the high polishing rate.
  • another aspect of the present invention relates to a method for producing a polished object, which comprises a step of polishing the object to be polished by the above-mentioned polishing method.
  • Preferred examples of the object to be polished according to this embodiment are the same as those mentioned in the above description of the polishing composition.
  • a method for manufacturing an electronic circuit board which comprises polishing an object to be polished containing a resin by the above-mentioned polishing method.
  • the present invention includes the following aspects and forms: 1. 1. Contains alumina particles and a dispersion medium, A polishing composition having a breaking strength of the alumina particles of 0.5 GPa or more; 2. The above 1. Alumina particles are alumina particles produced by the explosive combustion method. The polishing composition according to. 3. 3. Contains alumina particles and a dispersion medium, A polishing composition in which the alumina particles are alumina particles produced by an explosive combustion method; 4. 1. The sphericity of the alumina particles exceeds 50%. ⁇ 3. The polishing composition according to any one of the above; 5. The alumina particles contain a ⁇ phase as a crystal phase, as described above. 1. 1. ⁇ 4. The polishing composition according to any one of the above; 6.
  • the pregelatinization rate of the alumina particles is less than 50%. ⁇ 5.
  • the pH is 1 or more and 12 or less.
  • the breaking strength of the alumina particles is 0.6 GPa or more.
  • the breaking strength of the alumina particles is 2 GPa or less.
  • the sphericity of the alumina particles is 99.9% or less.
  • a graft polymer having an anionic functional group is further contained in the stem polymer portion.
  • ⁇ Abrasive grains> [Manufacturing of abrasive grains A1 to A5]
  • the abrasive grains A1 to A5 shown in Table 1 below were prepared by the explosive combustion method with reference to the examples of JP-A-60-255602.
  • Abrasive grains A10 and A11 shown in Table 1 below prepared by a method for producing alumina particles (hydrolysis method) by hydrolyzing aluminum alkoxide were prepared.
  • abrasive grains For powdered abrasive grains (alumina particles), 100 abrasive grains were randomly selected from images measured with a scanning electron microscope (SEM) (product name: SU8000 manufactured by Hitachi High-Tech Co., Ltd.), and their average major axis and average. The minor axis was measured and calculated. Subsequently, the sphericity of the abrasive grains was calculated according to the following formula using the values of the average major axis and the average minor axis.
  • SEM scanning electron microscope
  • the powdery abrasive grains (alumina particles) were measured using a particle size distribution measuring device (Microtrack MT3000II manufactured by Microtrack Bell Co., Ltd.), and the average particle size was evaluated.
  • a load-push displacement diagram was obtained by the following measuring device and measuring conditions. Then, the fracture strength of the abrasive grains was calculated according to the following formula, assuming that the point where the displacement suddenly increased was the point where large-scale fracture occurred in the particles.
  • Table 1 shows the characteristics (material and manufacturing method) of each abrasive grain and the evaluation results of pregelatinization rate, main crystal phase, average particle size, sphericity, average major axis and average minor axis, and fracture strength. ..
  • ⁇ Polishing composition> [Preparation of Polishing Compositions P1 to P10 and P13 to P19] Abrasive grains of the types shown in Table 3 below, nitric acid as a pH adjuster, and water as a dispersion medium were added and mixed by stirring to obtain polishing compositions P1 to P10 and P13 to P19 (mixing temperature). Approximately 25 ° C., mixing time: approximately 10 minutes). At this time, the amount of abrasive grains added is set to the concentration [mass%] shown in Table 3 below with respect to the total mass of the prepared polishing composition, and the amount of pH adjuster added is set to the amount of the prepared polishing composition. The pH value of the composition was set to the value shown in Table 3 below.
  • polishing compositions P11 and P12 Abrasive grains of the types shown in Table 3 below, ammonia as a pH adjuster, and water as a dispersion medium were added and mixed by stirring to obtain polishing compositions P11 and P12 (mixing temperature: about 25 ° C., Mixing time: about 10 minutes). At this time, the amount of abrasive grains added is set to the concentration [mass%] shown in Table 3 below with respect to the total mass of the prepared polishing composition, and the amount of pH adjuster added is set to the amount of the prepared polishing composition. The pH value of the composition was set to the value shown in Table 3 below.
  • polishing compositions P20-35 Abrasive grains of the types shown in Table 4 below, processing accelerators of the types shown in Table 4 below, or comparative compounds for confirming the effects of the processing accelerators (hereinafter, also simply referred to as "comparative compounds"), and pH adjustment. Nitric acid as an agent and water as a dispersion medium were added and mixed by stirring to obtain polishing compositions P20 to 35 (mixing temperature: about 25 ° C., mixing time: about 10 minutes). At this time, the amount of abrasive grains added and the amount of processing accelerator or comparative compound added are set to the concentration [mass%] shown in Table 4 below with respect to the total mass of the prepared polishing composition, and the pH is set. The amount of the adjusting agent added was set so that the pH value of the prepared polishing composition was the value shown in Table 4 below.
  • -Compound A Marialim (registered trademark) SC0505K (manufactured by NOF CORPORATION; graft polymer; polyoxyalkylene chain having an anionic functional group in the stem polymer part and containing a polyoxyalkylene chain in the branch part (graft chain).
  • Marialim registered trademark
  • SC0505K manufactured by NOF CORPORATION
  • graft polymer polyoxyalkylene chain having an anionic functional group in the stem polymer part and containing a polyoxyalkylene chain in the branch part (graft chain).
  • the weight average molecular weight (Mw) of the processing accelerator and the comparative compound is determined by gel permeation chromatography (GPC) using a GPC device (manufactured by Shimadzu Corporation, model: Polyethylene + ELSD detector (ELSD-LTII)). It was determined by using it in terms of polyethylene glycol. Specifically, it is as follows.
  • GPC device manufactured by Shimadzu Corporation Model: Prominence + ELSD detector (ELSD-LTII) Column: VP-ODS (manufactured by Shimadzu Corporation) Mobile phase A: MeOH B: 1% aqueous acetic acid flow rate: 1 mL / min Detector: ELSD temp. 40 ° C, Gain 8, N2GAS 350 kPa Oven temperature: 40 ° C Injection volume: 40 ⁇ L.
  • polishing results using the polishing compositions P1 to P19 are shown in Table 3 below.
  • the polishing results using the polishing compositions P20 to P35 are shown in Table 4 below.
  • Table 4 below the results of polishing using the polishing compositions P1, P5, P13, P15 and P17 are also shown for comparison with the polishing compositions P20 to P35.
  • Polishing device Small tabletop polishing machine (EJ380IN manufactured by Nippon Engis Co., Ltd.) Polishing pad: Hard polyurethane pad (IC1000 manufactured by Nitta Haas Co., Ltd.) Platen (surface plate) rotation speed: 70 [rpm] Head (carrier) rotation speed: 70 [rpm] Polishing pressure: 4.0 [psi] Flow rate of polishing composition: 100 [ml / min] Polishing time: 1 [min] (Abrasion speed evaluation method) 1. 1.
  • the thickness change amount ⁇ d [m] of the polishing object before and after polishing can be obtained. Calculated; 4. The amount of change in thickness ⁇ d [m] of the object to be polished before and after polishing was divided by the polishing time t [min], and the unit was further converted to [ ⁇ m / min]. This value was defined as the polishing rate v [ ⁇ m / min].
  • polishing compositions P1 to P12 according to the present invention exhibited a high polishing rate. Further, it was confirmed that these polishing compositions exhibit an extremely high polishing rate when the material to be polished is a resin.
  • polishing compositions P13 to P19 according to the comparative example were inferior in polishing speed, and a high polishing speed could not be obtained even in resin polishing.
  • the polishing compositions P20 to P26 according to the present invention which further contain a processing accelerator, contain abrasive grains of the same type as these and do not contain a processing accelerator, and the polishing composition according to the present invention. It was confirmed that the polishing rate was higher than that of the products P1 and P27 to P29. Further, the polishing compositions P30 to P32 according to the present invention, which further contain a processing accelerator, are compared with the polishing composition P5 according to the present invention, which contains abrasive grains of the same type as these and does not contain a processing accelerator. It was confirmed that it showed a higher polishing rate. As described above, it was confirmed that the polishing composition according to the present invention exhibits a higher polishing rate by further containing a processing accelerator. Further, it was confirmed that these effects of improving the polishing rate became more remarkable when the material to be polished was a resin.
  • the polishing compositions P33 to P35 according to the comparative example which further contain a processing accelerator, each contain abrasive grains of the same type as these and do not contain a processing accelerator, as compared with P13, P15 and P17. It was confirmed that the polishing speed was inferior and that the effect of improving the polishing speed by the processing accelerator could not be obtained.

Abstract

The present invention provides a means capable of achieving a higher polishing rate than conventional means, for a polishing composition for polishing various materials, and particularly, for polishing various materials including a resin. The present invention relates to a polishing composition comprising alumina particles and a dispersion medium, wherein the alumina particles have a breaking strength of 0.5 GPa or more, or the alumina particles are prepared by a deflagration method.

Description

研磨用組成物およびこれを用いた研磨方法Polishing composition and polishing method using it
 本発明は研磨用組成物およびこれを用いた研磨方法に関する。 The present invention relates to a polishing composition and a polishing method using the same.
 近年、LSIの高集積化、高性能化に伴って新たな微細加工技術が開発されている。化学機械研磨(以下、「CMP」とも略称する)法もその1つであり、LSI製造工程、特に多層配線形成工程において頻繁に利用される技術である。 In recent years, new microfabrication technology has been developed along with the high integration and high performance of LSI. The chemical mechanical polishing (hereinafter, also abbreviated as “CMP”) method is one of them, and is a technique frequently used in the LSI manufacturing process, particularly in the multilayer wiring forming process.
 また、このCMP法は、樹脂の表面の研磨にも用いられ、CMP法を適用することにより、表面の欠陥が少ない樹脂製品を得ることができる。これより、樹脂を含む種々の材料の研磨用途の研磨用組成物として、種々の検討がなされている。 This CMP method is also used for polishing the surface of a resin, and by applying the CMP method, a resin product with few surface defects can be obtained. From this, various studies have been made as polishing compositions for polishing various materials including resins.
 特開2016-183212号公報には、高剛性および高強度を有する樹脂を含む研磨対象物の研磨用途の研磨用組成物が開示されている。より具体的には、特開2016-183212号公報には、所定値以上のモース硬度および表面酸量を有する砥粒と、分散媒とを含む研磨用組成物によって、高剛性および高強度を有する樹脂であっても高い研磨速度で研磨できることが開示されている。また、特開2016-183212号公報には、研磨速度の観点から、砥粒としてはα-アルミナを主成分とするものが好ましいことも開示されている。 Japanese Unexamined Patent Publication No. 2016-183212 discloses a polishing composition for polishing an object to be polished, which contains a resin having high rigidity and high strength. More specifically, Japanese Patent Application Laid-Open No. 2016-183212 has high rigidity and high strength due to a polishing composition containing an abrasive grain having a Mohs hardness and a surface acid amount of a predetermined value or more and a dispersion medium. It is disclosed that even a resin can be polished at a high polishing rate. Further, Japanese Patent Application Laid-Open No. 2016-183212 also discloses that the abrasive grains preferably contain α-alumina as a main component from the viewpoint of polishing speed.
 特開2007-063442号公報(米国特許出願公開第2007/0044385号明細書に対応)には、合成樹脂製の研磨対象物の研磨用組成物が開示されている。より具体的には、特開2007-063442号公報には、特定構造のポリウレタン系高分子界面活性剤を含み、所定の粘度範囲を有する研磨用組成物を用いることによって、合成樹脂の研磨における研磨用組成物の減少および研磨能力の低下の抑制が可能となることが開示されている。また、特開2007-063442号公報には、研磨速度の観点から、研磨用組成物が砥粒としてα-アルミナを含むことが好ましいことも開示されている。 Japanese Patent Application Laid-Open No. 2007-063442 (corresponding to US Patent Application Publication No. 2007/0044385) discloses a polishing composition of a synthetic resin object to be polished. More specifically, Japanese Patent Application Laid-Open No. 2007-063442 describes polishing of synthetic resins by using a polishing composition containing a polyurethane-based polymer surfactant having a specific structure and having a predetermined viscosity range. It is disclosed that the reduction of the composition for use and the reduction of the polishing ability can be suppressed. Further, Japanese Patent Application Laid-Open No. 2007-063442 also discloses that the polishing composition preferably contains α-alumina as abrasive grains from the viewpoint of polishing speed.
 近年、各種材料の研磨、特に樹脂を含む種々の材料の研磨において、さらなる高い研磨速度が要求されるようになってきている。しかしながら、特開2016-183212号公報の研磨用組成物や特開2007-063442号公報の研磨用組成物において、好ましい砥粒であるα-アルミナを主成分とするアルミナを使用した場合であっても、必ずしも十分な研磨速度が得られるとは限らないとの問題が生じていた。 In recent years, even higher polishing speeds have been required for polishing various materials, especially for polishing various materials including resins. However, in the polishing composition of JP-A-2016-183212 and the polishing composition of JP-A-2007-063442, alumina containing α-alumina as a main component, which is a preferable abrasive grain, is used. However, there has been a problem that a sufficient polishing rate cannot always be obtained.
 そこで、本発明は、各種材料の研磨、特に樹脂を含む種々の材料の研磨に用いられる研磨用組成物において、従来と比べて高い研磨速度を実現しうる手段を提供することを目的とする。 Therefore, an object of the present invention is to provide a means capable of achieving a higher polishing rate than the conventional one in a polishing composition used for polishing various materials, particularly various materials including a resin.
 本発明者らは、上記の課題を解決すべく鋭意検討を行った。その結果、本発明者らは、砥粒として所定値以上の破壊強度を有するアルミナ粒子を使用することで顕著な研磨速度の向上効果が得られることを見出し、本発明を完成させるに至った。 The present inventors have conducted diligent studies to solve the above problems. As a result, the present inventors have found that a remarkable effect of improving the polishing rate can be obtained by using alumina particles having a fracture strength of a predetermined value or more as the abrasive grains, and have completed the present invention.
 本発明の上記課題は、以下の手段により解決されうる。 The above problem of the present invention can be solved by the following means.
 アルミナ粒子と、分散媒とを含み、
 前記アルミナ粒子の破壊強度が0.5GPa以上である、研磨用組成物。
Contains alumina particles and a dispersion medium,
A polishing composition having a breaking strength of the alumina particles of 0.5 GPa or more.
 また、本発明の上記課題は、以下の手段によっても解決されうる。 Further, the above-mentioned problem of the present invention can be solved by the following means.
 アルミナ粒子と、分散媒とを含み、
 前記アルミナ粒子が、爆燃法により製造されたアルミナ粒子である、研磨用組成物。
Contains alumina particles and a dispersion medium,
A polishing composition in which the alumina particles are alumina particles produced by an explosive combustion method.
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments.
 本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。特記しない限り、操作および物性等の測定は室温(20℃以上25℃以下の範囲)/相対湿度40%RH以上50%RH以下の条件で測定する。 In this specification, "XY" indicating a range means "X or more and Y or less". Unless otherwise specified, the operation and physical properties are measured under the conditions of room temperature (range of 20 ° C. or higher and 25 ° C. or lower) / relative humidity of 40% RH or more and 50% RH or less.
 また、本明細書において、「(メタ)アクリレート」とは、アクリレートおよびメタクリレートの総称である。(メタ)アクリル酸等の(メタ)を含む化合物等も同様に、名称中に「メタ」を有する化合物と「メタ」を有さない化合物の総称である。 Further, in the present specification, "(meth) acrylate" is a general term for acrylate and methacrylate. Similarly, compounds containing (meta) such as (meth) acrylic acid are a general term for compounds having "meta" in their names and compounds having no "meta".
 <研磨用組成物>
 本発明の一形態は、アルミナ粒子と、分散媒とを含み、前記アルミナ粒子の破壊強度が0.5GPa以上である、研磨用組成物に関する。
<Polishing composition>
One embodiment of the present invention relates to a polishing composition containing alumina particles and a dispersion medium and having a breaking strength of the alumina particles of 0.5 GPa or more.
 また、本発明の他の一形態は、アルミナ粒子と、分散媒とを含み、前記アルミナ粒子が、爆燃法により製造されたアルミナ粒子である、研磨用組成物に関する。 Further, another embodiment of the present invention relates to a polishing composition containing alumina particles and a dispersion medium, wherein the alumina particles are alumina particles produced by an explosive combustion method.
 本発明によれば、各種材料の研磨、特に樹脂を含む種々の材料の研磨に用いられる研磨用組成物において、従来と比べて高い研磨速度を実現しうる手段が提供されうる。 According to the present invention, in a polishing composition used for polishing various materials, particularly various materials including a resin, a means capable of achieving a higher polishing rate than before can be provided.
 本発明者らは、本発明によって上記課題が解決されうるメカニズムを以下のように推測している。 The present inventors speculate the mechanism by which the above-mentioned problems can be solved by the present invention as follows.
 従来、機械的研磨効果の向上の観点から、高い硬度を有する砥粒ほど高い研磨速度が得られると考えられてきた。しかしながら、本発明者らは、高い硬度を有する砥粒は脆い傾向があり、研磨時に印加される応力によって破壊が生じ易く、研磨対象物に十分に応力を伝えることができないことを見出した。よって、単に高い硬度を有する砥粒を選択するのみでは、十分な機械的研磨効果が得られず、高い研磨速度も得られない。 Conventionally, from the viewpoint of improving the mechanical polishing effect, it has been considered that the higher the hardness of the abrasive grains, the higher the polishing speed. However, the present inventors have found that abrasive grains having high hardness tend to be brittle and are easily broken by the stress applied during polishing, so that the stress cannot be sufficiently transmitted to the object to be polished. Therefore, simply selecting abrasive grains having high hardness does not provide a sufficient mechanical polishing effect, and a high polishing rate cannot be obtained.
 一方、本発明の一形態に係る研磨用組成物は、所定値以上の破壊強度を有するアルミナ粒子を有する。砥粒の破壊強度は、応力印加時に許容されうる砥粒の変形量の指標となるが、所定値以上の破壊強度を有する砥粒は、応力印加時における変形による破壊が生じにくい。または、本発明の他の一形態に係る研磨用組成物は、爆燃法により製造されたアルミナ粒子を有する。爆燃法により製造されたアルミナ粒子は、応力印加時における変形可能量および真球度が大きく、応力印加時における変形による破壊が生じにくい。また、一般的に、アルミナ粒子は、十分な硬度を有する。よって、砥粒としてこれらのアルミナ粒子を用いると、応力印加時における砥粒の変形によって砥粒と研磨対象物との間の接触面積がより大きくなり、かつ砥粒の弾性力によって研磨対象物により大きな応力が伝わることとなる。 On the other hand, the polishing composition according to one embodiment of the present invention has alumina particles having a breaking strength of a predetermined value or more. The fracture strength of the abrasive grains is an index of the amount of deformation of the abrasive grains that can be tolerated when stress is applied, but the fracture strength of the abrasive grains having a fracture strength of a predetermined value or more is unlikely to cause fracture due to deformation when stress is applied. Alternatively, the polishing composition according to another embodiment of the present invention has alumina particles produced by an explosive combustion method. Alumina particles produced by the explosive combustion method have a large amount of deformability and sphericity when stress is applied, and are unlikely to be destroyed by deformation when stress is applied. Also, in general, alumina particles have sufficient hardness. Therefore, when these alumina particles are used as the abrasive grains, the contact area between the abrasive grains and the object to be polished becomes larger due to the deformation of the abrasive grains when stress is applied, and the elastic force of the abrasive grains causes the object to be polished. A large stress will be transmitted.
 なお、上記メカニズムは推測に基づくものであり、その正誤が本発明の技術的範囲に影響を及ぼすものではない。また、本明細書における他の推測事項についても同様に、その正誤が本発明の技術的範囲に影響を及ぼすものではない。 The above mechanism is based on speculation, and its correctness does not affect the technical scope of the present invention. Similarly, the correctness of other inferences in the present specification does not affect the technical scope of the present invention.
 〔砥粒〕
 本発明に係る研磨用組成物は、砥粒としてアルミナ粒子を含む。そして、当該アルミナ粒子は、後述する爆燃法により製造されたアルミナ粒子であるか、または、破壊強度が0.5GPa以上であるアルミナ粒子である。
[Abrasive grain]
The polishing composition according to the present invention contains alumina particles as abrasive grains. The alumina particles are alumina particles produced by an explosive combustion method described later, or are alumina particles having a breaking strength of 0.5 GPa or more.
 砥粒は、研磨対象物を機械的に研磨し、研磨速度を向上させる。そして、アルミナ粒子は、十分な硬度を有することから、研磨速度の向上効果、特に樹脂を含む種々の材料の研磨速度の向上効果が高い。 Abrasive grains mechanically polish the object to be polished and improve the polishing speed. Since the alumina particles have sufficient hardness, the effect of improving the polishing rate, particularly the effect of improving the polishing rate of various materials including resin is high.
 アルミナ粒子の破壊強度は、特に制限されないが、0.5GPa以上であることが好ましく、0.6GPa以上であることがより好ましく、0.65GPa以上であることがさらに好ましく、0.7GPa以上であることがよりさらに好ましく、0.75GPa以上であることが特に好ましく、0.8GPa以上であることがさらに特に好ましい。上記範囲であると研磨速度がより向上する。また、アルミナ粒子の破壊強度は、2GPa以下であることが好ましい。上記範囲であると、高い研磨速度を維持しつつ、生産適性がより向上する。 The breaking strength of the alumina particles is not particularly limited, but is preferably 0.5 GPa or more, more preferably 0.6 GPa or more, further preferably 0.65 GPa or more, and 0.7 GPa or more. It is even more preferably 0.75 GPa or more, and even more preferably 0.8 GPa or more. Within the above range, the polishing speed is further improved. The breaking strength of the alumina particles is preferably 2 GPa or less. Within the above range, the production suitability is further improved while maintaining a high polishing rate.
 なお、研磨対象物が酸化ケイ素を含む場合、アルミナ粒子の破壊強度の好ましい一例は、0.8GPa以上2GPa以下である。研磨対象物がエポキシ樹脂を含む場合、アルミナ粒子の破壊強度の好ましい一例は、0.8GPa以上2GPa以下である。研磨対象物がポリイミド樹脂を含む場合、アルミナ粒子の破壊強度の好ましい一例は、0.7GPa以上2GPa以下であり、より好ましくは、0.75GPa以上2GPa以下であり、さらに好ましくは、0.8GPa以上2GPa以下である。研磨対象物がアクリル樹脂を含む場合、アルミナ粒子の破壊強度の好ましい一例は、0.7GPa以上2GPa以下であり、より好ましくは、0.75GPa以上2GPa以下である。 When the object to be polished contains silicon oxide, a preferable example of the breaking strength of the alumina particles is 0.8 GPa or more and 2 GPa or less. When the object to be polished contains an epoxy resin, a preferable example of the breaking strength of the alumina particles is 0.8 GPa or more and 2 GPa or less. When the object to be polished contains a polyimide resin, a preferable example of the breaking strength of the alumina particles is 0.7 GPa or more and 2 GPa or less, more preferably 0.75 GPa or more and 2 GPa or less, and further preferably 0.8 GPa or more. It is 2 GPa or less. When the object to be polished contains an acrylic resin, a preferable example of the breaking strength of the alumina particles is 0.7 GPa or more and 2 GPa or less, and more preferably 0.75 GPa or more and 2 GPa or less.
 アルミナ粒子の破壊強度は、製造方法や製造条件によって制御することができる。製法では、後述する爆燃法により製造されたアルミナ粒子は、より高い破壊強度を有する。また、爆燃法では、前原料である金属アルミナの粉流体の加熱温度を、1200℃超として前処理することで、破壊強度の値を大きくすることができる。また、制御の容易さから、加熱温度は1250~1275℃の間であることが好ましい。 The breaking strength of alumina particles can be controlled by the manufacturing method and manufacturing conditions. In the manufacturing method, the alumina particles produced by the explosive combustion method described later have higher breaking strength. Further, in the explosive combustion method, the value of the fracture strength can be increased by pretreating the powder fluid of the metal alumina as the pre-raw material at a heating temperature of more than 1200 ° C. Further, from the viewpoint of ease of control, the heating temperature is preferably between 1250 and 1275 ° C.
 アルミナ粒子の破壊強度は、「非整形試験片による岩石の引張り強さの迅速試験、平松 良雄、岡 行俊、木山 英郎、日本鉱業会誌、81巻、932号、1024~1030頁、1965年」を参考として算出することができる。詳細には、粒子(特に球形粒子)を圧縮すると、載荷点付近には圧縮応力が分布するが、その他はほとんど全面に引っ張り応力が分布することとなる。よって、アルミナ粒子の破壊強度は、得られた荷重-押し込み変位線図を記録し、急激に変位が増加する点を粒子に大規模破壊が発生した点として、下記式に従い算出することができる。 The fracture strength of alumina particles is "Rapid test of tensile strength of rock by unshaped test piece, Yoshio Hiramatsu, Yukitoshi Oka, Hideo Kiyama, Journal of Japan Mining Association, Vol. 81, No. 932, 1024-1030, 1965". Can be calculated with reference to. Specifically, when particles (particularly spherical particles) are compressed, compressive stress is distributed near the loading point, but tensile stress is distributed almost all over the other parts. Therefore, the fracture strength of the alumina particles can be calculated according to the following formula by recording the obtained load-push displacement diagram and assuming that the point where the displacement increases rapidly is the point where the particles are fractured on a large scale.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、破壊荷重Pは、株式会社島津製作所製 微小圧縮試験機 MCTW-500およびダイヤモンド製平面圧子(φ=50μm)を用いて測定することができる。また、平均粒子径dの測定方法は、後述する平均粒子径の説明に記載する。アルミナ粒子の破壊強度の測定、算出方法の詳細は実施例に記載する。 Here, the breaking load P can be measured using a microcompression tester MCTW-500 manufactured by Shimadzu Corporation and a flat surface indenter made of diamond (φ = 50 μm). The method for measuring the average particle size d will be described later in the description of the average particle size. Details of the method for measuring and calculating the breaking strength of alumina particles will be described in Examples.
 なお、上記測定に基づいて算出されるアルミナ粒子の破壊強度は、研磨用組成物の原料である粉末状のアルミナ粒子の状態で測定しても、調製された研磨用組成物からアルミナ粒子を取り出して測定しても、値は同等となる。 The breaking strength of the alumina particles calculated based on the above measurement can be obtained by taking out the alumina particles from the prepared polishing composition even if the powdered alumina particles which are the raw materials of the polishing composition are measured. Even if measured, the values are the same.
 アルミナ粒子は、真球度が大きな粒子であることが好ましく、球形粒子であることがより好ましい。本明細書において、球形粒子とは、真球度が90%以上である粒子を表す。球形粒子であると、研磨速度がより向上する。球形粒子は応力印加時の粒子の変形や変形による破壊がより生じ難く、研磨対象物により大きな応力を伝えることができるからと推測される。 The alumina particles are preferably particles having a large sphericity, and more preferably spherical particles. In the present specification, the spherical particle represents a particle having a sphericity of 90% or more. With spherical particles, the polishing rate is further improved. It is presumed that spherical particles are less likely to be deformed when stress is applied or to be destroyed due to deformation, and can transmit a larger stress to the object to be polished.
 より詳細には、アルミナ粒子の真球度は、50%を超えることが好ましく、60%以上であることがより好ましく、65%以上であることがさらに好ましく、70%以上であることがよりさらに好ましく、80%以上であることが特に好ましく、90%以上であることが極めて好ましい。上記範囲であると、研磨速度がより向上する。また、アルミナ粒子の真球度は、99.9%以下であることが好ましい。上記範囲であると、生産適性がより向上する。 More specifically, the sphericity of the alumina particles is preferably more than 50%, more preferably 60% or more, further preferably 65% or more, still more preferably 70% or more. It is preferably 80% or more, and extremely preferably 90% or more. Within the above range, the polishing speed is further improved. The sphericity of the alumina particles is preferably 99.9% or less. Within the above range, the production suitability is further improved.
 なお、研磨対象物が酸化ケイ素を含む場合、アルミナ粒子の真球度の好ましい一例は、98%以上99.5%未満である。研磨対象物がエポキシ樹脂を含む場合、アルミナ粒子の真球度の好ましい一例は、98%以上99.5%未満である。研磨対象物がポリイミド樹脂を含む場合、アルミナ粒子の真球度の好ましい一例は、90%以上99.9%以下であり、より好ましくは、95%以上99.9%以下であり、さらに好ましくは、98%以上99.5%未満である。研磨対象物がアクリル樹脂を含む場合、アルミナ粒子の真球度の好ましい一例は、99.5%以上99.9%以下であり、より好ましくは、99.5%超99.9%以下である。 When the object to be polished contains silicon oxide, a preferable example of the sphericity of the alumina particles is 98% or more and less than 99.5%. When the object to be polished contains an epoxy resin, a preferable example of the sphericity of the alumina particles is 98% or more and less than 99.5%. When the object to be polished contains a polyimide resin, a preferable example of the sphericity of the alumina particles is 90% or more and 99.9% or less, more preferably 95% or more and 99.9% or less, and further preferably. , 98% or more and less than 99.5%. When the object to be polished contains an acrylic resin, a preferable example of the sphericity of the alumina particles is 99.5% or more and 99.9% or less, and more preferably 99.5% or more and 99.9% or less. ..
 アルミナ粒子の真球度は、製造方法や製造条件によって制御することができる。例えば、後述する爆燃法により製造されたアルミナ粒子は、より高い真球度を有し、その真球度は50%を超えることが一般的である。また、爆燃法では、爆燃反応後の加熱温度を1225℃よりも低くすることで真球度の値を大きくすることができる。加熱処理においては、ロータリーキルン等の公知の装置・方法が採用されうる。 The sphericity of alumina particles can be controlled by the manufacturing method and manufacturing conditions. For example, the alumina particles produced by the explosive combustion method described later have a higher sphericity, and the sphericity generally exceeds 50%. Further, in the detonation method, the value of sphericity can be increased by lowering the heating temperature after the detonation reaction to 1225 ° C. or lower. In the heat treatment, a known device / method such as a rotary kiln can be adopted.
 アルミナ粒子の真球度は、走査型電子顕微鏡(SEM)(株式会社日立ハイテク製 製品名:SU8000)で測定した画像からランダムで100個の粒子を選び、これらの平均長径および平均短径を測定、算出した上で、下記式に従って算出することができる。アルミナ粒子の真球度の測定、算出方法の詳細は実施例に記載する。 For the sphericity of alumina particles, 100 particles are randomly selected from the images measured by a scanning electron microscope (SEM) (manufactured by Hitachi High-Tech Co., Ltd., product name: SU8000), and the average major axis and average minor axis of these particles are measured. After calculating, it can be calculated according to the following formula. Details of the method for measuring and calculating the sphericity of the alumina particles will be described in Examples.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、上記測定に基づいて算出される真球度は、研磨用組成物の原料である粉末状のアルミナ粒子の状態で測定しても、調製された研磨用組成物からアルミナ粒子を取り出して測定しても、値は同等となる。 The sphericity calculated based on the above measurement can be measured by taking out the alumina particles from the prepared polishing composition even if the sphericity is measured in the state of powdered alumina particles which are the raw materials of the polishing composition. Even so, the values are equivalent.
 アルミナ粒子は、爆燃法により製造されたアルミナ粒子であるか、または、破壊強度が0.5GPa以上のアルミナ粒子であれば特に制限されない。例えば、α-アルミナ、γ-アルミナ、δ-アルミナ、θ-アルミナ、η-アルミナおよびκ-アルミナから選択される少なくとも1種を含むアルミナ粒子等が挙げられる。これらの中でも、結晶相としてγ相を含むアルミナ粒子(γ-アルミナを含むアルミナ粒子)であることが好ましく、主となる結晶相としてγ相を含むアルミナ粒子(主成分としてγ-アルミナを含むアルミナ粒子)であることがより好ましい。 The alumina particles are not particularly limited as long as they are alumina particles produced by the explosive combustion method or the alumina particles have a breaking strength of 0.5 GPa or more. For example, alumina particles containing at least one selected from α-alumina, γ-alumina, δ-alumina, θ-alumina, η-alumina and κ-alumina can be mentioned. Among these, alumina particles containing a γ phase (alumina particles containing γ-alumina) are preferable as the crystal phase, and alumina particles containing a γ phase as the main crystal phase (alumina containing γ-alumina as a main component). It is more preferable that it is a particle).
 本明細書において、粉末X線回折装置を用いて得た粉末X線回折スペクトルから、2θ=46°の位置に現れるγ相のピークが確認される場合、アルミナ粒子が「結晶相としてγ相を含む」と判断する。また、本明細書において、後述するγ化率が50%超である場合、アルミナ粒子が「主となる結晶相としてγ相を含む」と判断する(上限100%)。結晶相としてγ相を含むアルミナ粒子を使用することで、研磨速度がより向上し、γ相が主となる結晶相である場合はその効果がより高まる。γ相は応力印加時における変形可能量が大きく、破壊強度の向上に寄与するからであると推測している。なお、後述する爆燃法で製造されたアルミナ粒子は、2θ=46°の位置に現れるγ相のピークが確認されるとき、γ相の含有割合が特に高くなる傾向がある。 In the present specification, when the peak of the γ phase appearing at the position of 2θ = 46 ° is confirmed from the powder X-ray diffraction spectrum obtained by using the powder X-ray diffractometer, the alumina particles “set the γ phase as the crystal phase”. Including ". Further, in the present specification, when the γ conversion rate described later is more than 50%, it is determined that the alumina particles "include the γ phase as the main crystal phase" (upper limit 100%). By using alumina particles containing a γ phase as the crystal phase, the polishing rate is further improved, and when the crystal phase is mainly the γ phase, the effect is further enhanced. It is presumed that the γ phase has a large deformable amount when stress is applied and contributes to the improvement of fracture strength. The alumina particles produced by the explosive combustion method described later tend to have a particularly high γ-phase content when the peak of the γ-phase appearing at the position of 2θ = 46 ° is confirmed.
 また、アルミナ粒子のα化率は、50%未満であることが好ましく、45%未満であることがより好ましく、40%未満であることがさらに好ましい(下限0%)。上記範囲であると、研磨速度がより向上する。α相は高い硬度を有するものの脆い傾向があるため、その含有量を一定以下とすることで応力印加時の破壊強度の向上に寄与するからであると推測している。ここで、α化率〔%〕は、粉末X線回折装置を用いて得た粉末X線回折スペクトルから、2θ=25.6°の位置に現れるα相(012)面のピーク高さ(I25.6)と、2θ=46°の位置に現れるγ相のピーク高さ(I46)とから、下記式によって算出することができる。 Further, the pregelatinization rate of the alumina particles is preferably less than 50%, more preferably less than 45%, and further preferably less than 40% (lower limit 0%). Within the above range, the polishing speed is further improved. Although the α phase has high hardness, it tends to be brittle, and it is presumed that keeping the content below a certain level contributes to the improvement of fracture strength when stress is applied. Here, the pregelatinization rate [%] is the peak height (I25) of the α phase (012) plane appearing at the position of 2θ = 25.6 ° from the powder X-ray diffraction spectrum obtained by using the powder X-ray diffractometer. It can be calculated by the following formula from .6) and the peak height (I46) of the γ phase appearing at the position of 2θ = 46 °.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 主となる結晶相としてγ相を含む場合、さらに結晶相としてα相を含むことが好ましい。この場合、硬度がより向上して研磨速度がより向上する。この際、α化率は0%超40%未満であることが好ましい。 When the main crystal phase contains a γ phase, it is preferable to further include an α phase as a crystal phase. In this case, the hardness is further improved and the polishing speed is further improved. At this time, the pregelatinization rate is preferably more than 0% and less than 40%.
 また、本明細書において、γ化率〔%〕は、粉末X線回折装置を用いて得た粉末X線回折スペクトルにおける、2θ=25.6°の位置に現れるα相(012)面のピーク高さ(I25.6)と、2θ=46°の位置に現れるγ相のピーク高さ(I46)とから、下記式より算出される値であると定義とする。 Further, in the present specification, the gamma conversion rate [%] is the peak of the α phase (012) plane appearing at the position of 2θ = 25.6 ° in the powder X-ray diffraction spectrum obtained by using the powder X-ray diffractometer. It is defined as a value calculated from the following formula from the height (I25.6) and the peak height (I46) of the γ phase appearing at the position of 2θ = 46 °.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 アルミナ粒子中の結晶相の種類やその含有割合は、製造方法や製造条件によって制御することができる。例えば、後述する爆燃法により製造されたアルミナ粒子は、γ化率がより高く、α化率がより低い。また、爆燃法では、爆燃反応後の加熱温度を1225℃よりも低くすることで、α化率を下げることができる。 The type of crystal phase in the alumina particles and the content ratio thereof can be controlled by the production method and production conditions. For example, the alumina particles produced by the explosive combustion method described later have a higher gamma conversion rate and a lower pregelatinization rate. Further, in the detonation method, the pregelatinization rate can be lowered by lowering the heating temperature after the detonation reaction to 1225 ° C.
 アルミナ粒子中の結晶相の種類の特定、ならびにα化率およびγ化率の測定、算出方法の測定、算出方法の詳細は実施例に記載する。 The type of crystal phase in the alumina particles, the measurement of the pregelatinization rate and the gamma conversion rate, the measurement of the calculation method, and the details of the calculation method will be described in Examples.
 また、上記測定に基づいて算出されるα化率、γ化率は、研磨用組成物の原料である粉末状のアルミナ粒子の状態で測定しても、調製された研磨用組成物からアルミナ粒子を取り出して測定しても、値は同等となる。 Further, the pregelatinization rate and the gamma conversion rate calculated based on the above measurement can be obtained from the prepared polishing composition even if the powdery alumina particles which are the raw materials of the polishing composition are measured. Even if the values are taken out and measured, the values are the same.
 アルミナ粒子の平均粒子径は、特に制限されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましく、5μm以上であることがさらに好ましく、8μm以上であることがよりさらに好ましく、10μm以上であることが特に好ましい。上記範囲であると、研磨速度がより向上する。また、アルミナ粒子の平均粒子径は、500μm以下であることが好ましく、100μm以下であることがより好ましく、50μm以下であることがさらに好ましく、20μm以下であることがよりさらに好ましく、15μm以下であることが特に好ましい。上記範囲であると、研磨対象物上のスクラッチなどの欠陥がより減少する。 The average particle size of the alumina particles is not particularly limited, but is preferably 0.01 μm or more, more preferably 0.1 μm or more, further preferably 5 μm or more, and more preferably 8 μm or more. It is more preferably 10 μm or more, and particularly preferably 10 μm or more. Within the above range, the polishing speed is further improved. The average particle size of the alumina particles is preferably 500 μm or less, more preferably 100 μm or less, further preferably 50 μm or less, further preferably 20 μm or less, and further preferably 15 μm or less. Is particularly preferred. Within the above range, defects such as scratches on the object to be polished are further reduced.
 なお、研磨対象物が酸化ケイ素を含む場合、アルミナ粒子の平均粒子径の好ましい一例は、5μm以上20μm以下であり、より好ましくは、12μm以上20μm以下である。研磨対象物がエポキシ樹脂を含む場合、アルミナ粒子の平均粒子径の好ましい一例は、5μm以上20μm以下であり、より好ましくは、12μm以上20μm以下である。研磨対象物がポリイミド樹脂を含む場合、アルミナ粒子の平均粒子径の好ましい一例は、10μm以上20μm以下であり、より好ましくは、12μm以上20μm以下である。研磨対象物がアクリル樹脂を含む場合、アルミナ粒子の平均粒子径の好ましい一例は、8μm以上20μm以下であり、より好ましくは、8μm以上10μm以下である。 When the object to be polished contains silicon oxide, a preferable example of the average particle size of the alumina particles is 5 μm or more and 20 μm or less, and more preferably 12 μm or more and 20 μm or less. When the object to be polished contains an epoxy resin, a preferable example of the average particle size of the alumina particles is 5 μm or more and 20 μm or less, and more preferably 12 μm or more and 20 μm or less. When the object to be polished contains a polyimide resin, a preferable example of the average particle size of the alumina particles is 10 μm or more and 20 μm or less, and more preferably 12 μm or more and 20 μm or less. When the object to be polished contains an acrylic resin, a preferable example of the average particle size of the alumina particles is 8 μm or more and 20 μm or less, and more preferably 8 μm or more and 10 μm or less.
 本明細書において、アルミナ粒子の平均粒子径は、粒子径分布測定装置(マイクロトラック・ベル株式会社製、マイクロトラックMT3000II)を用いて測定を行うことができる。なお、アルミナ粒子の平均粒子径の測定方法の詳細は実施例に記載する。 In the present specification, the average particle size of alumina particles can be measured using a particle size distribution measuring device (Microtrack MT3000II manufactured by Microtrack Bell Co., Ltd.). The details of the method for measuring the average particle size of the alumina particles will be described in Examples.
 また、上記測定に基づいて得られる平均粒子径は、研磨用組成物の原料である粉末状のアルミナ粒子を用いて測定しても、当該アルミナ粒子を含む研磨用組成物を用いて測定しても、値は同等となる。 Further, the average particle size obtained based on the above measurement can be measured by using the polishing composition containing the alumina particles even if it is measured by using the powdered alumina particles which are the raw materials of the polishing composition. However, the values are the same.
 アルミナ粒子の含有量は、特に制限されないが、研磨用組成物の総質量に対して0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.5質量%以上であることがさらに好ましく、2質量%以上であることが特に好ましい。アルミナ粒子の含有量が大きくなるにつれて、研磨速度がより向上する。また、アルミナ粒子の含有量は、研磨用組成物の総質量に対して25質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、8質量%以下であることがよりさらに好ましく、6質量%以下であることが特に好ましい。上記範囲であると、研磨対象物上のスクラッチなどの欠陥の発生がより減少する。 The content of the alumina particles is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and more preferably 0.5, based on the total mass of the polishing composition. It is more preferably mass% or more, and particularly preferably 2 mass% or more. The higher the content of alumina particles, the higher the polishing rate. The content of the alumina particles is preferably 25% by mass or less, more preferably 15% by mass or less, still more preferably 10% by mass or less, based on the total mass of the polishing composition. , 8% by mass or less, and particularly preferably 6% by mass or less. Within the above range, the occurrence of defects such as scratches on the object to be polished is further reduced.
 アルミナ粒子の製造方法は、特に制限されず、公知の方法を適宜使用することができる。そして、アルミナ粒子の製造方法は、より高い破壊強度のアルミナ粒子、例えば、破壊強度が0.5GPa以上のアルミナ粒子が得られる方法であることが好ましい。中でも、爆燃法(VMC法:Vaporized Metal Combustion Method)が好ましい。すなわち、アルミナ粒子としては、爆燃法により製造されたアルミナ粒子であることが好ましい。爆燃法は、破壊強度および真球度が高いアルミナ粒子を得ることができ、当該粒子を使用することで研磨速度がより向上する。 The method for producing the alumina particles is not particularly limited, and a known method can be appropriately used. The method for producing the alumina particles is preferably a method for obtaining alumina particles having a higher breaking strength, for example, alumina particles having a breaking strength of 0.5 GPa or more. Of these, the explosion method (VMC method: Vaporized Metal Combustion Method) is preferable. That is, the alumina particles are preferably alumina particles produced by the explosive combustion method. The explosive combustion method can obtain alumina particles having high fracture strength and sphericity, and the polishing speed is further improved by using the particles.
 爆燃法とは、「酸素を含む雰囲気内において化学炎を形成し、この化学炎中に目的とする酸化物超微粒子の一部を形成する金属粉末を粉塵雲が形成される程度の量投入し、爆燃を起こさせて酸化物超微粒子を合成する方法」を表す。爆燃法の詳細は、例えば、特開昭60-255602号公報(米国特許第4705762号明細書に対応)をはじめとする公知の文献に記載されており、これらの記載を参考としてアルミナ粒子を製造することができる。 The explosive combustion method is "a chemical flame is formed in an atmosphere containing oxygen, and a metal powder that forms a part of the target oxide ultrafine particles is added into the chemical flame in an amount sufficient to form a dust cloud. , A method of synthesizing ultrafine oxide particles by causing explosion. " Details of the explosion method are described in known documents such as JP-A-60-255602 (corresponding to US Pat. No. 4,705,762), and alumina particles are produced with reference to these descriptions. can do.
 〔分散媒〕
 本発明に係る研磨用組成物は、分散媒を含む。分散媒は、各成分を分散または溶解させる。
[Dispersion medium]
The polishing composition according to the present invention contains a dispersion medium. The dispersion medium disperses or dissolves each component.
 分散媒は、水を含むことが好ましい。さらに、不純物による研磨用組成物の他の成分への影響を防ぐ観点から、できる限り高純度な水を使用することが好ましい。具体的には、イオン交換樹脂にて不純物イオンを除去した後フィルタを通して異物を除去した純水や超純水、または蒸留水が好ましい。また、分散媒として、研磨用組成物の他の成分の分散性などを制御する目的で、有機溶媒などをさらに含んでもよい。 The dispersion medium preferably contains water. Further, from the viewpoint of preventing the influence of impurities on other components of the polishing composition, it is preferable to use water having the highest possible purity. Specifically, pure water, ultrapure water, or distilled water from which impurity ions have been removed with an ion exchange resin and then foreign substances have been removed through a filter is preferable. Further, as the dispersion medium, an organic solvent or the like may be further contained for the purpose of controlling the dispersibility of other components of the polishing composition.
 〔pH調整剤〕
 本発明の一実施形態に係る研磨用組成物は、pH調整剤をさらに含むことが好ましい。pH調整剤は、その種類および添加量を選択することで研磨用組成物のpHの調整に寄与しうる。
[PH regulator]
The polishing composition according to one embodiment of the present invention preferably further contains a pH adjuster. The pH adjuster can contribute to the pH adjustment of the polishing composition by selecting the type and the amount of the addition.
 pH調整剤は、pH調整機能を有する化合物であれば特に制限されず、公知の化合物を用いることができる。pH調整剤は、例えば、酸、アルカリ等が挙げられる。 The pH adjusting agent is not particularly limited as long as it is a compound having a pH adjusting function, and known compounds can be used. Examples of the pH adjuster include acids and alkalis.
 酸としては、無機酸または有機酸のいずれを用いてもよい。無機酸としては、特に制限されないが、例えば、硫酸、硝酸、ホウ酸、炭酸、次亜リン酸、亜リン酸およびリン酸等が挙げられる。有機酸としては、特に制限されないが、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸および乳酸などのカルボン酸、ならびにメタンスルホン酸、エタンスルホン酸およびイセチオン酸などのスルホン酸等が挙げられる。これらの中でも、無機酸が好ましく、硝酸がより好ましい。 As the acid, either an inorganic acid or an organic acid may be used. The inorganic acid is not particularly limited, and examples thereof include sulfuric acid, nitric acid, boric acid, carbonic acid, hypophosphorous acid, phosphoric acid, and phosphoric acid. The organic acid is not particularly limited, and is, for example, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentane. Acids, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, Examples thereof include carboxylic acids such as pimelic acid, maleic acid, phthalic acid, malic acid, tartaric acid, citric acid and lactic acid, and sulfonic acids such as methanesulfonic acid, ethanesulfonic acid and isethionic acid. Among these, inorganic acids are preferable, and nitric acid is more preferable.
 アルカリとしては、特に制限されないが、例えば、水酸化カリウム等のアルカリ金属の水酸化物、アンモニア、テトラメチルアンモニウムおよびテトラエチルアンモニウムなどの第4級アンモニウム塩、エチレンジアミンおよびピペラジンなどのアミン等が挙げられる。これらの中でもアンモニアが好ましい。 The alkali is not particularly limited, and examples thereof include hydroxides of alkali metals such as potassium hydroxide, quaternary ammonium salts such as ammonia, tetramethylammonium and tetraethylammonium, and amines such as ethylenediamine and piperazine. Of these, ammonia is preferable.
 なお、pH調整剤は、単独でもまたは2種以上組み合わせても用いることができる。 The pH adjuster can be used alone or in combination of two or more.
 pH調整剤の含有量は、特に制限されず、pH値を後述する好ましい範囲内の値とすることができる量であることが好ましい。 The content of the pH adjuster is not particularly limited, and it is preferable that the pH value is an amount within a preferable range described later.
 〔加工促進剤〕
 本発明の一実施形態に係る研磨用組成物は加工促進剤をさらに含むことが好ましい。そして、加工促進剤としては、幹ポリマー部にアニオン性官能基を有するグラフトポリマー(以下、単に「グラフトポリマーAとも称する」)が好ましい。グラフトポリマーAは、砥粒である上記のアルミナ粒子と組み合わせて使用することにより、研磨速度、特に研磨対象となる材料が樹脂である場合の研磨速度を向上させるよう作用する。この理由は、グラフトポリマーAは、研磨対象物のゼータ電位および濡れ性を調整し、アルミナ砥粒と、研磨対象物との接触をより容易にするからであると推測される。
[Processing accelerator]
The polishing composition according to one embodiment of the present invention preferably further contains a processing accelerator. As the processing accelerator, a graft polymer having an anionic functional group in the stem polymer portion (hereinafter, simply referred to as “graft polymer A”) is preferable. When the graft polymer A is used in combination with the above-mentioned alumina particles which are abrasive grains, it acts to improve the polishing rate, particularly when the material to be polished is a resin. It is presumed that the reason for this is that the graft polymer A adjusts the zeta potential and wettability of the object to be polished, and facilitates the contact between the alumina abrasive grains and the object to be polished.
 グラフトポリマーAが有するアニオン性官能基としては、特に制限されないが、例えば、カルボキシ基またはその塩の基、スルホ基またはその塩の基、ホスホン酸基またはその塩の基、リン酸基またはその塩の基等が挙げられる。これらの中でも、研磨速度、特に研磨対象となる材料が樹脂である場合の研磨速度の向上効果をより高めるとの観点から、カルボキシ基またはその塩の基であることが好ましい。このことから、幹ポリマー部としては、カルボキシ基またはその塩の基を有する単量体由来の構成単位を含む(共)重合体であることが好ましい。そして、少なくとも(メタ)アクリル酸またはその塩由来の構成単位を含む(共)重合体であることがより好ましい。なお、本明細書において、(共)重合体とは、共重合体および単独重合体を含む総称を表すものとする。 The anionic functional group contained in the graft polymer A is not particularly limited, and is, for example, a carboxy group or a salt group thereof, a sulfo group or a salt group thereof, a phosphonic acid group or a salt group thereof, a phosphoric acid group or a salt thereof. The group of. Among these, a carboxy group or a salt group thereof is preferable from the viewpoint of further enhancing the polishing rate, particularly the effect of improving the polishing rate when the material to be polished is a resin. For this reason, the stem polymer portion is preferably a (co) polymer containing a structural unit derived from a monomer having a carboxy group or a salt group thereof. And it is more preferable that it is a (co) polymer containing at least a structural unit derived from (meth) acrylic acid or a salt thereof. In addition, in this specification, a (co) polymer means a generic term including a copolymer and a homopolymer.
 また、少なくとも(メタ)アクリル酸またはその塩由来の構成単位を含む(共)重合体は、他の単量体由来の構造単位をさらに含んでいてもよい。他の単量体としては、特に制限されないが、公知のビニル基を有する単量体や、公知の(メタ)アクリロイル基を有する単量体などの炭素-炭素二重結合を有する単量体が好ましい例として挙げられる。他の単量体の具体的な例としては、特に制限されないが、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレートなどの(メタ)アクリル酸のアルキルエステル;ジエチルアミノエチル(メタ)アクリレートなどの(メタ)アクリル酸のアミノアルキルエステル;ヒドロキシエチルメタクリレートなどの(メタ)アクリル酸とグリコールとのモノエステル;ビニルメチルエーテル、ビニルエチルエーテル等のビニルアルキルエーテル;ビニルスルホン酸またはその塩;スチレンスルホン酸またはその塩;アリルスルホン酸またはその塩;メタリルスルホン酸またはその塩;(メタ)アクリルアミドアルキルスルホン酸またはその塩;酢酸ビニル;ビニルステアレート;N-ビニルイミダゾール;N-ビニルアセトアミド;N-ビニルホルムアミド;N-ビニルカプロラクタム;N-ビニルカルバゾール;(メタ)アクリルアミド;N-アルキル(メタ)アクリルアミド;N-メチロール(メタ)アクリルアミド;N,N-メチレンビス(メタ)アクリルアミド;グリコールジ(メタ)アクリレート;ジビニルベンゼン;グリコールジアリルエーテル;アリルアルコール等の不飽和アルコール;無水マレイン酸またはその塩;マレイン酸エステル等が挙げられる。 Further, the (co) polymer containing at least a structural unit derived from (meth) acrylic acid or a salt thereof may further contain a structural unit derived from another monomer. The other monomer is not particularly limited, and a monomer having a carbon-carbon double bond such as a known monomer having a vinyl group or a known monomer having a (meth) acryloyl group can be used. A preferred example is given. Specific examples of other monomers are not particularly limited, but are, for example, alkyl esters of (meth) acrylic acids such as methyl (meth) acrylate and ethyl (meth) acrylate; Amino alkyl ester of (meth) acrylic acid; monoester of (meth) acrylic acid such as hydroxyethyl methacrylate; vinyl alkyl ether such as vinyl methyl ether and vinyl ethyl ether; vinyl sulfonic acid or a salt thereof; styrene sulfonic acid Or a salt thereof; allyl sulfonic acid or a salt thereof; metharyl sulfonic acid or a salt thereof; (meth) acrylamide alkyl sulfonic acid or a salt thereof; vinyl acetate; vinyl esterate; N-vinylimidazole; N-vinylacetamide; N-vinyl Formamide; N-vinylcaprolactam; N-vinylcarbazole; (meth) acrylamide; N-alkyl (meth) acrylamide; N-methylol (meth) acrylamide; N, N-methylenebis (meth) acrylamide; glycol di (meth) acrylate; Divinylbenzene; glycol diallyl ether; unsaturated alcohol such as allyl alcohol; maleic anhydride or a salt thereof; maleic acid ester and the like.
 なお、上記のポリ(メタ)アクリル酸塩の形態や、他の単量体が塩である場合の形態としては、特に制限されないが、アルカリ金属塩またはアンモニウム塩であることが好ましい。 The form of the above poly (meth) acrylate salt and the form when the other monomer is a salt are not particularly limited, but are preferably an alkali metal salt or an ammonium salt.
 グラフトポリマーAが有するアニオン性官能基の数は、1個の幹ポリマー部に対して1個以上であれば特に制限されないが、2個以上であることが好ましい。 The number of anionic functional groups contained in the graft polymer A is not particularly limited as long as it is 1 or more per stem polymer portion, but it is preferably 2 or more.
 グラフトポリマーAを構成する枝部(グラフト鎖)は、ポリオキシエチレン鎖、ポリオキシプロピレン鎖、ポリオキシブチレン鎖をはじめとするポリオキシアルキレン鎖を分子内に含むポリマーであることが好ましい。枝部がかようなポリマーであることで、研磨速度、特に研磨対象となる材料が樹脂である場合の研磨速度の向上効果がより高まる。枝部を構成しうる、ポリオキシアルキレン鎖を分子内に含むポリマーとしては、特に制限されないが、例えば、末端にヒドロキシ基を有し、幹ポリマー部のカルボキシ基とエステル化反応するか、または幹ポリマー部のヒドロキシ基と付加反応することで、グラフト結合を形成し得るポリマーが挙げられる。この具体例としては、特に制限されないが、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルケニルエーテル、ポリオキシプロピレンアルケニルエーテル等のオキシアルキレン基を有する(共)重合体が挙げられる。また、枝部を構成しうる、ポリオキシアルキレン鎖を分子内に含むポリマーとしては、例えば、末端にアミノ基を有し、幹ポリマー部のカルボキシ基とアミド化反応することでグラフト結合を形成し得るポリマーが挙げられる。この具体例としては、特に制限されないが、例えば、ポリオキシエチレンアルキルアミン、ポリオキシプロピレンアルキルアミン等が挙げられる。これらのことから、好ましいグラフトポリマーAの一例としては、幹ポリマー部にアニオン性官能基を有し、枝部にポリオキシアルキレン鎖を含む、グラフトポリマーが挙げられる。 The branch portion (graft chain) constituting the graft polymer A is preferably a polymer containing a polyoxyalkylene chain such as a polyoxyethylene chain, a polyoxypropylene chain, and a polyoxybutylene chain in the molecule. When the branch portion is such a polymer, the effect of improving the polishing speed, particularly the polishing speed when the material to be polished is a resin, is further enhanced. The polymer containing a polyoxyalkylene chain in the molecule that can form a branch portion is not particularly limited, but for example, it has a hydroxy group at the terminal and undergoes an esterification reaction with the carboxy group of the stem polymer portion, or the stem. Examples thereof include a polymer capable of forming a graft bond by an addition reaction with a hydroxy group in the polymer portion. Specific examples thereof are not particularly limited, but are, for example, oxyalkylenes such as polyethylene glycol, polypropylene glycol, polybutylene glycol, polyoxyethylene alkyl ether, polyoxypropylene alkyl ether, polyoxyethylene alkenyl ether, and polyoxypropylene alkenyl ether. Examples include (co) polymers having a group. Further, as a polymer containing a polyoxyalkylene chain in the molecule that can form a branch portion, for example, a polymer having an amino group at the terminal and forming a graft bond by an amidation reaction with a carboxy group of the stem polymer portion is formed. Examples include the polymer to be obtained. Specific examples thereof are not particularly limited, and examples thereof include polyoxyethylene alkylamines and polyoxypropylene alkylamines. From these facts, an example of a preferable graft polymer A is a graft polymer having an anionic functional group in the stem polymer portion and a polyoxyalkylene chain in the branch portion.
 グラフトポリマーAの枝部の数は、1個の幹ポリマー部に対して1個以上であれば特に制限されないが、2個以上であることが好ましい。 The number of branch portions of the graft polymer A is not particularly limited as long as it is one or more for one trunk polymer portion, but it is preferably two or more.
 グラフトポリマーAの一例としては、下記一般式(1)で表される繰り返し単位を含むポリマーが挙げられる。 An example of the graft polymer A is a polymer containing a repeating unit represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記一般式(1)において、
 Rは、それぞれ独立して、水素原子または炭素数が1~6の置換もしくは非置換アルキル基を表し、
 Rは、それぞれ独立して、水素原子または炭素数が1~12の置換もしくは非置換アルキル基を表し、
 R、R、およびRは、それぞれ独立して、-CO-、-CO-、および-CO-から選択されるいずれか1種の構造単位を表し、
 Rは、それぞれ独立して、水素原子またはカルボキシ基を表し、
 Aは、それぞれ独立して、単結合、-O-、-COO-、炭素数が1~9のオキシアルキレン基(-C2qO-(qは1~9の任意の整数))、アミド基(-CONH-)、または-NH-を表し、
 l、m、およびnは、それぞれ独立して、0~100の任意の整数を表し、l+m+n>0であり、
 *は結合手を表す。
In the above general formula (1)
R 1 independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
R 2 independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms.
R 3 , R 4 , and R 5 are each independently selected from -C 2 H 4 O-, -C 3 H 6 O-, and -C 4 H 8 O-, respectively. Represents a unit
R 6 independently represents a hydrogen atom or a carboxy group, respectively.
A is an independently single bond, -O-, -COO-, an oxyalkylene group having 1 to 9 carbon atoms (-C q H 2q O- (q is an arbitrary integer of 1 to 9)), Represents an amide group (-CONH-), or -NH-
l, m, and n independently represent arbitrary integers from 0 to 100, and l + m + n> 0.
* Represents a bond.
 また、グラフトポリマーAの一例としては、上記一般式(1)で表される繰り返し単位に加え、下記一般式(2)~(4)で表される繰り返し単位の少なくとも1つをさらに含むポリマーが挙げられる。 Further, as an example of the graft polymer A, in addition to the repeating unit represented by the above general formula (1), a polymer further containing at least one of the repeating units represented by the following general formulas (2) to (4) may be used. Can be mentioned.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記一般式(2)において、
 Rは、それぞれ独立して、水素原子または炭素数が1~6の置換もしくは非置換アルキル基を表し、
 Rは、それぞれ独立して、水素原子または炭素数が1~12の置換もしくは非置換アルキル基を表し、
 A’は、それぞれ独立して、単結合、-O-、または-NH-を表し、
 上記一般式(2)~(4)において、
 *は結合手を表す。
In the above general formula (2)
R 7 independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
R 8 independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms.
A'independently represents a single bond, -O-, or -NH-, respectively.
In the above general formulas (2) to (4),
* Represents a bond.
 上記一般式(1)~(4)において、結合手*は、他の繰り返し単位または水素原子と結合することが好ましい。 In the above general formulas (1) to (4), it is preferable that the bond * is bonded to another repeating unit or a hydrogen atom.
 グラフトポリマーAが上記一般式(1)で表される繰り返し単位と、上記一般式(2)~(4)の少なくとも1つで表される繰り返し単位とを共に含むポリマーである場合、これらのモル比は、一般式(1)で表される繰り返し単位:一般式(2)~(4)で表される繰り返し単位の総和=1:20~20:1であることが好ましく、1:10~10:1であることがより好ましく、1:3~3:1であることがさらに好ましく、1:1であることが特に好ましい。 When the graft polymer A is a polymer containing both the repeating unit represented by the general formula (1) and the repeating unit represented by at least one of the general formulas (2) to (4), the moles thereof. The ratio is preferably the repeating unit represented by the general formula (1): the sum of the repeating units represented by the general formulas (2) to (4) = 1: 20 to 20: 1, preferably 1:10 to 20: 1. It is more preferably 10: 1, more preferably 1: 3 to 3: 1, and particularly preferably 1: 1.
 グラフトポリマーAの重量平均分子量は、特に制限されないが、500以上が好ましく、1,000以上がより好ましく、5,000以上がさらに好ましく、7,000以上が特に好ましい。上記範囲であると、基材へのグラフトポリマーAの付着率がより高くなるため、期待した基材の表面特性をより良好に得ることができる。また、グラフトポリマーAの重量平均分子量は、2,000,000以下が好ましく、100,000以下がより好ましく、30,000以下がさらに好ましい。上記範囲であると、研磨中に基材表面からのグラフトポリマーAをより適切に除去できるため、期待した研磨速度をより安定的に得ることができる。重量平均分子量は、ゲルパーミーエーションクロマトグラフィー(GPC)によって、GPC装置(株式会社島津製作所製 型式:Prominence + ELSD検出器(ELSD-LTII))などを用いてポリエチレングリコール換算によって求めることができる。なお、重量平均分子量の測定方法の詳細は実施例に記載する。 The weight average molecular weight of the graft polymer A is not particularly limited, but is preferably 500 or more, more preferably 1,000 or more, further preferably 5,000 or more, and particularly preferably 7,000 or more. Within the above range, the adhesion rate of the graft polymer A to the base material becomes higher, so that the expected surface characteristics of the base material can be obtained better. The weight average molecular weight of the graft polymer A is preferably 2,000,000 or less, more preferably 100,000 or less, and even more preferably 30,000 or less. Within the above range, the graft polymer A can be more appropriately removed from the surface of the base material during polishing, so that the expected polishing rate can be obtained more stably. The weight average molecular weight can be determined by gel permeation chromatography (GPC) in terms of polyethylene glycol using a GPC device (model: Prominence + ELSD detector (ELSD-LTII) manufactured by Shimadzu Corporation) or the like. The details of the method for measuring the weight average molecular weight will be described in Examples.
 加工促進剤は、合成品を用いてもよいし、市販品を用いてもよい。市販品としては、特に制限されないが、例えば、日油株式会社製のマリアリム(登録商標)AKM0531、SC0505K、SC0708A、SC1015F等が挙げられる。 As the processing accelerator, a synthetic product or a commercially available product may be used. Examples of commercially available products include, but are not limited to, Marialim (registered trademark) AKM0531, SC0505K, SC0708A, SC1015F manufactured by NOF CORPORATION.
 なお、加工促進剤は、単独でもまたは2種以上組み合わせても用いることができる。 The processing accelerator can be used alone or in combination of two or more.
 加工促進剤の含有量は、特に制限されないが、研磨用組成物の総質量に対して0.001質量%以上であることが好ましく、0.005質量%以上であることがより好ましく、0.01質量%以上であることがさらに好ましく、0.1質量%以上であることがよりさらに好ましく、0.5質量%以上であることが特に好ましい。上記範囲であると、研磨速度、特に研磨対象となる材料が樹脂である場合の研磨速度がより向上する。また、加工促進剤の含有量は、研磨用組成物の総質量に対して25質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。上記範囲であると、砥粒と基材との間の接触頻度をより高めることができる。 The content of the processing accelerator is not particularly limited, but is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, based on the total mass of the polishing composition. It is more preferably 01% by mass or more, further preferably 0.1% by mass or more, and particularly preferably 0.5% by mass or more. Within the above range, the polishing speed, particularly when the material to be polished is a resin, is further improved. The content of the processing accelerator is preferably 25% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less, based on the total mass of the polishing composition. preferable. Within the above range, the contact frequency between the abrasive grains and the base material can be further increased.
 砥粒の含有量に対する加工促進剤の含有量の比(加工促進剤の含有量(質量%)/砥粒の含有量(質量%))は、特に制限されないが、0.01以上であることが好ましく、0.05以上であることがより好ましく、0.15以上であることがさらに好ましい。また、砥粒の含有量に対する加工促進剤の含有量の比(加工促進剤の含有量(質量%)/砥粒の含有量(質量%))は、10以下であることが好ましく、5以下であることがより好ましく、1.5以下であることがさらに好ましい。これらの範囲であると、砥粒と、基材との間の接触頻度をより高めることができる。 The ratio of the content of the processing accelerator to the content of the abrasive grains (content of the processing accelerator (mass%) / content of the abrasive grains (mass%)) is not particularly limited, but must be 0.01 or more. Is more preferable, 0.05 or more is more preferable, and 0.15 or more is further preferable. The ratio of the content of the processing accelerator to the content of the abrasive grains (content of the processing accelerator (mass%) / content of the abrasive grains (mass%)) is preferably 10 or less, and is 5 or less. Is more preferable, and 1.5 or less is further preferable. Within these ranges, the frequency of contact between the abrasive grains and the substrate can be further increased.
 〔他の成分〕
 本発明の一実施形態に係る研磨用組成物は、本発明の効果を阻害しない範囲で上記説明した以外の他の成分をさらに含んでいてもよい。他の成分としては、特に制限されず、公知の研磨用組成物に用いられる成分を使用することができる。例えば、濡れ剤、界面活性剤、キレート剤、防腐剤、防カビ剤、溶存ガス、酸化剤、還元剤等が挙げられる。
[Other ingredients]
The polishing composition according to one embodiment of the present invention may further contain other components other than those described above as long as the effects of the present invention are not impaired. The other components are not particularly limited, and components used in known polishing compositions can be used. Examples thereof include wetting agents, surfactants, chelating agents, preservatives, fungicides, dissolved gases, oxidizing agents, reducing agents and the like.
 〔pH〕
 本発明の一実施形態に係る研磨用組成物のpHは、特に制限されないが、1以上であることが好ましく、2以上であることがより好ましい。上記範囲であると、より安全性を考慮しつつ、より高い研磨速度が得られる。また、研磨用組成物のpHは、12以下であることが好ましく、10以下であることがより好ましい。ガラスエポキシ、ポリイミド、アクリルなどの樹脂が研磨対象の場合は、9以下であることがさらに好ましく、7以下であることがよりさらに好ましく、6以下であることが特に好ましく、4以下であることが最も好ましい。上記範囲であると、より高い安全性およびより高い研磨速度が得られる。これより、pHの範囲の好ましい一例としては、1以上12以下が挙げられ、より好ましくは、2以上10以下が挙げられる。
[PH]
The pH of the polishing composition according to one embodiment of the present invention is not particularly limited, but is preferably 1 or more, and more preferably 2 or more. Within the above range, a higher polishing rate can be obtained while considering safety. The pH of the polishing composition is preferably 12 or less, more preferably 10 or less. When a resin such as glass epoxy, polyimide, or acrylic is to be polished, it is more preferably 9 or less, further preferably 7 or less, particularly preferably 6 or less, and preferably 4 or less. Most preferred. Within the above range, higher safety and higher polishing rate can be obtained. From this, a preferable example of the pH range is 1 or more and 12 or less, and more preferably 2 or more and 10 or less.
 なお、研磨対象物がポリイミド樹脂を含む場合、pHの範囲の好ましい一例は、2以上7未満であり、より好ましくは、2以上5以下であり、さらに好ましくは、2以上4以下である。研磨対象物がアクリル樹脂を含む場合、pH範囲の好ましい一例は、2以上7未満であり、より好ましくは、2以上5以下であり、さらに好ましくは、2以上4以下である。 When the object to be polished contains a polyimide resin, a preferable example of the pH range is 2 or more and less than 7, more preferably 2 or more and 5 or less, and further preferably 2 or more and 4 or less. When the object to be polished contains an acrylic resin, a preferable example of the pH range is 2 or more and less than 7, more preferably 2 or more and 5 or less, and further preferably 2 or more and 4 or less.
 pH値は、pHメーター(株式会社 堀場製作所製 型番:LAQUA(登録商標))によって確認することができる。 The pH value can be confirmed with a pH meter (HORIBA, Ltd. model number: LAQUA (registered trademark)).
 〔研磨用組成物の製造方法〕
 研磨用組成物の製造方法(調製方法)は、特に制限されず、例えば、破壊強度が0.5GPa以上のアルミナ粒子と、分散媒とを、攪拌混合することを含む製造方法が適宜採用されうる。また、例えば、爆燃法によりアルミナ粒子を製造することと、当該アルミナ粒子と、分散媒とを、攪拌混合することを含む製造方法が適宜採用されうる。これらの方法に際して、pH調整剤や他の成分を、さらに攪拌混合してもよい。添加される各成分の詳細は、上記の通りである。これより、研磨用組成物の製造方法の好ましい一例としては、爆燃法によって破壊強度が0.5GPa以上のアルミナ粒子を製造することと、当該アルミナ粒子と、分散媒とを、攪拌混合することを含む製造方法が挙げられる。なお、爆燃法の詳細については、上記の研磨用組成物の説明と同様である。
[Manufacturing method of polishing composition]
The method for producing the polishing composition (preparation method) is not particularly limited, and for example, a production method including stirring and mixing alumina particles having a breaking strength of 0.5 GPa or more and a dispersion medium can be appropriately adopted. .. Further, for example, a production method including producing alumina particles by an explosive combustion method and stirring and mixing the alumina particles and a dispersion medium can be appropriately adopted. In these methods, the pH adjuster and other components may be further stirred and mixed. Details of each component added are as described above. From this, as a preferable example of the method for producing the polishing composition, the production of alumina particles having a breaking strength of 0.5 GPa or more by the explosive combustion method, and the stirring and mixing of the alumina particles and the dispersion medium are performed. Examples include manufacturing methods including. The details of the explosion method are the same as those described above for the polishing composition.
 各成分を混合する際の温度は特に制限されないが、10~40℃が好ましく、溶解速度を上げるために加熱してもよい。また、混合時間も特に制限されない。 The temperature at which each component is mixed is not particularly limited, but is preferably 10 to 40 ° C., and may be heated to increase the dissolution rate. Further, the mixing time is not particularly limited.
 研磨用組成物は、研磨用組成物の原液を水などの希釈液を使って例えば10倍以上に希釈することによって調整されてもよい。 The polishing composition may be adjusted by diluting the stock solution of the polishing composition with a diluting solution such as water, for example, 10 times or more.
 〔研磨対象物〕
 本発明に係る研磨用組成物によって研磨される研磨対象物は、特に制限されず、公知のCMP工程における研磨対象物を適宜選択することができる。
[Object to be polished]
The object to be polished by the polishing composition according to the present invention is not particularly limited, and an object to be polished in a known CMP step can be appropriately selected.
 Si元素含有材料としては、特に制限されないが、例えば、ポリシリコン、アモルファスシリコン、単結晶シリコン、n型ドープ単結晶シリコン、p型ドープ単結晶シリコン、SiGe等のSi系合金、酸化ケイ素(SiO)、BD(ブラックダイヤモンド:SiOCH)、FSG(フルオロシリケートグラス)、HSQ(水素シルセスキオキサン)、CYCLOTENE、SiLK、MSQ(Methylsilsesquioxane)、窒化ケイ素(SiN)、炭窒化ケイ素(SiCN)等が挙げられる。ここで、酸化ケイ素としては、オルトケイ酸テトラエチル(TEOS)由来の酸化ケイ素であることが好ましい。 The Si element-containing material is not particularly limited, and is, for example, polysilicon, amorphous silicon, single crystal silicon, n-type doped single crystal silicon, p-type doped single crystal silicon, Si-based alloys such as SiGe, silicon oxide (SiO 2). ), BD (Black Diamond: SiOCH), FSG (Fluorosilicate Glass), HSQ (Hydrogen silsesquioxane), CYCLOTENE, SiLK, MSQ (Methylsilsesquioxane), Silicon Nitride (SiN), Silicon Carbonide (SiCN), etc. Be done. Here, the silicon oxide is preferably silicon oxide derived from tetraethyl orthosilicate (TEOS).
 樹脂としては、特に制限されないが、例えば、ポリ(メタ)アクリル酸メチル、メタクリル酸メチル-アクリル酸メチル共重合体、ウレタン(メタ)アクリレート樹脂等のアクリル樹脂;エポキシ樹脂;超高分子量ポリエチレン(UHPE)等のオレフィン樹脂;フェノール樹脂;ポリアミド樹脂(PA);ポリイミド樹脂(PI);ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、不飽和ポリエステル樹脂等のポリエステル樹脂;ポリカーボネート樹脂(PC);シンジオタクチックポリスチレン(SPS)等のポリスチレン樹脂;ポリノルボルネン樹脂;ポリベンゾオキサゾール(PBO);ポリアセタール(POM);変性ポリフェニレンエーテル(m-PPE);非晶ポリアリレート(PAR);ポリスルホン(PSF);ポリエーテルスルホン(PES);ポリフェニレンスルフィド(PPS);ポリエーテルエーテルケトン(PEEK);ポリエーテルイミド(PEI);フッ素樹脂;液晶ポリマー(LCP)等が挙げられる。 The resin is not particularly limited, and is, for example, an acrylic resin such as methyl poly (meth) acrylate, methyl methacrylate-methyl acrylate copolymer, urethane (meth) acrylate resin; epoxy resin; ultra-high molecular weight polyethylene (UHPE). ) Etc. olefin resin; phenol resin; polyamide resin (PA); polyimide resin (PI); polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyester resin such as unsaturated polyester resin; polycarbonate resin (PC); Polystyrene resin such as otakutic polystyrene (SPS); polynorbornene resin; polybenzoxazole (PBO); polyacetal (POM); modified polyphenylene ether (m-PPE); amorphous polyarylate (PAR); polysulfone (PSF); poly Examples thereof include ether sulfone (PES); polyphenylene sulfide (PPS); polyether ether ketone (PEEK); polyetherimide (PEI); fluororesin; liquid crystal polymer (LCP).
 また、樹脂には、ガラス繊維や炭素繊維などの繊維を複合して強度を向上させた強化プラスチックも含まれるものとする。 In addition, the resin shall also include reinforced plastic in which fibers such as glass fiber and carbon fiber are compounded to improve the strength.
 これらの中でも、研磨対象物は、研磨面にSi元素含有材料または樹脂を含む研磨対象物であることが好ましく、研磨面に酸化ケイ素または樹脂を含む研磨対象物であることがより好ましい。さらに、研磨面に樹脂を含む研磨対象物であることがさらに好ましく、研磨面にエポキシ樹脂、ポリイミド樹脂またはアクリル樹脂を含む研磨対象物であることがよりさらに好ましい。そして、研磨面にポリイミド樹脂またはアクリル樹脂を含む研磨対象物であることが特に好ましい。研磨面に樹脂を含む研磨対象物を研磨する用途で使用される場合、特に研磨面にポリイミド樹脂またはアクリル樹脂を含む研磨対象物を研磨する用途で使用される場合、研磨速度が顕著に向上する。 Among these, the polishing target is preferably a polishing target containing a Si element-containing material or a resin on the polishing surface, and more preferably a polishing target containing silicon oxide or a resin on the polishing surface. Further, it is more preferable that the object to be polished contains a resin on the polished surface, and it is even more preferable that the object to be polished contains an epoxy resin, a polyimide resin or an acrylic resin on the polished surface. Then, it is particularly preferable that the object to be polished contains a polyimide resin or an acrylic resin on the polished surface. When used for polishing an object to be polished containing resin on the polished surface, especially when used for polishing an object to be polished containing polyimide resin or acrylic resin on the polished surface, the polishing speed is significantly improved. ..
 また、研磨面に樹脂を含む研磨対象物において、樹脂は、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸マグネシウム、珪酸アルミニウム、酸化チタン、アルミナ、酸化亜鉛、二酸化ケイ素、カオリン、タルク、ガラスビーズ、セリサイト活性白土、ベントナイト、窒化アルミニウム等の無機フィラーや、ポリエステル微粒子、ポリウレタン微粒子、ゴム微粒子等の有機フィラー等をさらに含んでいてもよい。 In addition, in the object to be polished containing resin on the polished surface, the resin is calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, titanium oxide, alumina, zinc oxide, silicon dioxide, kaolin, talc, glass beads, seri. Inorganic fillers such as site-active clay, bentonite, and aluminum nitride, and organic fillers such as polyester fine particles, polyurethane fine particles, and rubber fine particles may be further contained.
 これらSi元素含有材料または樹脂は、単独でもまたは2種以上組み合わせても用いることができる。 These Si element-containing materials or resins can be used alone or in combination of two or more.
 さらに、研磨対象物は、研磨面として、Si元素含有材料または樹脂以外に、これらとは異なる材料を含むものであってもよい。かような材料として、例えば、銅(Cu)、アルミニウム(Al)、タンタル(Ta)、窒化タンタル(TaN)、チタン(Ti)、窒化チタン(TiN)、ニッケル(Ni)、ルテニウム(Ru)、コバルト(Co)、タングステン(W)、窒化タングステン(WN)等が挙げられる。 Further, the object to be polished may contain a material different from the Si element-containing material or resin as the polishing surface. Examples of such materials include copper (Cu), aluminum (Al), tantalum (Ta), tantalum nitride (TaN), titanium (Ti), titanium nitride (TiN), nickel (Ni), ruthenium (Ru), and the like. Examples thereof include cobalt (Co), tungsten (W), and tungsten nitride (WN).
 <研磨方法>
 本発明の他の一形態は、上記の研磨用組成物を用いて研磨対象物を研磨する、研磨方法に関する。本形態に係る研磨対象物の好ましい例は、上記の研磨用組成物の説明で挙げたものと同様である。例えば、研磨面に樹脂を含む研磨対象物を研磨することが好ましい。   
<Polishing method>
Another aspect of the present invention relates to a polishing method for polishing an object to be polished using the above-mentioned polishing composition. Preferred examples of the object to be polished according to this embodiment are the same as those mentioned in the above description of the polishing composition. For example, it is preferable to polish an object to be polished containing a resin on the polished surface.
 研磨用組成物を用いて研磨対象物を研磨する際には、通常の研磨に用いられる装置や条件を用いて行うことができる。一般的な研磨装置としては、片面研磨装置や両面研磨装置が挙げられる。片面研磨装置では、一般的に、キャリアと呼ばれる保持具を用いて研磨対象物を保持し、上方より研磨用組成物を供給しながら、研磨対象物の片面に研磨パッドが貼付された定盤を押し付けて定盤を回転させることにより研磨対象物の片面を研磨する。両面研磨装置では、一般的に、キャリアと呼ばれる保持具を用いて研磨対象物を保持し、上方より研磨用組成物を供給しながら、研磨対象物の対向面に研磨パッドが貼付された定盤を押しつけ、それらを相対方向に回転させることにより研磨対象物の両面を研磨する。このとき、研磨パッドおよび研磨用組成物と、研磨対象物との摩擦による物理的作用と、研磨用組成物が研磨対象物にもたらす化学的作用とによって研磨される。前記研磨パッドとしては、不織布、ポリウレタン、スウェード等の多孔質体を特に制限なく使用することができる。研磨パッドには、研磨液が溜まるような加工が施されていることが好ましい。    When polishing the object to be polished using the polishing composition, it can be performed using the equipment and conditions used for normal polishing. Examples of a general polishing device include a single-sided polishing device and a double-sided polishing device. In a single-sided polishing device, generally, a holder called a carrier is used to hold the object to be polished, and while supplying the polishing composition from above, a surface plate having a polishing pad attached to one side of the object to be polished is formed. One side of the object to be polished is polished by pressing and rotating the surface plate. In a double-sided polishing device, generally, a holder called a carrier is used to hold an object to be polished, and while supplying a polishing composition from above, a surface plate having a polishing pad attached to the facing surface of the object to be polished. And rotate them in the relative direction to polish both sides of the object to be polished. At this time, polishing is performed by the physical action of friction between the polishing pad and the polishing composition and the object to be polished, and the chemical action that the polishing composition brings to the object to be polished. As the polishing pad, a porous material such as non-woven fabric, polyurethane, or suede can be used without particular limitation. It is preferable that the polishing pad is processed so that the polishing liquid collects.
 研磨条件としては、例えば、研磨荷重、定盤回転数、キャリア回転数、研磨用組成物の流量、研磨時間等が挙げられる。これらの研磨条件に特に制限はないが、例えば、研磨荷重については、研磨対象物の単位面積当たり0.1psi以上10psi以下であることが好ましく、より好ましくは0.5psi以上8.0psi以下であり、さらに好ましくは1.0psi以上6.0psi以下である。一般に荷重が高くなればなるほど砥粒による摩擦力が高くなり、機械的な加工力が向上するため研磨速度が上昇する。この範囲であれば、十分な研磨速度が発揮され、荷重による研磨対象物の破損や、表面に傷などの欠陥が発生することを抑制することができる。定盤回転数、およびキャリア回転数は、10~500rpmであることが好ましい。研磨用組成物の供給量は、研磨対象物の全体が覆われる供給量(流量)であればよく、研磨対象物の大きさなどの条件に応じて調整すればよい。研磨パッドに研磨用組成物を供給する方法も特に制限されず、例えば、ポンプ等で連続的に供給する方法が採用される。また、加工時間は、所望の加工結果が得られる時間であれば特に制限されないが、高い研磨速度に起因してより短い時間とすることが好ましい。 Polishing conditions include, for example, polishing load, surface plate rotation speed, carrier rotation speed, flow rate of polishing composition, polishing time, and the like. These polishing conditions are not particularly limited, but for example, the polishing load is preferably 0.1 psi or more and 10 psi or less, and more preferably 0.5 psi or more and 8.0 psi or less per unit area of the object to be polished. More preferably, it is 1.0 psi or more and 6.0 psi or less. Generally, the higher the load, the higher the frictional force due to the abrasive grains, and the higher the mechanical processing force, so that the polishing speed increases. Within this range, a sufficient polishing rate can be exhibited, and damage to the object to be polished due to a load and defects such as scratches on the surface can be suppressed. The surface plate rotation speed and the carrier rotation speed are preferably 10 to 500 rpm. The supply amount of the polishing composition may be any supply amount (flow rate) that covers the entire polishing object, and may be adjusted according to conditions such as the size of the polishing object. The method of supplying the polishing composition to the polishing pad is also not particularly limited, and for example, a method of continuously supplying the polishing composition with a pump or the like is adopted. Further, the processing time is not particularly limited as long as the desired processing result can be obtained, but it is preferably a shorter time due to the high polishing rate.
 また、本発明のさらなる他の一形態は、上記の研磨方法で研磨対象物を研磨する工程を含む、研磨済研磨対象物の製造方法に関する。本形態に係る研磨対象物の好ましい例は、上記の研磨用組成物の説明で挙げたものと同様である。好ましい一例としては、上記研磨方法によって、樹脂を含む研磨対象物を研磨することを含む、電子回路基板の製造方法が挙げられる。 Further, another aspect of the present invention relates to a method for producing a polished object, which comprises a step of polishing the object to be polished by the above-mentioned polishing method. Preferred examples of the object to be polished according to this embodiment are the same as those mentioned in the above description of the polishing composition. As a preferable example, there is a method for manufacturing an electronic circuit board, which comprises polishing an object to be polished containing a resin by the above-mentioned polishing method.
 本発明の実施形態を詳細に説明したが、これは説明的かつ例示的なものであって限定的ではなく、本発明の範囲は添付の特許請求の範囲によって解釈されるべきであることは明らかである。 Although embodiments of the present invention have been described in detail, this is descriptive and exemplary and not limiting, and it is clear that the scope of the invention should be construed by the appended claims. Is.
 本発明は、下記態様および形態を包含する:
 1.アルミナ粒子と、分散媒とを含み、
 前記アルミナ粒子の破壊強度が0.5GPa以上である、研磨用組成物;
 2.前記アルミナ粒子が、爆燃法により製造されたアルミナ粒子である、上記1.に記載の研磨用組成物;
 3.アルミナ粒子と、分散媒とを含み、
 前記アルミナ粒子が、爆燃法により製造されたアルミナ粒子である、研磨用組成物;
 4.前記アルミナ粒子の真球度が50%を超える、上記1.~3.のいずれかに記載の研磨用組成物;
 5.前記アルミナ粒子は、結晶相としてγ相を含む、上記.1.~4.のいずれかに記載の研磨用組成物;
 6.前記アルミナ粒子のα化率が50%未満である、上記1.~5.のいずれかに記載の研磨用組成物;
 7.pHが1以上12以下である、上記1.~6.のいずれかに記載の研磨用組成物;
 8.前記アルミナ粒子の破壊強度が0.6GPa以上である、上記1.~7.のいずれかに記載の研磨用組成物;
 9.前記アルミナ粒子の破壊強度が2GPa以下である、上記1.~8.のいずれかに記載の研磨用組成物;
 10.前記アルミナ粒子の真球度が99.9%以下である、上記1.~9.のいずれかに記載の研磨用組成物;
 11.幹ポリマー部にアニオン性官能基を有するグラフトポリマーをさらに含む、上記1.~10.のいずれかに記載の研磨用組成物;
 12.研磨面に樹脂を含む研磨対象物を研磨する用途で使用される、上記1.~11.のいずれかに記載の研磨用組成物;
 13.爆燃法によりアルミナ粒子を製造することと、
 前記アルミナ粒子と、分散媒とを、攪拌混合することを含む、
上記1.~12.のいずれかに記載の研磨用組成物の製造方法;
 14.上記1.~12.のいずれかに記載の研磨用組成物を用いて、または、
 上記13.に記載の製造方法によって研磨用組成物を製造し、当該研磨用組成物を用いて、
研磨対象物を研磨する、研磨方法;
 15.前記研磨対象物は、研磨面に樹脂を含む研磨対象物である、上記14.に記載の研磨方法。
The present invention includes the following aspects and forms:
1. 1. Contains alumina particles and a dispersion medium,
A polishing composition having a breaking strength of the alumina particles of 0.5 GPa or more;
2. The above 1. Alumina particles are alumina particles produced by the explosive combustion method. The polishing composition according to.
3. 3. Contains alumina particles and a dispersion medium,
A polishing composition in which the alumina particles are alumina particles produced by an explosive combustion method;
4. 1. The sphericity of the alumina particles exceeds 50%. ~ 3. The polishing composition according to any one of the above;
5. The alumina particles contain a γ phase as a crystal phase, as described above. 1. 1. ~ 4. The polishing composition according to any one of the above;
6. The pregelatinization rate of the alumina particles is less than 50%. ~ 5. The polishing composition according to any one of the above;
7. The pH is 1 or more and 12 or less. ~ 6. The polishing composition according to any one of the above;
8. The above 1. The breaking strength of the alumina particles is 0.6 GPa or more. ~ 7. The polishing composition according to any one of the above;
9. The above 1. The breaking strength of the alumina particles is 2 GPa or less. ~ 8. The polishing composition according to any one of the above;
10. The sphericity of the alumina particles is 99.9% or less. ~ 9. The polishing composition according to any one of the above;
11. 1. A graft polymer having an anionic functional group is further contained in the stem polymer portion. ~ 10. The polishing composition according to any one of the above;
12. 1. Used for polishing an object to be polished containing resin on the polished surface. ~ 11. The polishing composition according to any one of the above;
13. Producing alumina particles by the explosion method and
The alumina particles and the dispersion medium are mixed by stirring.
Above 1. ~ 12. The method for producing a polishing composition according to any one of the above;
14. Above 1. ~ 12. Using the polishing composition according to any of the above, or
13. A polishing composition is produced by the production method described in the above, and the polishing composition is used to prepare the polishing composition.
Polishing method for polishing the object to be polished;
15. The object to be polished is an object to be polished containing a resin on the polished surface. The polishing method described in.
 本発明を、以下の実施例および比較例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、特記しない限り、「%」および「部」は、それぞれ、「質量%」および「質量部」を意味する。 The present invention will be described in more detail with reference to the following examples and comparative examples. However, the technical scope of the present invention is not limited to the following examples. Unless otherwise specified, "%" and "parts" mean "mass%" and "parts by mass", respectively.
 <砥粒>
 〔砥粒A1~A5の製造〕
 特開昭60-255602号公報の実施例を参考として爆燃法によって製造された、下記表1に記載の砥粒A1~A5を準備した。
<Abrasive grains>
[Manufacturing of abrasive grains A1 to A5]
The abrasive grains A1 to A5 shown in Table 1 below were prepared by the explosive combustion method with reference to the examples of JP-A-60-255602.
 〔砥粒A6~A9の合成〕
 特開2006-36864号公報の段落「0013」に記載のように、水酸化アルミニウムを、か焼温度を1100~1500℃の範囲内とし、か焼時間を1~5時間の範囲内とする条件でか焼した後、20000μm径の酸化アルミニウムポールを用いて粉砕した。このようなか焼し、その後必要に応じて粉砕することによるアルミナ粒子の製造方法(粉砕法)によって、砥粒A6~A9を製造した。これらの砥粒の製造においては、下記表1に記載の平均粒子径の値が得られるよう粉砕時間を制御した。
[Synthesis of abrasive grains A6 to A9]
As described in paragraph "0013" of JP-A-2006-36864, the condition that the calcination temperature of aluminum hydroxide is in the range of 1100 to 1500 ° C. and the calcination time is in the range of 1 to 5 hours. After calcination, it was pulverized using an aluminum oxide pole having a diameter of 20000 μm. Abrasive grains A6 to A9 were produced by such a method for producing alumina particles (crushing method) by baking and then pulverizing as necessary. In the production of these abrasive grains, the crushing time was controlled so that the values of the average particle diameters shown in Table 1 below could be obtained.
 〔砥粒A10およびA11の製造〕
 アルミニウムアルコキシドを加水分解することによるアルミナ粒子の製造方法(加水分解法)によって製造された、下記表1に記載の砥粒A10およびA11を準備した。
[Manufacturing of abrasive grains A10 and A11]
Abrasive grains A10 and A11 shown in Table 1 below prepared by a method for producing alumina particles (hydrolysis method) by hydrolyzing aluminum alkoxide were prepared.
 〔結晶相の種類および含有量の分析〕
 (アルミナ粒子に含まれる結晶相の種類)
 粉末状の砥粒(アルミナ粒子)について、粉末X線回折装置(株式会社リガク製 全自動多目的X線回折装置 SmartLab)を用いて粉末X線回折スペクトルを得て、当該粉末X線回折スペクトルのピーク位置よりアルミナ粒子に含まれる結晶相の種類を判断した。ここで、当該粉末X線回折スペクトルにおいて、2θ=25.6°の位置に現れるα相(012)面のピークが確認される場合、アルミナ粒子が「結晶相としてα相を含む」と判断した。また、2θ=46°の位置に現れるγ相のピークが確認される場合、アルミナ粒子が「結晶相としてγ相を含む」と判断した。
[Analysis of crystal phase type and content]
(Type of crystal phase contained in alumina particles)
For powdery abrasive grains (alumina particles), a powder X-ray diffraction spectrum was obtained using a powder X-ray diffractometer (Fully automatic multipurpose X-ray diffractometer SmartLab manufactured by Rigaku Co., Ltd.), and the peak of the powder X-ray diffraction spectrum was obtained. The type of crystal phase contained in the alumina particles was determined from the position. Here, when the peak of the α phase (012) plane appearing at the position of 2θ = 25.6 ° is confirmed in the powder X-ray diffraction spectrum, it is determined that the alumina particles “include the α phase as the crystal phase”. .. When the peak of the γ phase appearing at the position of 2θ = 46 ° was confirmed, it was determined that the alumina particles “contain the γ phase as the crystal phase”.
 (α化率)
 α化率〔%〕は、粉末X線回折装置を用いて得た粉末X線回折スペクトルにおける、2θ=25.6°の位置に現れるα相(012)面のピーク高さ(I25.6)と、2θ=46°の位置に現れるγ相のピーク高さ(I46)とから、下記式によって算出した。
(Pregelatinization rate)
The pregelatinization rate [%] is the peak height (I25.6) of the α phase (012) plane appearing at the position of 2θ = 25.6 ° in the powder X-ray diffraction spectrum obtained by using the powder X-ray diffractometer. And the peak height (I46) of the γ phase appearing at the position of 2θ = 46 °, it was calculated by the following formula.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 (主となる結晶相)
 α化率が50%超である場合、アルミナ粒子が「主となる結晶相としてα相を含む」と判断した。また、粉末X線回折装置を用いて得た粉末X線回折スペクトルにおける、2θ=25.6°の位置に現れるα相(012)面のピーク高さ(I25.6)と、2θ=46°の位置に現れるγ相のピーク高さ(I46)とから、下記式より算出される値をγ化率〔%〕と定義とする。γ化率が50%超である場合、アルミナ粒子が「主となる結晶相としてγ相を含む」と判断した。
(Main crystal phase)
When the pregelatinization rate was more than 50%, it was determined that the alumina particles "contain the α phase as the main crystal phase". Further, in the powder X-ray diffraction spectrum obtained by using the powder X-ray diffractometer, the peak height (I25.6) of the α phase (012) plane appearing at the position of 2θ = 25.6 ° and 2θ = 46 °. From the peak height (I46) of the γ phase appearing at the position of, the value calculated from the following formula is defined as the γ conversion rate [%]. When the gamma conversion rate was more than 50%, it was determined that the alumina particles "contain the gamma phase as the main crystal phase".
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 〔真球度〕
 粉末状の砥粒(アルミナ粒子)について、走査型電子顕微鏡(SEM)(株式会社日立ハイテク製 製品名:SU8000)で測定した画像からランダムで100個の砥粒を選び、これらの平均長径および平均短径を測定、算出した。続いて、平均長径および平均短径の値を用いて、下記式に従い、砥粒の真球度を算出した。
[Spherical degree]
For powdered abrasive grains (alumina particles), 100 abrasive grains were randomly selected from images measured with a scanning electron microscope (SEM) (product name: SU8000 manufactured by Hitachi High-Tech Co., Ltd.), and their average major axis and average. The minor axis was measured and calculated. Subsequently, the sphericity of the abrasive grains was calculated according to the following formula using the values of the average major axis and the average minor axis.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 〔平均粒子径〕
 粉末状の砥粒(アルミナ粒子)について、粒子径分布測定装置(マイクロトラック・ベル株式会社製、マイクロトラックMT3000II)を用いて測定を行い、平均粒子径を評価した。
[Average particle size]
The powdery abrasive grains (alumina particles) were measured using a particle size distribution measuring device (Microtrack MT3000II manufactured by Microtrack Bell Co., Ltd.), and the average particle size was evaluated.
 〔破壊強度〕
 粉末状の砥粒(アルミナ粒子)について、以下の測定装置および測定条件によって荷重-押し込み変位線図を得た。そして、急激に変位が増加する点を粒子に大規模破壊が発生した点として、砥粒の破壊強度を下記式に従い算出した。
〔destruction strength〕
For powdery abrasive grains (alumina particles), a load-push displacement diagram was obtained by the following measuring device and measuring conditions. Then, the fracture strength of the abrasive grains was calculated according to the following formula, assuming that the point where the displacement suddenly increased was the point where large-scale fracture occurred in the particles.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 (測定装置および測定条件)
 測定装置:株式会社島津製作所製 微小圧縮試験機 MCTW-500、
 使用圧子:ダイヤモンド製平面圧子(φ=50μm)、
 負荷速度:7.747mN/s:負荷速度一定方式、
 測定雰囲気:室温大気中。
(Measuring equipment and measurement conditions)
Measuring device: Shimadzu Corporation micro compression tester MCTW-500,
Indenter used: Diamond flat indenter (φ = 50 μm),
Load speed: 7.747 mN / s: Constant load speed method,
Measurement atmosphere: Room temperature in the atmosphere.
 各砥粒の特徴(材質および製造方法)と、α化率、主となる結晶相、平均粒子径、真球度、平均長径および平均短径ならびに破壊強度の評価結果とを下記表1に示す。 Table 1 below shows the characteristics (material and manufacturing method) of each abrasive grain and the evaluation results of pregelatinization rate, main crystal phase, average particle size, sphericity, average major axis and average minor axis, and fracture strength. ..
 なお、下記表1において、α化率が<40〔%〕とは、結晶相としてα相を含むものの、そのα化率の値は0%超40%未満であることを表す。 In Table 1 below, when the pregelatinization rate is <40 [%], it means that although the α phase is included as the crystal phase, the value of the pregelatinization rate is more than 0% and less than 40%.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 <研磨用組成物>
 〔研磨用組成物P1~P10、P13~P19の調製〕
 下記表3の種類の砥粒と、pH調整剤である硝酸と、分散媒である水とを添加し、攪拌混合して、研磨用組成物P1~P10、P13~P19を得た(混合温度約25℃、混合時間:約10分)。この際、砥粒の添加量を、調製される研磨用組成物の総質量に対して下記表3の濃度〔質量%〕となる量とし、pH調整剤の添加量を、調製される研磨用組成物のpH値が下記表3の値となる量とした。
<Polishing composition>
[Preparation of Polishing Compositions P1 to P10 and P13 to P19]
Abrasive grains of the types shown in Table 3 below, nitric acid as a pH adjuster, and water as a dispersion medium were added and mixed by stirring to obtain polishing compositions P1 to P10 and P13 to P19 (mixing temperature). Approximately 25 ° C., mixing time: approximately 10 minutes). At this time, the amount of abrasive grains added is set to the concentration [mass%] shown in Table 3 below with respect to the total mass of the prepared polishing composition, and the amount of pH adjuster added is set to the amount of the prepared polishing composition. The pH value of the composition was set to the value shown in Table 3 below.
 〔研磨用組成物P11およびP12の調製〕
 下記表3の種類の砥粒と、pH調整剤であるアンモニアと、分散媒である水とを添加し、攪拌混合して、研磨用組成物P11およびP12を得た(混合温度約25℃、混合時間:約10分)。この際、砥粒の添加量を、調製される研磨用組成物の総質量に対して下記表3の濃度〔質量%〕となる量とし、pH調整剤の添加量を、調製される研磨用組成物のpH値が下記表3の値となる量とした。
[Preparation of Polishing Compositions P11 and P12]
Abrasive grains of the types shown in Table 3 below, ammonia as a pH adjuster, and water as a dispersion medium were added and mixed by stirring to obtain polishing compositions P11 and P12 (mixing temperature: about 25 ° C., Mixing time: about 10 minutes). At this time, the amount of abrasive grains added is set to the concentration [mass%] shown in Table 3 below with respect to the total mass of the prepared polishing composition, and the amount of pH adjuster added is set to the amount of the prepared polishing composition. The pH value of the composition was set to the value shown in Table 3 below.
 〔研磨用組成物P20~35の調製〕
 下記表4の種類の砥粒と、下記表4の種類の加工促進剤、または加工促進剤の効果を確認するための比較用化合物(以下、単に「比較用化合物」とも称する)と、pH調整剤である硝酸と、分散媒である水とを添加し、攪拌混合して、研磨用組成物P20~35を得た(混合温度約25℃、混合時間:約10分)。この際、砥粒の添加量、および加工促進剤または比較用化合物の添加量を、調製される研磨用組成物の総質量に対して下記表4の濃度〔質量%〕となる量とし、pH調整剤の添加量を、調製される研磨用組成物のpH値が下記表4の値となる量とした。
[Preparation of Polishing Compositions P20-35]
Abrasive grains of the types shown in Table 4 below, processing accelerators of the types shown in Table 4 below, or comparative compounds for confirming the effects of the processing accelerators (hereinafter, also simply referred to as "comparative compounds"), and pH adjustment. Nitric acid as an agent and water as a dispersion medium were added and mixed by stirring to obtain polishing compositions P20 to 35 (mixing temperature: about 25 ° C., mixing time: about 10 minutes). At this time, the amount of abrasive grains added and the amount of processing accelerator or comparative compound added are set to the concentration [mass%] shown in Table 4 below with respect to the total mass of the prepared polishing composition, and the pH is set. The amount of the adjusting agent added was set so that the pH value of the prepared polishing composition was the value shown in Table 4 below.
 研磨用組成物P20~35の調製に使用した加工促進剤および比較用化合物を以下に示す:
 ・化合物A:マリアリム(登録商標)SC0505K(日油株式会社製;幹ポリマー部にアニオン性官能基を有し、枝部(グラフト鎖)にポリオキシアルキレン鎖を含む、グラフトポリマー;ポリオキシアルキレン鎖長は短め;Mw=8,000以上10,000以下)、加工促進剤、
 ・化合物B:マリアリム(登録商標)AKM0531(日油株式会社製;幹ポリマー部にアニオン性官能基を有し、枝部(グラフト鎖)にポリオキシアルキレン鎖を含む、グラフトポリマー;ポリオキシアルキレン鎖長は中程度、Mw=16,000以上20,000以下)、加工促進剤、
 ・化合物C:マリアリム(登録商標)SC0708A(日油株式会社製;幹ポリマー部にアニオン性官能基を有し、枝部(グラフト鎖)にポリオキシアルキレン鎖を含む、グラフトポリマー;ポリオキシアルキレン鎖長は中程度、Mw=9,000以上15,000以下)、加工促進剤、
 ・化合物D:マリアリム(登録商標)SC1015F(日油株式会社製;幹ポリマー部にアニオン性官能基を有し、枝部(グラフト鎖)にポリオキシアルキレン鎖を含む、グラフトポリマー;ポリオキシアルキレン鎖長は長め、Mw=10,000以上15,000以下)、加工促進剤、
 ・化合物E:ポリアクリル酸(東亜合成化学株式会社製;Mw=8,000以上10,000以下)、比較用化合物、
 ・化合物F:ポリアクリル酸(東亜合成化学株式会社製;Mw=80,000以上100,000以下)、比較用化合物、
 ・化合物G:ポリアクリル酸(東亜合成化学株式会社製;Mw=400,000以上500,000以下)、比較用化合物。
The processing accelerators and comparative compounds used in the preparation of the polishing compositions P20-35 are shown below:
-Compound A: Marialim (registered trademark) SC0505K (manufactured by NOF CORPORATION; graft polymer; polyoxyalkylene chain having an anionic functional group in the stem polymer part and containing a polyoxyalkylene chain in the branch part (graft chain). Short length; Mw = 8,000 or more and 10,000 or less), processing accelerator,
-Compound B: Marialim (registered trademark) AKM0531 (manufactured by NOF CORPORATION; a graft polymer having an anionic functional group in the stem polymer part and a polyoxyalkylene chain in the branch part (graft chain); polyoxyalkylene chain Medium length, Mw = 16,000 or more and 20,000 or less), processing accelerator,
-Compound C: Marialim (registered trademark) SC0708A (manufactured by NOF CORPORATION; a graft polymer having an anionic functional group in the stem polymer part and a polyoxyalkylene chain in the branch part (graft chain); polyoxyalkylene chain Medium length, Mw = 9,000 or more and 15,000 or less), processing accelerator,
Compound D: Marialim (registered trademark) SC1015F (manufactured by NOF CORPORATION; a graft polymer having an anionic functional group in the stem polymer part and a polyoxyalkylene chain in the branch part (graft chain); polyoxyalkylene chain. Longer, Mw = 10,000 or more and 15,000 or less), processing accelerator,
-Compound E: Polyacrylic acid (manufactured by Toagosei Chemical Co., Ltd .; Mw = 8,000 or more and 10,000 or less), comparative compound,
-Compound F: Polyacrylic acid (manufactured by Toagosei Chemical Co., Ltd .; Mw = 80,000 or more and 100,000 or less), comparative compound,
-Compound G: Polyacrylic acid (manufactured by Toagosei Chemical Co., Ltd .; Mw = 400,000 or more and 500,000 or less), a compound for comparison.
 なお、加工促進剤および比較用化合物の重量平均分子量(Mw)は、ゲルパーミーエーションクロマトグラフィー(GPC)によって、GPC装置(株式会社島津製作所製 型式:Prominence + ELSD検出器(ELSD-LTII))を用いてポリエチレングリコール換算によって求めた。具体的には以下の通りである。 The weight average molecular weight (Mw) of the processing accelerator and the comparative compound is determined by gel permeation chromatography (GPC) using a GPC device (manufactured by Shimadzu Corporation, model: Polyethylene + ELSD detector (ELSD-LTII)). It was determined by using it in terms of polyethylene glycol. Specifically, it is as follows.
 GPC装置:株式会社島津製作所製
 型式:Prominence + ELSD検出器(ELSD-LTII)
 カラム:VP-ODS(株式会社島津製作所製)
 移動相  A:MeOH
      B:酢酸1%水溶液
 流量:1mL/分
 検出器:ELSD temp.40℃、Gain 8、N2GAS 350kPa
 オーブン温度:40℃
 注入量:40μL。
GPC device: manufactured by Shimadzu Corporation Model: Prominence + ELSD detector (ELSD-LTII)
Column: VP-ODS (manufactured by Shimadzu Corporation)
Mobile phase A: MeOH
B: 1% aqueous acetic acid flow rate: 1 mL / min Detector: ELSD temp. 40 ° C, Gain 8, N2GAS 350 kPa
Oven temperature: 40 ° C
Injection volume: 40 μL.
 なお、研磨用組成物の調整において、pH値は、pHメーター(株式会社 堀場製作所製 型番:LAQUA(登録商標))によって確認した。 In the adjustment of the polishing composition, the pH value was confirmed by a pH meter (HORIBA, Ltd. model number: LAQUA (registered trademark)).
 〔研磨速度〕
 研磨対象物として、下記表2の基板S1~S4を準備した。
[Polishing speed]
The substrates S1 to S4 shown in Table 2 below were prepared as objects to be polished.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 続いて、得られた研磨用組成物を用いて、下記の研磨装置および研磨条件にて基板を研磨し、下記の方法に従って基板の研磨速度を評価した。研磨用組成物P1~P19を用いた研磨結果を下記表3に示す。また、研磨用組成物P20~P35を用いた研磨結果を下記表4に示す。なお、下記表4には、研磨用組成物P20~P35との比較のため、研磨用組成物P1、P5、P13、P15およびP17を用いた研磨結果も併せて記載する。    Subsequently, using the obtained polishing composition, the substrate was polished with the following polishing apparatus and polishing conditions, and the polishing speed of the substrate was evaluated according to the following method. The polishing results using the polishing compositions P1 to P19 are shown in Table 3 below. The polishing results using the polishing compositions P20 to P35 are shown in Table 4 below. In Table 4 below, the results of polishing using the polishing compositions P1, P5, P13, P15 and P17 are also shown for comparison with the polishing compositions P20 to P35.
 (研磨装置および研磨条件)
 研磨装置:小型卓上研磨機(日本エンギス株式会社製 EJ380IN)
 研磨パッド:硬質ポリウレタン製パッド(ニッタ・ハース株式会社製 IC1000)
 プラテン(定盤)回転速度:70〔rpm〕
 ヘッド(キャリア)回転速度:70〔rpm〕
 研磨圧力:4.0〔psi〕
 研磨用組成物の流量:100〔ml/min〕
 研磨時間:1〔min〕
 (研磨速度評価方法)
 1.電子天秤GH-202(株式会社エー・アンド・デイ製)を用いて、研磨前後の研磨対象物の質量を測定して、これらの差から、研磨前後の研磨対象物の質量変化量ΔM〔kg〕を算出した;
 2.研磨前後の研磨対象物の質量変化量ΔM〔kg〕を研磨対象物の比重(研磨対象となる材料の比重)で除することで、研磨前後の研磨対象物の体積変化量ΔV〔m〕を算出した;
 3.研磨前後の研磨対象物の体積変化量ΔV〔m〕を研磨対象物の研磨面の面積S〔m〕で除することで、研磨前後の研磨対象物の厚み変化量Δd〔m〕を算出した;
 4.研磨前後の研磨対象物の厚み変化量Δd〔m〕を研磨時間t〔min〕で除し、さらに単位を〔μm/min〕へと換算した。この値を研磨速度v〔μm/min〕とした。
(Polishing equipment and polishing conditions)
Polishing device: Small tabletop polishing machine (EJ380IN manufactured by Nippon Engis Co., Ltd.)
Polishing pad: Hard polyurethane pad (IC1000 manufactured by Nitta Haas Co., Ltd.)
Platen (surface plate) rotation speed: 70 [rpm]
Head (carrier) rotation speed: 70 [rpm]
Polishing pressure: 4.0 [psi]
Flow rate of polishing composition: 100 [ml / min]
Polishing time: 1 [min]
(Abrasion speed evaluation method)
1. 1. Using an electronic balance GH-202 (manufactured by A & D Co., Ltd.), the mass of the object to be polished before and after polishing was measured, and from these differences, the amount of change in the mass of the object to be polished before and after polishing ΔM [kg] ] Was calculated;
2. By dividing the mass change amount ΔM [kg] of the polishing object before and after polishing by the specific gravity of the polishing object (specific gravity of the material to be polished), the volume change amount ΔV [m 3 ] of the polishing object before and after polishing Was calculated;
3. 3. By dividing the volume change amount ΔV [m 3 ] of the polishing object before and after polishing by the area S [m 2 ] of the polishing surface of the polishing object, the thickness change amount Δd [m] of the polishing object before and after polishing can be obtained. Calculated;
4. The amount of change in thickness Δd [m] of the object to be polished before and after polishing was divided by the polishing time t [min], and the unit was further converted to [μm / min]. This value was defined as the polishing rate v [μm / min].
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 上記表3より、本発明に係る研磨用組成物P1~P12は、高い研磨速度を示すことが確認された。また、これらの研磨用組成物は、研磨対象となる材料が樹脂である場合に極めて高い研磨速度を示すことが確認された。 From Table 3 above, it was confirmed that the polishing compositions P1 to P12 according to the present invention exhibited a high polishing rate. Further, it was confirmed that these polishing compositions exhibit an extremely high polishing rate when the material to be polished is a resin.
 一方、比較例に係る研磨用組成物P13~P19は、研磨速度に劣り、樹脂研磨においても高い研磨速度が得られないことが確認された。 On the other hand, it was confirmed that the polishing compositions P13 to P19 according to the comparative example were inferior in polishing speed, and a high polishing speed could not be obtained even in resin polishing.
 また、上記表4より、加工促進剤をさらに含む、本発明に係る研磨用組成物P20~P26は、これらと同種の砥粒を含み、加工促進剤を含まない、本発明に係る研磨用組成物P1およびP27~P29と比較して、より高い研磨速度を示すことが確認された。また、加工促進剤をさらに含む、本発明に係る研磨用組成物P30~P32は、これらと同種の砥粒を含み、加工促進剤を含まない、本発明に係る研磨用組成物P5と比較して、より高い研磨速度を示すことが確認された。このように、本発明に係る研磨用組成物は、加工促進剤をさらに含むことで、より高い研磨速度を示すことが確認された。また、これらの研磨速度の向上効果は、研磨対象となる材料が樹脂である場合に、より顕著となることが確認された。 Further, from Table 4 above, the polishing compositions P20 to P26 according to the present invention, which further contain a processing accelerator, contain abrasive grains of the same type as these and do not contain a processing accelerator, and the polishing composition according to the present invention. It was confirmed that the polishing rate was higher than that of the products P1 and P27 to P29. Further, the polishing compositions P30 to P32 according to the present invention, which further contain a processing accelerator, are compared with the polishing composition P5 according to the present invention, which contains abrasive grains of the same type as these and does not contain a processing accelerator. It was confirmed that it showed a higher polishing rate. As described above, it was confirmed that the polishing composition according to the present invention exhibits a higher polishing rate by further containing a processing accelerator. Further, it was confirmed that these effects of improving the polishing rate became more remarkable when the material to be polished was a resin.
 一方、加工促進剤をさらに含む、比較例に係る研磨用組成物P33~P35は、それぞれ、これらと同種の砥粒を含み、加工促進剤を含まない、P13、P15およびP17と比較して、研磨速度に劣り、加工促進剤による研磨速度の向上効果も得られないことが確認された。 On the other hand, the polishing compositions P33 to P35 according to the comparative example, which further contain a processing accelerator, each contain abrasive grains of the same type as these and do not contain a processing accelerator, as compared with P13, P15 and P17. It was confirmed that the polishing speed was inferior and that the effect of improving the polishing speed by the processing accelerator could not be obtained.
 本出願は、2019年9月11日に出願された日本特許出願番号2019-165616号および2020年3月18日に出願された日本特許出願番号2020-048332号に基づいており、その開示内容は、参照により全体として組み入れられている。 This application is based on Japanese Patent Application No. 2019-165616 filed on September 11, 2019 and Japanese Patent Application No. 2020-048332 filed on March 18, 2020. , Incorporated as a whole by reference.

Claims (15)

  1.  アルミナ粒子と、分散媒とを含み、
     前記アルミナ粒子の破壊強度が0.5GPa以上である、研磨用組成物。
    Contains alumina particles and a dispersion medium,
    A polishing composition having a breaking strength of the alumina particles of 0.5 GPa or more.
  2.  前記アルミナ粒子が、爆燃法により製造されたアルミナ粒子である、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the alumina particles are alumina particles produced by an explosive combustion method.
  3.  アルミナ粒子と、分散媒とを含み、
     前記アルミナ粒子が、爆燃法により製造されたアルミナ粒子である、研磨用組成物。
    Contains alumina particles and a dispersion medium,
    A polishing composition in which the alumina particles are alumina particles produced by an explosive combustion method.
  4.  前記アルミナ粒子の真球度が50%を超える、請求項1~3のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 3, wherein the sphericity of the alumina particles exceeds 50%.
  5.  前記アルミナ粒子は、結晶相としてγ相を含む、請求項1~4のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 4, wherein the alumina particles contain a γ phase as a crystal phase.
  6.  前記アルミナ粒子のα化率が50%未満である、請求項1~5のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 5, wherein the pregelatinization rate of the alumina particles is less than 50%.
  7.  pHが1以上12以下である、請求項1~6のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 6, wherein the pH is 1 or more and 12 or less.
  8.  前記アルミナ粒子の破壊強度が0.6GPa以上である、請求項1~7のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 7, wherein the breaking strength of the alumina particles is 0.6 GPa or more.
  9.  前記アルミナ粒子の破壊強度が2GPa以下である、請求項1~8のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 8, wherein the breaking strength of the alumina particles is 2 GPa or less.
  10.  前記アルミナ粒子の真球度が99.9%以下である、請求項1~9のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 9, wherein the sphericity of the alumina particles is 99.9% or less.
  11.  幹ポリマー部にアニオン性官能基を有するグラフトポリマーをさらに含む、請求項1~10のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 10, further comprising a graft polymer having an anionic functional group in the trunk polymer portion.
  12.  研磨面に樹脂を含む研磨対象物を研磨する用途で使用される、請求項1~11のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 11, which is used for polishing an object to be polished containing a resin on the polished surface.
  13.  爆燃法によりアルミナ粒子を製造することと、
     前記アルミナ粒子と、分散媒とを、攪拌混合することを含む、
    請求項1~12のいずれか1項に記載の研磨用組成物の製造方法。
    Producing alumina particles by the explosion method and
    The alumina particles and the dispersion medium are mixed by stirring.
    The method for producing a polishing composition according to any one of claims 1 to 12.
  14.  請求項1~12のいずれか1項に記載の研磨用組成物を用いて、または、
     請求項13に記載の製造方法によって研磨用組成物を製造し、当該研磨用組成物を用いて、
    研磨対象物を研磨する、研磨方法。
    Using the polishing composition according to any one of claims 1 to 12, or
    A polishing composition is produced by the production method according to claim 13, and the polishing composition is used to prepare the polishing composition.
    A polishing method for polishing an object to be polished.
  15.  前記研磨対象物は、研磨面に樹脂を含む研磨対象物である、請求項14に記載の研磨方法。 The polishing method according to claim 14, wherein the polishing object is a polishing object containing a resin on the polishing surface.
PCT/JP2020/027089 2019-09-11 2020-07-10 Polishing composition and polishing method using same WO2021049154A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019165616 2019-09-11
JP2019-165616 2019-09-11
JP2020048332A JP7437199B2 (en) 2019-09-11 2020-03-18 Polishing composition and polishing method using the same
JP2020-048332 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021049154A1 true WO2021049154A1 (en) 2021-03-18

Family

ID=74866066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027089 WO2021049154A1 (en) 2019-09-11 2020-07-10 Polishing composition and polishing method using same

Country Status (1)

Country Link
WO (1) WO2021049154A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255602A (en) * 1984-05-29 1985-12-17 Toyota Motor Corp Preparation of ultrafine particle of oxide
JPH0261220B2 (en) * 1983-10-25 1990-12-19 Nihon Koshuha Co Ltd
JP2009501688A (en) * 2005-07-16 2009-01-22 センター フォー アブレイシブズ アンド リフラクトリーズ リサーチ アンド ディベロップメント シー.エー.アール.アール.ディー. ゲーエムベーハー Alpha-aluminum oxide-based nanocrystal sintered body, method for producing the same, and use thereof
JP2009511719A (en) * 2005-10-14 2009-03-19 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Abrasive particle material and method for planarizing a workpiece using the abrasive particle material
US20120156494A1 (en) * 2009-08-20 2012-06-21 Christian Wolfrum Method for producing dispersions having metal oxide nanoparticles and dispersions produced thereby
JP2016183212A (en) * 2015-03-25 2016-10-20 株式会社フジミインコーポレーテッド Polishing composition
JP2017190267A (en) * 2016-04-14 2017-10-19 株式会社アドマテックス Alumina particle material and production method of the same
CN107555455A (en) * 2017-08-31 2018-01-09 天津泽希矿产加工有限公司 Electronics heat conduction ball-aluminium oxide and manufacture method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261220B2 (en) * 1983-10-25 1990-12-19 Nihon Koshuha Co Ltd
JPS60255602A (en) * 1984-05-29 1985-12-17 Toyota Motor Corp Preparation of ultrafine particle of oxide
JP2009501688A (en) * 2005-07-16 2009-01-22 センター フォー アブレイシブズ アンド リフラクトリーズ リサーチ アンド ディベロップメント シー.エー.アール.アール.ディー. ゲーエムベーハー Alpha-aluminum oxide-based nanocrystal sintered body, method for producing the same, and use thereof
JP2009511719A (en) * 2005-10-14 2009-03-19 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Abrasive particle material and method for planarizing a workpiece using the abrasive particle material
US20120156494A1 (en) * 2009-08-20 2012-06-21 Christian Wolfrum Method for producing dispersions having metal oxide nanoparticles and dispersions produced thereby
JP2016183212A (en) * 2015-03-25 2016-10-20 株式会社フジミインコーポレーテッド Polishing composition
JP2017190267A (en) * 2016-04-14 2017-10-19 株式会社アドマテックス Alumina particle material and production method of the same
CN107555455A (en) * 2017-08-31 2018-01-09 天津泽希矿产加工有限公司 Electronics heat conduction ball-aluminium oxide and manufacture method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TONIOLO, J.C. ET AL.: "Synthesis of alumina powders by the glycine-nitrate combustion process", MATERIALS RESEARCH BULLETIN, vol. 40, 2005, pages 561 - 571, XP004753216, ISSN: 0025-5408, DOI: 10.1016/j.materresbull.2004.07.019 *

Similar Documents

Publication Publication Date Title
KR101461261B1 (en) Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
TWI547436B (en) a boron nitride agglomerated particle, a composition containing the same, and a three-dimensional integrated circuit having a layer composed of the composition
KR101243423B1 (en) Polishing agent for silicon oxide, liquid additive, and method of polishing
TW200914379A (en) Method for preparing cerium carbonate powder and cerium oxide powder
WO2007116770A1 (en) Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersion for chemical mechanical polishing
KR102485534B1 (en) Chemical-mechanical polishing composition comprising organic/inorganic composite particles
CN112480824B (en) Polishing composition, polishing method, and method for producing semiconductor substrate
JP7437199B2 (en) Polishing composition and polishing method using the same
WO2021049154A1 (en) Polishing composition and polishing method using same
JP4755805B2 (en) Slurry for polishing
KR101197163B1 (en) Cmp slurry
JP4236195B2 (en) Polishing α-alumina composition and production method thereof
JP7398304B2 (en) Polishing composition, polishing method, and semiconductor substrate manufacturing method
WO2023181810A1 (en) Polishing composition and polishing method using same
TW568944B (en) Ammonium oxalate-containing polishing system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863446

Country of ref document: EP

Kind code of ref document: A1