JP2831906B2 - Single crystal manufacturing equipment - Google Patents

Single crystal manufacturing equipment

Info

Publication number
JP2831906B2
JP2831906B2 JP5137561A JP13756193A JP2831906B2 JP 2831906 B2 JP2831906 B2 JP 2831906B2 JP 5137561 A JP5137561 A JP 5137561A JP 13756193 A JP13756193 A JP 13756193A JP 2831906 B2 JP2831906 B2 JP 2831906B2
Authority
JP
Japan
Prior art keywords
melt
single crystal
raw material
plate
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5137561A
Other languages
Japanese (ja)
Other versions
JPH06345583A (en
Inventor
真伸 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUTETSU KOGYO KK
Original Assignee
NITSUTETSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUTETSU KOGYO KK filed Critical NITSUTETSU KOGYO KK
Priority to JP5137561A priority Critical patent/JP2831906B2/en
Publication of JPH06345583A publication Critical patent/JPH06345583A/en
Application granted granted Critical
Publication of JP2831906B2 publication Critical patent/JP2831906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸化物磁性材料、酸化
物誘電材料、半導体材料等の物質として有用な単結晶を
製造するのに適する単結晶製造装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal manufacturing apparatus suitable for manufacturing a single crystal useful as a substance such as an oxide magnetic material, an oxide dielectric material, and a semiconductor material.

【0002】[0002]

【従来の技術】融液から単結晶を育成する製造方法とし
て知られたCZ(チョコラルスキー)法を用いて高品質
の単結晶を製造する場合には、製造されるべき単結晶の
組成が融液の組成と等しくなければならない。目的とす
る単結晶の組成が融液の組成と異なると、育成される単
結晶の組成が変化してしまい、その結果、歪みが結晶内
に生じ、高品質の単結晶を製造することが出来ない。
2. Description of the Related Art When a high-quality single crystal is produced by using a CZ (Czochralski) method known as a production method for growing a single crystal from a melt, the composition of the single crystal to be produced is determined by the melting point. Must be equal to the composition of the liquid. If the composition of the target single crystal is different from the composition of the melt, the composition of the single crystal to be grown changes, and as a result, strain occurs in the crystal, and a high-quality single crystal can be manufactured. Absent.

【0003】分解溶融する物質や非コングルエントの物
質では、公知のように安定に共存する液相と固相の組成
が異なるために、上記理由から高品質の単結晶をCZ法
によって得ることが出来ない。そこで従来これらの物質
の高品質単結晶の製造には、FZ(フローティングゾー
ン)法が用いられている。FZ法による分解溶融物の製
造方法はTSFZ(Traveling Solvent Floating Zon
e)法と呼ばれており、TSFZ法の原理を集光加熱式
のFZ法に応用した製法として、例えばYIG(イット
リウム鉄ガーネット)単結晶の製造方法については、特
公昭55−16120号公報に開示されている。またY
IGの固溶体単結晶の製造方法については、特公昭56
−27479号公報に提案されている。また非コングル
エント組成の物質の製造方法については、例えば日本結
晶成長学会誌Vol.14 No.2(1987年)16
3〜171頁に提案がある。
As is well known, the composition of a liquid phase and a solid phase, which coexist stably in a substance that decomposes and melts and a non-congruent substance, differ from each other. Absent. Therefore, the FZ (floating zone) method has conventionally been used for producing high quality single crystals of these substances. The production method of the decomposition melt by the FZ method is TSFZ (Traveling Solvent Floating Zon).
e) As a method of applying the principle of the TSFZ method to the FZ method of the condensing heating type, for example, a method of manufacturing a YIG (yttrium iron garnet) single crystal is described in JP-B-55-16120. It has been disclosed. Also Y
A method for producing a solid solution single crystal of IG is described in
-27479. Also, a method for producing a substance having a non-congruent composition is described in, for example, Journal of the Japanese Association for Crystal Growth Vol. 14 No. 2 (1987) 16
There is a proposal on pages 3-171.

【0004】更に引下げ法として、種結晶と水平プレー
トの間に溶融帯を形成させて、プレート上に原料粉末を
落下させながら単結晶を育成することが、例えばJ.
Sci. Instr., 42, p114(196
5)に提案提案されている。
Further, as a pulling-down method, a method of forming a molten zone between a seed crystal and a horizontal plate and growing a single crystal while dropping a raw material powder on the plate is disclosed in, for example, J. Mol.
Sci. Instr. , 42, p114 (196
Proposed in 5).

【0005】[0005]

【発明が解決しようとする課題】従来のFZ法では、融
液の組成を育成の最初の段階で特定・制御して育成を開
始する。育成開始後は、一定組成の原料棒を溶け込ませ
て結晶を育成するので、溶け込んだ原料と量及び組成が
同じ単結晶を育成するときに限って安定な育成が可能で
ある。
In the conventional FZ method, the growth is started by specifying and controlling the composition of the melt at the initial stage of the growth. After the growth is started, the raw material rod having a constant composition is melted to grow the crystal, so that stable growth is possible only when growing a single crystal having the same amount and composition as the melted raw material.

【0006】しかしながら、実際の育成では様々な要
因、その中でも特に融液が原料棒へ染み込むことによっ
て育成中に融液の量と組成とが変化してしまう。
[0006] However, in actual growth, various factors, particularly the melt penetrates into the raw material rod, change the amount and composition of the melt during growth.

【0007】分解溶融する物質や非コングルエントの物
質は、温度によって安定に共存する液層の組成が異な
る。FZ法で単結晶を育成する場合、育成域付近の温度
勾配のために原料棒を構成する多結晶の粒界中に融液が
染み込み、当該多結晶と反応してその場所の温度に対応
した融液の組成に変化する。そのために融液の組成と量
とが変化してしまう。特に融液に、単結晶に含まれない
成分を使用する場合には、融液の組成と量の変化が著し
くなる。
[0007] The composition of a liquid layer stably coexisting with a substance that decomposes and melts or a non-congruent substance varies depending on the temperature. When growing a single crystal by the FZ method, the melt permeates into the grain boundaries of the polycrystal constituting the raw material rod due to the temperature gradient near the growth area, reacts with the polycrystal, and responds to the temperature at that location. Changes to the composition of the melt. Therefore, the composition and amount of the melt change. In particular, when a component not included in the single crystal is used for the melt, the composition and amount of the melt significantly change.

【0008】上述のように、育成中に融液の組成と量が
変化してしまうと、一定の組成の原料棒を溶かし込む従
来の方法では、安定な融液の組成と量に戻すことは不可
能である。したがって高品質の単結晶を安定して育成す
ることが困難である。
As described above, if the composition and amount of the melt change during the growth, the conventional method of melting a raw material rod having a constant composition cannot return the composition and the amount of the melt to a stable one. Impossible. Therefore, it is difficult to stably grow a high-quality single crystal.

【0009】また従来公知の引下げ法はプレートを直接
加熱する方式であって、この方式では育成域付近の温度
制御が難しく、そのため固液界面が乱れ、高品質の単結
晶を育成することが極めて困難である。
Further, the conventionally known pulling-down method is a method of directly heating the plate. In this method, it is difficult to control the temperature in the vicinity of the growing area, so that the solid-liquid interface is disturbed and it is extremely difficult to grow a high-quality single crystal. Have difficulty.

【0010】YIGのような分解溶融物や非コングルエ
ントの物質を大口径化する場合は、育成初期の口径の小
さいときに必要とされる安定な融液の量と、大口径にな
ったときの安定な融液の量とが異なるため、育成される
単結晶の組成の原料を常時供給し続けるTSFZ法や引
下げ法など、従来法では育成することができない。
In the case of increasing the diameter of a decomposed melt or a non-congruent substance such as YIG, the amount of a stable melt required when the diameter is small at the initial stage of growth and the amount of the melt when the diameter becomes large Since the amount of the stable melt is different, conventional methods such as the TSFZ method and the pull-down method, which constantly supply the raw material having the composition of the single crystal to be grown, cannot be grown.

【0011】以上のような従来法での問題及び限界に照
らして、本発明は、育成中に融液の組成や量の調整が必
要になった場合でも、容易に当該調整を行なって、高品
質の単結晶を得ることができる単結晶製造装置を提供す
ることを課題とする。
In view of the problems and limitations of the conventional method as described above, the present invention makes it possible to easily adjust the composition and amount of the melt even if it becomes necessary during the growth. It is an object to provide a single crystal manufacturing apparatus capable of obtaining a single crystal of high quality.

【0012】[0012]

【課題を解決するための手段】上記課題は、回転楕円面
鏡と、当該回転楕円面鏡の一方の焦点に配置された熱源
と、当該回転楕円面鏡の他方の焦点に配置された単結晶
育成部とを備えた集光加熱式の単結晶製造装置におい
て、前記単結晶育成部が、種結晶と当該種結晶の上方で
水平に置かれた細孔を備えるプレートとこれら種結晶と
プレートの間に形成される溶融帯とで構成され、前記プ
レートの上方に粉砕物質供給管が配置されていることを
特徴とする単結晶製造装置によって、解決される。
An object of the present invention is to provide a spheroid mirror, a heat source disposed at one focal point of the spheroid mirror, and a single crystal disposed at the other focal point of the spheroid mirror. In the condensing heating type single crystal manufacturing apparatus provided with a growing unit, the single crystal growing unit, a plate having a seed crystal and a fine hole horizontally placed above the seed crystal, and the seed crystal and the plate The problem is solved by a single crystal manufacturing apparatus characterized by comprising a molten zone formed between them and a pulverized substance supply pipe disposed above the plate.

【0013】[0013]

【0014】本発明に係る製造装置を用いることによ
り、分解溶融物や非コングルエントの物質を育成する際
に、必要な量の原料だけが融液に供給されて、原料棒が
融液に直接接触することがなく、したがって従来のよう
な原料棒への融液の染み込みが起こらない。
By using the manufacturing apparatus according to the present invention, when growing a decomposition melt or a non-congruent substance, only a necessary amount of raw material is supplied to the melt, and the raw material rod is brought into direct contact with the melt. Therefore, the melt does not penetrate into the raw material rod as in the prior art.

【0015】また本発明に係る装置を用いることで、育
成中の融液の量や形状をリアルタイムで観察して、育成
中に融液の量が減少して溶融帯の維持が困難になった場
合には、適当な組成と量の原料を供給して、当該溶融帯
を最適状態に戻すことができる。
Further, by using the apparatus according to the present invention, the amount and shape of the melt during growth are observed in real time, and the amount of the melt decreases during growth, making it difficult to maintain the molten zone. In such a case, the molten zone can be returned to an optimal state by supplying a raw material having an appropriate composition and amount.

【0016】更に本発明に係る装置によって、分解溶融
物や非コングルエントの物質の大口径の単結晶を育成す
る際、結晶の口径が大きくなるにつれて適当な組成と量
の原料を加えながら融液の量を増やすこともでき、口径
に応じた安定な融液の量の調節が可能となり、安定した
大口径の単結晶の育成が可能となる。
Further, when growing a large-diameter single crystal of a decomposition melt or a non-congruent substance by the apparatus according to the present invention, as the diameter of the crystal becomes larger, the raw material having an appropriate composition and amount is added while the raw material having an appropriate composition and amount is added. The amount can be increased, and the amount of the melt can be adjusted stably in accordance with the diameter, so that a stable large-diameter single crystal can be grown.

【0017】製造装置に用いられるプレートは融液と反
応しない材質、例えばYIGに対しては白金Ptが好ま
しい。
The plate used in the manufacturing apparatus is preferably made of a material which does not react with the melt, for example, platinum Pt for YIG.

【0018】供給管も融液とは反応せず融点の高いも
の、例えばアルミナ管が好ましい。
The supply pipe also does not react with the melt and has a high melting point, for example, an alumina pipe is preferred.

【0019】供給すべき原料は、一旦焼結させ反応させ
てから粉砕させたものの方が供給管にくっついて詰まら
ないので有効である。
The raw material to be supplied is more effective if it is sintered, reacted, and then pulverized, because it is stuck to the supply pipe and is not clogged.

【0020】[0020]

【発明の効果】本発明に係る製造装置で製造プロセスを
実施することにより、融液と育成される単結晶とが非平
衡の場合でも結晶を安定して育成でき、また安定条件
(融液の量と組成等)を迅速に発見することができる。
また分解溶融物をTSFZ法で大口径化することも可能
となる。
By performing the manufacturing process with the manufacturing apparatus according to the present invention, crystals can be grown stably even when the melt and the single crystal to be grown are not in equilibrium, and stable conditions (melt of the melt) can be obtained. Quantity and composition) can be found quickly.
It is also possible to increase the diameter of the decomposition melt by the TSFZ method.

【0021】[0021]

【実施例】本発明の単結晶製造育成装置の一実施例を図
1に示す。対称形の2つの回転楕円面鏡1、2の夫々の
一方の焦点F0、F0が一致するように対向して加熱炉が
構成される。この回転楕円面鏡1、2の反射面は、赤外
線を高反射率で反射させるべく金メッキ処理が施されて
いてもよい。回転楕円面鏡1、2の他方の第1、第2の
焦点F1、F2近傍には、ハロゲンランプ3、4が固定配
置されている。また共通焦点F0の位置には、溶媒部5
があり、その直ぐ下部には、下方から鉛直上方に延びる
回転軸6の上端に固定された結晶棒7があり、また溶媒
部5の上方には細孔を有した白金プレート8(0.3m
m厚×30mm径)が水平に位置しており、さらにその
上方には、アルミナ管9(内径10mm)が配置されて
いる。このアルミナ管9や結晶棒7が配置された空間と
ハロゲンランプ3、4とを石英板10で区画している。
この区画によって形成されるアルミナ管9や結晶棒7を
配置した試料空間には、結晶製造及び育成に好適な雰囲
気ガスが充満されることとなる。プレート8は石英板1
0に固定されている。この装置を用いて、下記実施例1
及び2が行なわれた。
FIG. 1 shows an embodiment of the apparatus for producing and growing a single crystal according to the present invention. Heating furnaces are configured to face each other such that the respective focal points F 0 , F 0 of the two symmetric spheroidal mirrors 1, 2 coincide with each other. The reflecting surfaces of the spheroid mirrors 1 and 2 may be subjected to gold plating to reflect infrared rays at a high reflectance. Halogen lamps 3 and 4 are fixedly disposed in the vicinity of the other first and second focal points F 1 and F 2 of the spheroid mirrors 1 and 2. Further, at the position of the common focal point F 0 , the solvent portion 5
There is a crystal rod 7 directly below the crystal rod 7 fixed to the upper end of a rotating shaft 6 extending vertically upward from below, and a platinum plate 8 (0.3 m) having pores above the solvent part 5.
(m thickness × 30 mm diameter) is positioned horizontally, and further above that, an alumina tube 9 (inner diameter 10 mm) is arranged. A space in which the alumina tube 9 and the crystal rod 7 are arranged and the halogen lamps 3 and 4 are partitioned by a quartz plate 10.
The sample space in which the alumina tube 9 and the crystal rod 7 formed by this section are arranged is filled with an atmosphere gas suitable for crystal production and growth. Plate 8 is quartz plate 1
It is fixed to 0. Using this device, the following Example 1
And 2 were performed.

【0022】実施例1 酸化イットリウムY23と酸化第二鉄Fe23と酸化ビ
スマスBi23からなる粉末50gを用いて、YIGの
イットリウムの10モル%をビスマスで置換した組成に
調整し、めのう乳鉢中でエタノールの湿式混合を3回行
った。その原料をゴムチューブに詰め込み、静水圧10
00kg/cm2でプレスし、10mm径で100mm
の長さの円柱状に成形した。これを内径30mm、長さ
600mmのアルミナ管で構成される縦型管状炉内に配
置し、酸素を管の下方から0.5リットル/hrで内部
に流通し、その4時間後から1200℃で1.5時間焼
結し、焼結終了まで酸素を流通し続けて原料棒を作製し
た。
EXAMPLE 1 A 50 g powder of yttrium oxide Y 2 O 3 , ferric oxide Fe 2 O 3 and bismuth oxide Bi 2 O 3 was used to obtain a composition in which 10 mol% of yttrium of YIG was replaced by bismuth. Adjusted and wet mixed with ethanol three times in an agate mortar. The raw material is packed in a rubber tube, and the hydrostatic pressure is 10
Press at 100kg / cm 2 and 100mm at 10mm diameter
Into a cylindrical shape having a length of This was placed in a vertical tubular furnace composed of an alumina tube having an inner diameter of 30 mm and a length of 600 mm, and oxygen was passed through the inside of the tube at a rate of 0.5 liter / hr from below the tube. Sintering was performed for 1.5 hours, and oxygen was continued to flow until the sintering was completed to produce a raw material rod.

【0023】またそれぞれモル%で酸化イットリウムY
235%、酸化第二鉄Fe2350%、酸化ビスマスB
2330%、酸化バリウムBaO15%に調整した粉
末10gを、めのう乳鉢中でエタノールの湿式混合を1
回行った。その原料をゴムチューブに詰め込み、静水圧
1000kg/cm2でプレスし、7mm径で40mm
の長さの円柱状に成形した。これを内径30mm、長さ
600mmのアルミナ管で構成される縦型管状炉内に配
置し、酸素を管の下方から0.5リットル/hrで内部
に流通し、その4時間後から800℃で1.5時間焼結
し、焼結終了まで酸素を流通し続けてペレットを作製し
た。
In addition, yttrium oxide Y
2 O 3 5%, ferric oxide Fe 2 O 3 50%, bismuth oxide B
10 g of powder adjusted to 30% of i 2 O 3 and 15% of barium oxide was wet-mixed with 1 ml of ethanol in an agate mortar.
I went there. The raw material was packed in a rubber tube and pressed at a hydrostatic pressure of 1000 kg / cm 2 to a diameter of 7 mm and a diameter of 40 mm.
Into a cylindrical shape having a length of This was placed in a vertical tubular furnace composed of an alumina tube having an inner diameter of 30 mm and a length of 600 mm, and oxygen was passed through the inside of the tube at a rate of 0.5 L / hr from below the tube. Sintering was performed for 1.5 hours, and oxygen was continued to flow until sintering was completed to produce pellets.

【0024】上記のように作製した原料棒とペレットを
それぞれめのう乳鉢で約1mmの粒状に粉砕した。
The raw material rods and pellets prepared as described above were each pulverized in an agate mortar into granules of about 1 mm.

【0025】図1に示された上記単結晶製造・育成装置
において、アルミナ管9を白金プレート8の上部10m
m付近にその先端がくるように設置した。直径10mm
で(111)方向に育成したYIGを種結晶として回転
軸6に固定し、種結晶の上に上記操作で得たペレットを
60mg乗せた。
In the apparatus for producing and growing a single crystal shown in FIG. 1, the alumina tube 9 is placed 10 m above the platinum plate 8.
m so that the tip would come near. 10mm diameter
The YIG grown in the (111) direction was fixed as a seed crystal on the rotating shaft 6 and 60 mg of the pellet obtained by the above operation was put on the seed crystal.

【0026】熱源のハロゲンランプ3、4の電圧を徐々
に上昇させると、種結晶の上のペレットが溶け出して液
体となった。次いで、回転軸6を上昇させて当該液体を
プレート8に接触させた。すると図2に示されるよう
に、プレートと種結晶との間で溶融帯が形成された。さ
らに、アルミナ管9を通じて上記のように作製した粒状
の原料をプレートの上に供給した。すると溶融帯の融液
と原料がプレート8の細孔を通じて反応し、融液の量が
少なくなった。そこで融液の量を見ながら、粒状ペレッ
トをプレート8の上に供給した。するとプレート8の上
部で融液ができ、それが補充液としてプレート8の下部
に移動し、プレート8と種結晶で形成される溶融帯の融
液の量が回復した。
When the voltage of the halogen lamps 3 and 4 as heat sources was gradually increased, the pellets on the seed crystal were melted and turned into a liquid. Next, the rotating shaft 6 was raised to bring the liquid into contact with the plate 8. Then, as shown in FIG. 2, a molten zone was formed between the plate and the seed crystal. Further, the granular raw material prepared as described above was supplied through the alumina tube 9 onto the plate. Then, the melt in the melting zone and the raw material reacted through the pores of the plate 8, and the amount of the melt decreased. Then, the granular pellets were supplied onto the plate 8 while checking the amount of the melt. Then, a melt was formed at the upper part of the plate 8 and moved to the lower part of the plate 8 as a replenisher, and the amount of the melt in the melting zone formed by the plate 8 and the seed crystal was recovered.

【0027】上記操作を繰り返してプレート8と結晶の
間の溶融帯の融液の量を調節しながら回転軸6を0.5
mm/hrで下降させた。約2時間育成すると、種結晶
の上部に新たに結晶が約1mm晶出した。そこで電圧を
下げて融液をプレート8と結晶から切り離した後、常温
まで8時間かけて冷却した。
By repeating the above operation and adjusting the amount of melt in the melting zone between the plate 8 and the crystal,
It was lowered at mm / hr. After growing for about 2 hours, about 1 mm of new crystal was crystallized on the seed crystal. Then, the voltage was lowered to separate the melt from the plate 8 and the crystal, and then cooled to room temperature over 8 hours.

【0028】晶出した結晶をX線回折法で構造を、EP
MAで組成を調べたところ、ビスマスをイットリウムに
対し6%置換したYIGであることが判明した。
The structure of the crystallized crystal is determined by the X-ray diffraction method.
Examination of the composition with MA revealed that YIG was bismuth substituted with 6% yttrium.

【0029】比較例1 実施例1と同様にして原料棒とペレットとを作製した。 Comparative Example 1 Raw material rods and pellets were produced in the same manner as in Example 1.

【0030】このようにして得た原料棒を赤外線集光加
熱方式を採用した公知のフローティングゾーン法単結晶
製造装置の上側試料回転軸に固定し、同様に直径10m
mで(111)方向に育成したYIGを種結晶として下
側試料回転軸に固定し、種結晶の上に上記操作で得たペ
レットを60mg乗せた。育成雰囲気として酸素ガス
を、溶融石英管を介して外気と隔離された結晶成長室へ
1.5リットル/hrで流し込み、上部回転軸と下部回
転軸を各々逆方向に33rpmで回転させた。
The raw material rod obtained in this manner is fixed to the upper sample rotating shaft of a known floating zone method single crystal manufacturing apparatus employing an infrared condensing heating method, and similarly has a diameter of 10 m.
The YIG grown in the (111) direction at m was fixed as a seed crystal on the lower sample rotation axis, and 60 mg of the pellet obtained by the above operation was placed on the seed crystal. Oxygen gas was supplied as a growth atmosphere at a rate of 1.5 liter / hr through a fused quartz tube into a crystal growth chamber isolated from the outside air, and the upper rotating shaft and the lower rotating shaft were rotated at 33 rpm in opposite directions.

【0031】熱源のランプの電圧を徐々に上昇させる
と、種結晶の上のペレットが溶け出して液体となった。
その液体に上側回転軸を下降させて原料棒を接触させる
と液体が徐々に原料棒に吸収されて液体が急速に減少し
残りの液体も固化してしまい、溶融帯を形成させること
ができなかった。
When the voltage of the heat source lamp was gradually increased, the pellet on the seed crystal was melted and turned into a liquid.
When the raw material rod is brought into contact with the liquid by lowering the upper rotating shaft, the liquid is gradually absorbed by the raw material rod, the liquid is rapidly reduced, and the remaining liquid is solidified, so that a molten zone cannot be formed. Was.

【0032】同様の条件でペレットの量を200mgに
しても溶融帯を形成させることができなかった。また、
それ以上のペレットを用いると種結晶の上で液体を維持
することができなくなり液体が垂れてしまった。
Under the same conditions, a molten zone could not be formed even when the amount of pellets was 200 mg. Also,
If more pellets were used, the liquid could not be maintained on the seed crystal and the liquid dropped.

【0033】実施例2 酸化イットリウムY23と酸化第二鉄Fe23からなる
粉末50gをYIGの組成に調整し、めのう乳鉢中でエ
タノールの湿式混合を3回行った。その原料をゴムチュ
ーブに詰め込み、静水圧1000kg/cm2でプレス
し、10mm径で100mmの長さの円柱状に成形し
た。これを内径30mm、長さ600mmのアルミナ管
で構成される縦型管状炉内に配置し、酸素を管の下方か
ら0.5リットル/hrで内部に流通し、その4時間後
から1530℃で1.5時間焼結し、焼結終了まで酸素
を流通し続けて原料棒を作製した。
Example 2 50 g of a powder composed of yttrium oxide Y 2 O 3 and ferric oxide Fe 2 O 3 was adjusted to a YIG composition, and wet mixing of ethanol was performed three times in an agate mortar. The raw material was packed in a rubber tube, pressed at a hydrostatic pressure of 1000 kg / cm 2 , and formed into a column having a diameter of 10 mm and a length of 100 mm. This was placed in a vertical tubular furnace consisting of an alumina tube having an inner diameter of 30 mm and a length of 600 mm, and oxygen was passed through the inside of the tube at a rate of 0.5 liter / hr from below the tube. Sintering was performed for 1.5 hours, and oxygen was continued to flow until the sintering was completed to produce a raw material rod.

【0034】またそれぞれモル%で酸化イットリウムY
2315%、酸化第二鉄Fe2385%に調整した粉末
10gを、めのう乳鉢中でエタノールの湿式混合を1回
行った。その原料をゴムチューブに詰め込み、静水圧1
000kg/cm2でプレスし、7mm径で40mmの
長さの円柱状に成形した。これを内径30mm、長さ6
00mmのアルミナ管で構成される縦型管状炉内に配置
し、酸素を管の下方から0.5リットル/hrで内部に
流通し、その4時間後から1300℃で1.5時間焼結
し、焼結終了まで酸素を流通し続けてペレットを作製し
た。
In addition, yttrium oxide Y
2 O 3 15%, the powder 10g adjusted to ferric Fe 2 O 3 85% oxidation was carried out once wet mixing ethanol in an agate mortar. The raw material is packed in a rubber tube,
It was pressed at 000 kg / cm 2 and formed into a column having a diameter of 7 mm and a length of 40 mm. This is 30 mm in inner diameter and 6 in length
It was placed in a vertical tubular furnace consisting of a 00 mm alumina tube, oxygen was passed through the inside of the tube at 0.5 liter / hr from the bottom, and after 4 hours, it was sintered at 1300 ° C. for 1.5 hours. Pellets were produced by continuously flowing oxygen until the end of sintering.

【0035】上記のように作製した原料棒とペレットを
それぞれめのう乳鉢で約1mmの粒状に粉砕した。
The raw material rods and the pellets prepared as described above were each pulverized in an agate mortar into granules of about 1 mm.

【0036】上記操作で得たペレットを用いて図1に示
された装置に実施例1と同様にセットし、徐々に電圧を
上昇させた。すると種結晶の上のペレットが溶け出して
液体となった。次いで回転軸6を上昇させて液体をプレ
ート8に接触させた。するとプレート8と種結晶との間
で溶融帯が形成された。次に、アルミナ管9を通じて上
記のように作製した粒状の原料をプレート8の上に供給
した。このとき溶融帯の融液の量は減少したが実施例1
に比べるとその量は僅かであった。この状態で電圧を1
0分位かけて1.2V上昇させると融液の量が多くなっ
た。この状態で回転軸6を1mm/hrで下降させた。
プレート8上に固体で残っている原料が少なくなった場
合にはアルミナ管9を通じて原料を供給した。融液の量
が少なくなった場合には粒状にしたペレットを供給し
た。この操作を繰り返しながら融液の量を一定に保って
2時間育成すると、種結晶と同じ径の単結晶が育成され
た。この状態で次に電圧を少しづつ上昇させると、融液
の量が減少した。このとき粒状のペレットをやや多めに
供給し安定状態よりもやや多めの融液を形成させた。電
圧を上昇させながらこの操作を繰り返すと、結晶の径が
大きくなり、5時間後に約15mmの径となった。
The pellets obtained by the above operation were set in the apparatus shown in FIG. 1 in the same manner as in Example 1, and the voltage was gradually increased. Then, the pellet on the seed crystal melted out and became liquid. Next, the rotating shaft 6 was raised to bring the liquid into contact with the plate 8. As a result, a molten zone was formed between the plate 8 and the seed crystal. Next, the granular raw material prepared as described above was supplied onto the plate 8 through the alumina tube 9. At this time, the amount of the melt in the melting zone was reduced.
The amount was small compared to. In this state, set the voltage to 1
When the voltage was increased by 1.2 V over about 0 minutes, the amount of the melt increased. In this state, the rotating shaft 6 was lowered at 1 mm / hr.
When the raw material remaining as a solid on the plate 8 became small, the raw material was supplied through an alumina tube 9. When the amount of the melt became small, granulated pellets were supplied. When this operation was repeated and the amount of the melt was kept constant for 2 hours, a single crystal having the same diameter as the seed crystal was grown. When the voltage was then gradually increased in this state, the amount of the melt decreased. At this time, the granular pellets were supplied in a slightly larger amount to form a slightly larger melt than in the stable state. When this operation was repeated while increasing the voltage, the diameter of the crystal became large, and the diameter became about 15 mm after 5 hours.

【0037】比較例2 実施例2と同様にして原料棒とペレットとを作製した。 Comparative Example 2 Raw material rods and pellets were produced in the same manner as in Example 2.

【0038】このようにして得た原料棒を赤外線周光加
熱方式を採用した公知のフローティングゾーン法単結晶
製造装置の上側試料回転軸に固定し、同様に直径10m
mで(111)方向に育成したYIGを種結晶として下
側試料回転軸に固定し、種結晶の上に上記操作で得たペ
レットを60mg乗せた。育成雰囲気として酸素ガス
を、溶融石英管を介して外気と隔離された結晶成長室へ
1.5リットル/hrで流し込み、上部回転軸と下部回
転軸を各々逆方向に33rpmで回転させた。
The raw material rod obtained in this manner was fixed to the upper sample rotating shaft of a known floating zone method single crystal manufacturing apparatus employing an infrared light heating method, and similarly, the diameter was 10 m.
The YIG grown in the (111) direction at m was fixed as a seed crystal on the lower sample rotation axis, and 60 mg of the pellet obtained by the above operation was placed on the seed crystal. Oxygen gas was supplied as a growth atmosphere at a rate of 1.5 liter / hr through a fused quartz tube into a crystal growth chamber isolated from the outside air, and the upper rotating shaft and the lower rotating shaft were rotated at 33 rpm in opposite directions.

【0039】徐々に熱源のランプの電圧を上昇させると
ペレットが溶け出し液体となった。その液体に上側回転
軸を下降させて原料棒を接触させ、原料棒と種結晶の間
で溶融帯を形成させた。そして大口径化するために上側
試料回転軸を3mm/hr、下側試料回転軸を1mm/
hrで下降させた。その後約30分経過すると溶融帯の
融液の量が減少し、溶融帯の幅が狭くなった。しばらく
すると原料棒と種結晶が溶融帯内で接触し、その振動で
融液が垂れてしまった。
When the voltage of the heat source lamp was gradually increased, the pellets began to melt and became liquid. The raw material rod was brought into contact with the liquid by lowering the upper rotating shaft, and a molten zone was formed between the raw material rod and the seed crystal. In order to increase the diameter, the upper sample rotation axis is 3 mm / hr, and the lower sample rotation axis is 1 mm / hr.
Lowered at hr. About 30 minutes thereafter, the amount of the melt in the melting zone decreased, and the width of the melting zone became narrower. After a while, the raw material rod and the seed crystal came into contact in the melting zone, and the melt dripped due to the vibration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る集光加熱式の単結晶製造装置の概
略図である。
FIG. 1 is a schematic view of a condensing heating type single crystal manufacturing apparatus according to the present invention.

【図2】図1の装置において単結晶の製造を行なう様子
を示す概念図である。
FIG. 2 is a conceptual diagram showing how a single crystal is manufactured in the apparatus of FIG.

【符号の説明】[Explanation of symbols]

1、2 回転楕円面鏡 3、4 熱源 5 溶媒部 6 回転軸 8 プレート 9 供給管 1, 2 spheroid mirror 3, 4 heat source 5 solvent part 6 rotation axis 8 plate 9 supply pipe

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回転楕円面鏡と、当該回転楕円面鏡の一
方の焦点に配置された熱源と、当該回転楕円面鏡の他方
の焦点に配置された単結晶育成部とを備えた集光加熱式
の単結晶製造装置において、前記単結晶育成部が、種結
晶と当該種結晶の上方で水平に置かれた細孔を備えるプ
レートとこれら種結晶とプレートの間に形成される溶融
帯とで構成され、前記プレートの上方に粉砕物質供給管
が配置されていることを特徴とする単結晶製造装置。
1. A condensing device comprising: a spheroid mirror; a heat source disposed at one focal point of the spheroid mirror; and a single crystal growing unit disposed at the other focal point of the spheroid mirror. In the heating type single crystal manufacturing apparatus, the single crystal growing unit, a plate having a seed crystal and a fine hole horizontally placed above the seed crystal, and a molten zone formed between the seed crystal and the plate Wherein a pulverized material supply pipe is disposed above the plate.
JP5137561A 1993-06-08 1993-06-08 Single crystal manufacturing equipment Expired - Fee Related JP2831906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5137561A JP2831906B2 (en) 1993-06-08 1993-06-08 Single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5137561A JP2831906B2 (en) 1993-06-08 1993-06-08 Single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH06345583A JPH06345583A (en) 1994-12-20
JP2831906B2 true JP2831906B2 (en) 1998-12-02

Family

ID=15201604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5137561A Expired - Fee Related JP2831906B2 (en) 1993-06-08 1993-06-08 Single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2831906B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6629886B2 (en) 2016-06-29 2020-01-15 株式会社クリスタルシステム Single crystal manufacturing equipment
JP6562525B2 (en) * 2016-07-28 2019-08-21 株式会社クリスタルシステム Single crystal manufacturing equipment
WO2019186871A1 (en) 2018-03-29 2019-10-03 株式会社クリスタルシステム Single crystal manufacturing device and single crystal manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3053958B2 (en) * 1992-04-10 2000-06-19 光弘 丸山 Crystal production equipment by the floating zone melting method

Also Published As

Publication number Publication date
JPH06345583A (en) 1994-12-20

Similar Documents

Publication Publication Date Title
JP2831906B2 (en) Single crystal manufacturing equipment
JP3551242B2 (en) Method and apparatus for producing oxide single crystal
Fullmer et al. Crystal growth of the solid electrolyte RbAg4I5
JPS62167284A (en) Method and device for producing single crystal by bridgman technique
JPS6136192A (en) Crucible for producing single crystal
EP0174672A1 (en) Method of manufacturing bismuth germanate crystals
JPH0948697A (en) Production of lithium triborate single crystal
JP2005075688A (en) Growing method for garnet-type single crystal
JPH0471877B2 (en)
JP2000335999A (en) Production of barium titanate single crystal
JP3000137B2 (en) Method for producing superconductor PrBa2Cu3Oy single crystal
JPH0341432B2 (en)
JPS6227397A (en) Production of single crystal
KR910010169B1 (en) Single crystal manufacturing method of oxide titanium
JP2004091222A (en) Method for manufacturing oxide semiconductor single crystal
JPH0238558B2 (en) TANKETSUSHONOSEIZOHOHO
JPS60226495A (en) Method of allowing lanthanum hexaboride single crystal to grow
JPH0940486A (en) Production of single crystal
JPH01242480A (en) Apparatus for producing single crystal
JPH0891978A (en) Method for growing single crystal
JPH07315981A (en) Production of oxide single crystal, oxide single crystal raw material used therefor and production of the raw material
JPH07206598A (en) Device for producing cd1-x-ymnxhgyte single crystal
JPH027919B2 (en)
JP2005187230A (en) Method and apparatus for producing oxide single crystal
JPS6027677A (en) Production of solid solution single crystal by floating zone melting method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees