JPH0238558B2 - TANKETSUSHONOSEIZOHOHO - Google Patents

TANKETSUSHONOSEIZOHOHO

Info

Publication number
JPH0238558B2
JPH0238558B2 JP23455085A JP23455085A JPH0238558B2 JP H0238558 B2 JPH0238558 B2 JP H0238558B2 JP 23455085 A JP23455085 A JP 23455085A JP 23455085 A JP23455085 A JP 23455085A JP H0238558 B2 JPH0238558 B2 JP H0238558B2
Authority
JP
Japan
Prior art keywords
crystal
crucible
platinum
raw material
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23455085A
Other languages
Japanese (ja)
Other versions
JPS6296387A (en
Inventor
Takayuki Suzuki
Kengo Ono
Koichi Onodera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP23455085A priority Critical patent/JPH0238558B2/en
Publication of JPS6296387A publication Critical patent/JPS6296387A/en
Publication of JPH0238558B2 publication Critical patent/JPH0238558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 (1) 発明の利用分野 本発明は単結晶の製造方法に関し、特に結晶材
料を順次供給溶融して長尺・大口径結晶を得る単
結晶の製造方法の改良に関するものである。
[Detailed Description of the Invention] (1) Field of Application of the Invention The present invention relates to a method for producing a single crystal, and in particular to an improvement in the method for producing a single crystal in which a long, large-diameter crystal is obtained by sequentially supplying and melting crystalline materials. It is.

(2) 従来の技術 従来、単結晶を製造する方法としては、一般に
ブリツジマン法が知られている。この方法では、
磁性材料などの大型結晶を比較的簡単に製造でき
るが、全体溶融固化法であるため、多成分系の結
晶では、作製後の結晶上部と下部で大きな組成偏
析を生じ、例えばMn−Zn−フエライトの場合
は、透磁率などの物理的特性も大きく変動すると
いう欠点があつた。また、この欠点をカバーする
ため、長尺白金族ルツボを用い単位時間当り結晶
化する重量と同量の結晶材料を連続的に供給し
て、組成偏析の少ない長尺大口径結晶を作製する
方法も知られている。しかしながらこの様な方法
では、結晶を育成しながら随時結晶原料を供給し
ていくため、ルツボ壁からメルト中へ溶出してい
る白金粒子が結晶成長中に固液界面を介してメル
ト中から結晶中へ混入して高品質の単結晶を得る
ことが困難であつた。
(2) Prior Art Conventionally, the Bridgeman method is generally known as a method for producing single crystals. in this way,
Large crystals such as magnetic materials can be produced relatively easily, but because the entire melt-solidification method is used, in multi-component crystals, large compositional segregation occurs in the upper and lower parts of the crystal after production, such as Mn-Zn-ferrite. In this case, the disadvantage was that the physical properties such as magnetic permeability varied greatly. In addition, in order to overcome this drawback, there is a method in which a long platinum group crucible is used to continuously supply the same amount of crystal material as the weight to be crystallized per unit time, thereby producing long, large-diameter crystals with less compositional segregation. is also known. However, in this method, since the crystal raw material is supplied as needed while growing the crystal, the platinum particles eluted from the crucible wall into the melt are transferred from the melt to the crystal via the solid-liquid interface during crystal growth. It has been difficult to obtain high quality single crystals.

(3) 発明が解決しようとする問題点 結晶中への白金混入メカニズムは、育成容器で
ある白金族ルツボ内壁からメルト中に溶け出して
イオン化した白金が、固体原料の供給でメルトの
温度低化による急冷のため、粒子状に析出し、こ
の白金粒子が結晶成長が進行しているメルトと結
晶の界面から結晶成長と同時に結晶中へ混入する
と考えられ、これを押えるためにはメルトの温度
低下の防止、又は温度低下時の結晶成長停止が必
要である。しかしながら前者は結晶材料の供給を
行う限り避けられない問題である。本発明の目的
は結晶中への白金粒子混入が少ない高品質の単結
結晶を得ることにある。
(3) Problems to be solved by the invention The mechanism of platinum being mixed into the crystal is that platinum that dissolves into the melt from the inner wall of the platinum group crucible, which is the growth container, and becomes ionized, lowers the temperature of the melt by supplying solid raw materials. It is thought that platinum particles are precipitated in the form of particles due to rapid cooling due to crystal growth, and these platinum particles are mixed into the crystal at the same time as the crystal grows from the interface between the melt and the crystal, where crystal growth is progressing.To suppress this, it is necessary to lower the temperature of the melt. It is necessary to prevent crystal growth or stop crystal growth when the temperature drops. However, the former problem is unavoidable as long as crystalline materials are supplied. An object of the present invention is to obtain a high quality single crystal with less platinum particles mixed into the crystal.

(4) 問題点を解決するための手段 したがつて本発明は、加熱装置内のルツボの中
で、順次結晶材料を供給し溶融せしめ、ルツボ位
置を変化させてルツボ先端から結晶成長させる方
法において、特に結晶材料の供給と、結晶の成長
を同時に進行させないことを特徴とする。
(4) Means for Solving the Problems Therefore, the present invention provides a method for sequentially supplying and melting crystalline materials in a crucible in a heating device, and growing crystals from the tip of the crucible by changing the position of the crucible. In particular, it is characterized by not allowing the supply of crystal material and the growth of crystal to proceed at the same time.

(5) 実施例 以下本発明の実施例を図面を参照にしながら詳
細に説明する。本発明による単結晶の製造装置
は、第1図bに示す温度分布を有する第1図aの
電気炉3の中にあらかじめ少量の初期原料(図示
せず)を装填した白金族ルツボ1を、ルツボ支持
台6、ルツボ支持パイプ7、により下方から支持
し、ルツボ昇降装置5により上下移動、回転可能
となつている。この様な構成の中で電気炉3によ
り初期原料を溶融させ、白金族ルツボ1を下降す
ることで単結晶bを得る。その後白金族ルツボ1
を停止し、原料供給装置4により、顆粒状原料8
を原料供給パイプ2を通して上方から落下させメ
ルトaに20〜40mmの深さ分供給し、供給終了後ル
ツボ1を20〜40mm、5mm/hrの速度で下降して結
晶の成長を行わせ、これらのくり返しにより長尺
結晶を得る。例えば、Mn−Zn−フエライト単結
晶にこの方法を応用したところ従来白金粒子密度
が約100ケ/cm2であつたのに対し、10ケ/cm2以下
に半減し大巾に品質の改善を計ることができた。
(5) Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The single crystal manufacturing apparatus according to the present invention includes a platinum group crucible 1 in which a small amount of initial raw material (not shown) is preloaded into an electric furnace 3 shown in FIG. 1a having a temperature distribution shown in FIG. 1b. It is supported from below by a crucible support stand 6 and a crucible support pipe 7, and can be moved up and down and rotated by a crucible lifting device 5. In this configuration, the initial raw material is melted in the electric furnace 3, and the platinum group crucible 1 is lowered to obtain the single crystal b. After that, platinum group crucible 1
is stopped, and the granular raw material 8 is supplied by the raw material supply device 4.
is dropped from above through the raw material supply pipe 2 and supplied to the melt a to a depth of 20 to 40 mm, and after the supply is finished, the crucible 1 is lowered to 20 to 40 mm at a speed of 5 mm/hr to grow crystals. By repeating this process, long crystals are obtained. For example, when this method was applied to Mn-Zn-ferrite single crystals, the density of platinum particles, which was conventionally about 100 particles/ cm2 , was halved to less than 10 particles/ cm2 , resulting in a significant improvement in quality. I was able to measure it.

(6) 発明の効果 以上述べた様に、本発明による単結晶製造方法
によれば白金粒子混入が非常に少ない高品質の長
尺単結晶が得られる。
(6) Effects of the Invention As described above, according to the method for producing a single crystal according to the present invention, a high quality long single crystal with very little platinum particle contamination can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本発明による製造装置概略図、第1
図bは温度分布を示す図である。 1は白金ルツボ、2は原料供給白金パイプ、3
は電気炉、4は原料供給装置、5はルツボ昇降装
置、6はルツボ支持台、7はルツボ支持パイプ、
8は顆粒状原料、aはメルト、bは単結晶を示
す。
FIG. 1a is a schematic diagram of a manufacturing apparatus according to the present invention;
Figure b is a diagram showing the temperature distribution. 1 is a platinum crucible, 2 is a raw material supply platinum pipe, 3
is an electric furnace, 4 is a raw material supply device, 5 is a crucible lifting device, 6 is a crucible support stand, 7 is a crucible support pipe,
8 is a granular raw material, a is a melt, and b is a single crystal.

Claims (1)

【特許請求の範囲】[Claims] 1 上下方向に適当な温度分布を有する加熱装置
の中に配置したルツボ内に順次結晶原料を供給し
溶融せしめ、前記加熱装置と上記ルツボの相対位
置を変化させることで、該ルツボ先端より順次結
晶を成長させる方法において、結晶原料の供給と
結晶の成長を同時に進行させないことを特徴とす
る単結晶の製造方法。
1. Crystal raw materials are sequentially supplied and melted into a crucible placed in a heating device having an appropriate temperature distribution in the vertical direction, and by changing the relative position of the heating device and the crucible, crystals are sequentially formed from the tip of the crucible. 1. A method for producing a single crystal, characterized in that the supply of a crystal raw material and the growth of a crystal do not proceed at the same time.
JP23455085A 1985-10-22 1985-10-22 TANKETSUSHONOSEIZOHOHO Expired - Lifetime JPH0238558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23455085A JPH0238558B2 (en) 1985-10-22 1985-10-22 TANKETSUSHONOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23455085A JPH0238558B2 (en) 1985-10-22 1985-10-22 TANKETSUSHONOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS6296387A JPS6296387A (en) 1987-05-02
JPH0238558B2 true JPH0238558B2 (en) 1990-08-30

Family

ID=16972777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23455085A Expired - Lifetime JPH0238558B2 (en) 1985-10-22 1985-10-22 TANKETSUSHONOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0238558B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121416A1 (en) * 2004-06-11 2005-12-22 Nippon Telegraph And Telephone Corporation Method and apparatus for preparing crystal

Also Published As

Publication number Publication date
JPS6296387A (en) 1987-05-02

Similar Documents

Publication Publication Date Title
JPH02133389A (en) Production device of silicon single crystal
TW314641B (en)
JP3551242B2 (en) Method and apparatus for producing oxide single crystal
JPH0238558B2 (en) TANKETSUSHONOSEIZOHOHO
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JP2677859B2 (en) Crystal growth method of mixed crystal type compound semiconductor
JPS6136192A (en) Crucible for producing single crystal
GB1365724A (en) Methods of manufacturing single crystals of semiconductor mater ial
JPH0341432B2 (en)
JPH0777993B2 (en) Single crystal manufacturing method
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JPS63218594A (en) Production of single crystal
JPS5815472B2 (en) crystal growth equipment
JPH085736B2 (en) Method and apparatus for growing silicon single crystal
JPH02271989A (en) Production of single crystal of bismuth germanate
JPS59141488A (en) Device for growing single crystal
JPH0319197B2 (en)
KR970006854B1 (en) Apparatus for growing mn-zn ferrite single crystal
JPS62176993A (en) Method for bringing up manganese zinc ferrite single crystal
JPH01294588A (en) Production of silicon single crystal and unit therefor
JPH0559873B2 (en)
JPH06239690A (en) Device for growing single crystal
JPS5997591A (en) Method and apparatus for growing single crystal
JPS61174189A (en) Method and device for production of single crystal
JPH0867593A (en) Method for growing single crystal