JPS62112052A - Surface defect detecting device for ferromagnetic body - Google Patents

Surface defect detecting device for ferromagnetic body

Info

Publication number
JPS62112052A
JPS62112052A JP25082885A JP25082885A JPS62112052A JP S62112052 A JPS62112052 A JP S62112052A JP 25082885 A JP25082885 A JP 25082885A JP 25082885 A JP25082885 A JP 25082885A JP S62112052 A JPS62112052 A JP S62112052A
Authority
JP
Japan
Prior art keywords
magnetic flux
flux density
steel plate
magnetic
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25082885A
Other languages
Japanese (ja)
Inventor
Fumitaka Kaneko
金子 文孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25082885A priority Critical patent/JPS62112052A/en
Publication of JPS62112052A publication Critical patent/JPS62112052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To eliminate variance depending upon an operator by measuring magnetic flux density on a magnetized ferromagnetic body surface, operating the position of a defect part from the measurement data, and detecting the surface defect. CONSTITUTION:When a current flows through the coil 1a of a yoke 1, produced lines 12 of magnetic force magnetize the surface of a steel plate 2. If there is the defect part 13, leak magnetic flux is produced and the magnetic flux density B increases at the part, but the X-directional component Bx and Z- directional component Bz are large and the Y-directional component By is small. The X-directional component Bx of the magnetic flux density B on the surface of a steel plate 2 is measured continuously by plural magnetic sensors 3 mounted on a slide bark. Then, the positions of the sensors 3 on the X axis are found by a movement extent measuring means 11 for the slide bark and stored in a memory successively while made correspond to measured values Bx. A computing element accesses data Bx on magnetic flux density stored in the memory and performs arithmetic to find the position of the defect part on the surface of the steel plate 2, detecting the surface defect.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、鋼板などの強磁性体の表面欠陥を漏洩磁束
によって検出する、表面欠陥検出装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a surface defect detection device that detects surface defects in a ferromagnetic material such as a steel plate using leakage magnetic flux.

〔従来技術とその問題点〕[Prior art and its problems]

鋼板の表面もしくは表面内近傍に存在する表面欠陥の漏
洩磁束による検出は、従来、次のように行なわれている
。すなわち、鋼板の表面を例えば磁気飽和のso%前後
の強さに磁化したのち、鋼板の表面に磁粉(強磁性体の
微粉末)を液体に懸濁するなど適当な方法で散布して、
そのときに磁粉が作る模様を目視し、表面欠陥の存在箇
所を知る。
Detection of surface defects existing on or near the surface of a steel plate using leakage magnetic flux has conventionally been carried out as follows. That is, after the surface of the steel plate is magnetized to a strength around so% of magnetic saturation, magnetic powder (fine ferromagnetic powder) is dispersed on the surface of the steel plate by an appropriate method such as suspending it in a liquid.
At that time, the patterns created by the magnetic particles are visually observed to determine where surface defects exist.

一般に鋼鉄など強磁性体を磁化すると、その欠陥部付近
においては磁束が空中に漏洩して漏洩磁束を生じ、そこ
では磁界の強さか他より強くなる。
Generally, when a ferromagnetic material such as steel is magnetized, magnetic flux leaks into the air near the defective part, producing leakage magnetic flux, and the strength of the magnetic field becomes stronger there than elsewhere.

ここに磁粉が散布されると吸い寄せられて、磁粉は幅の
広い模様を作るので、欠陥部と健全部とでは磁粉の作る
模様が異なってくる。従って、磁粉の作る模様を目視す
ることによって、表面欠陥の存在箇所を却ることができ
る。
When magnetic particles are scattered here, they are attracted and create a wide pattern, so the patterns created by the magnetic particles differ between defective areas and healthy areas. Therefore, by visually observing the pattern created by the magnetic particles, it is possible to identify locations where surface defects exist.

以上のように、従来は、鋼板の表面を磁化したあと、い
ちいち磁粉を散布して、磁粉の作る模様を目視すること
によって、鋼板の表面欠陥を検出しているので、表面欠
陥の検出に手間がかかり、また、作業者によりバラ付き
を生ずる問題があった。
As described above, conventionally, surface defects on steel sheets are detected by magnetizing the surface of the steel sheet, then scattering magnetic particles one by one, and visually observing the patterns created by the magnetic particles. There was also the problem that it took a long time and that variations occurred depending on the operator.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、上述の現状に鑑み、鋼板などの強磁
性体の表面欠陥を、作業者によるバラ付きを生ずること
なく扁精度かつ容易に検出することができる一表面欠陥
検出装置を提供することにある。
In view of the above-mentioned current situation, it is an object of the present invention to provide a surface defect detection device that can accurately and easily detect surface defects of ferromagnetic materials such as steel plates without causing variations due to the operator. There is a particular thing.

[発明の概要〕 この発明の強磁性体の表面欠陥検出装置は、強磁性体の
表面に近接して配置された、前記強磁性体の表面を磁化
するための磁化用ヨークと、前記磁化用ヨークの下方に
前記ヨークの長手方向と直角方向に配置された、前記強
磁性体の表面の磁束密度を測定するための複数個の磁気
センサーと、前記複数個の磁気センサーを前記磁化用ヨ
ークの長手方向に移動するための移動手段と、前記複数
個の磁気センサーによって測定された前記強磁性体の表
面での磁束密度のデータから、前記強磁性体の表面に存
在する欠陥部の位置を演算するための演算器とからなる
ことに特徴を有するものである。
[Summary of the Invention] A surface defect detection device for a ferromagnetic material according to the present invention includes: a magnetizing yoke for magnetizing the surface of the ferromagnetic material, which is disposed close to the surface of the ferromagnetic material; A plurality of magnetic sensors are arranged below the yoke in a direction perpendicular to the longitudinal direction of the yoke, and are arranged to measure the magnetic flux density on the surface of the ferromagnetic material. Calculating the position of a defective portion existing on the surface of the ferromagnetic material from the data of the magnetic flux density on the surface of the ferromagnetic material measured by the moving means for moving in the longitudinal direction and the plurality of magnetic sensors. It is characterized by consisting of an arithmetic unit for performing the calculation.

〔発明の構成〕[Structure of the invention]

以下、この発明の強磁性体の表面欠陥検出装置を図面に
基づき詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The ferromagnetic surface defect detection device of the present invention will be described in detail below with reference to the drawings.

第1図は、この発明の表面欠陥検出装置の1実施態様に
おける測定部を示す斜視図である。
FIG. 1 is a perspective view showing a measuring section in one embodiment of the surface defect detection device of the present invention.

第1図において、lは鋼板2の表面を磁化するための磁
化用ヨーク、3は鋼板20表面の磁束密度を測定するた
めの複数個の磁気センサー、4は磁気センサー3を磁化
用ヨーク1の長手方向に移動するための移動手段である
In FIG. 1, l denotes a magnetizing yoke for magnetizing the surface of the steel plate 2, 3 denotes a plurality of magnetic sensors for measuring the magnetic flux density on the surface of the steel plate 20, and 4 denotes a magnetic sensor 3 connected to the magnetizing yoke 1. It is a moving means for moving in the longitudinal direction.

磁化用ヨーク1は、その周囲にコイル1aを巻回してな
るコ字状の電磁石からなっている。磁化用ヨーク1は、
移動手段4の相対する2つのフレーム5a、、5b上に
載置して、その長手方向力・前記フレーム5a、5bと
直角に交わるように、鋼板2の表面に近接配置されてい
る。
The magnetizing yoke 1 consists of a U-shaped electromagnet with a coil 1a wound around it. The magnetizing yoke 1 is
It is placed on the two opposing frames 5a, 5b of the moving means 4, and is placed close to the surface of the steel plate 2 so that its longitudinal force crosses the frames 5a, 5b at right angles.

移動手段4のフレーム5a、5bは細長い筐体からなっ
ている。フレーム5a、5b間は、2つのガイドシャツ
) 6a 、  6bによって連結さねでおり、2つの
ガイドシャフト6a 、  6b間には、ta fヒ用
ヨークlの長手方向に摺動自在にスライドパー7が取付
けられている。
The frames 5a and 5b of the moving means 4 are made of elongated casings. The frames 5a and 5b are connected by two guide shafts 6a and 6b, and between the two guide shafts 6a and 6b is a slide par 7 that is slidable in the longitudinal direction of the yoke l. is installed.

複数個の磁気センサー3は、スライドパー7上に載置さ
れて、磁化用ヨーク〕の下方にヨーク1の長手方向と直
角方向に配置されている。なお、複数1固の磁気センサ
ー3は、スライドパー7上に密に並べるために千鳥状配
置としであるが、必ずしもこれに限られるものではなく
、−直線上に密に並べるだけであってもよい。
The plurality of magnetic sensors 3 are placed on the slider 7 and arranged below the magnetizing yoke in a direction perpendicular to the longitudinal direction of the yoke 1. Note that the plurality of magnetic sensors 3 are arranged in a staggered manner so as to be closely arranged on the slider 7, but the arrangement is not necessarily limited to this. good.

スライドパー′2は、その外方端部7a、7bに取付け
られたワイヤ8金弁して、1方のフレーム5a上の」方
のガイドシャフト6aの連結部付近に設けられたモータ
9によって移動されるようになっている。すなわち、前
記1方のフレーム5a内には、1方のガイド7ヤフ)6
aの連結部付近に、第2図に示すように、モータ9によ
って駆動される1つのプーリloaが、他方のガイドシ
ャフト6bの連結部付近に、互いに独立した上下2つの
ブーIJ lobおよびlocが、そして、他方のフレ
ーム5b内には、1方のガイドシャフト6aの連結部付
近に、1つのブーIJ lodが、他方のガイドシャツ
)6bの連結部付近に、互いに独立した上下2つのブー
+) 10eおよびlofが設けられている。ワイヤ8
は、スライドパー7の1方の外方端部7aから、ブーI
J loa !10cおよび10fを経て他方の外方端
部7bに至り、そして、他方の端部7bから、グーIJ
 10b 、  10eおよびlodを経て前記1方の
外方端部7aに至るように、プーリloa = lOf
に掛廻されている。従って、モータ9によりブー+) 
loaを矢印の向きに回転駆動することにより、ワイヤ
8を介して、スライドパー7がガイドシャフト6a 、
  6bを案内として、磁化用ヨークlの長手方向に沿
って矢印の向きに移動する。
The slider '2 is moved by a motor 9 provided near the connecting part of the guide shaft 6a on the one frame 5a, with a wire valve attached to its outer ends 7a and 7b. It is supposed to be done. That is, in the one frame 5a, one guide 7
As shown in FIG. 2, one pulley loa driven by the motor 9 is located near the connecting portion of the guide shaft 6b, and two independent upper and lower boots IJ lob and loc are located near the connecting portion of the other guide shaft 6b. In the other frame 5b, there is one boob IJ rod near the connection part of one guide shaft 6a, and two independent upper and lower boos near the connection part of the other guide shaft 6b. ) 10e and lof are provided. wire 8
is from one outer end 7a of the slide par 7 to the boo I
Jloa! 10c and 10f to the other outer end 7b, and from the other end 7b, the goo IJ
10b, 10e and lod to reach the one outer end 7a, a pulley loa=lOf
It is being passed around. Therefore, motor 9 causes Boo+)
By rotationally driving loa in the direction of the arrow, the slide par 7 is moved through the wire 8 to the guide shaft 6a,
6b as a guide, it moves in the direction of the arrow along the longitudinal direction of the magnetizing yoke l.

スライドパー7の移動量は、モ、−タ9上に取付けたロ
ータリエンコーダ又はポテンショメータ等の移動量測定
手段11によって測定される。この測定によって、第1
図に示す向きにXY座標をとったときの、磁気センサー
3のX軸上の位置が求められる。なお、X、 Y座標の
X軸は、磁気用ヨークlの長手方向に延びる中心線に、
Y@はこれと直角にとっている。原点0は適宜に定める
The amount of movement of the slider 7 is measured by a movement amount measuring means 11 such as a rotary encoder or a potentiometer mounted on the motor 9. By this measurement, the first
The position of the magnetic sensor 3 on the X-axis is determined when the XY coordinates are taken in the direction shown in the figure. Note that the X axis of the X and Y coordinates is the center line extending in the longitudinal direction of the magnetic yoke l,
Y@ is taken at right angles to this. The origin 0 is determined as appropriate.

この発明の検出装置は、以上のような測定部の磁化用ヨ
ーク1で鋼板20表面を磁化し、スライドパー7によっ
て複数個の磁気センサー3を移動しながら、鋼板20表
面での磁束密度を連続的に測定し、それによって得られ
た磁束密度のデータから、図示しない演算器によって鋼
板2の表面に存在する欠陥部の位置を演算し、表面欠陥
を検出するようになっている。
The detection device of the present invention magnetizes the surface of the steel plate 20 with the magnetization yoke 1 of the measuring section as described above, and continuously measures the magnetic flux density on the surface of the steel plate 20 while moving the plurality of magnetic sensors 3 using the slider 7. The position of the defective portion existing on the surface of the steel plate 2 is calculated by a calculator (not shown) from the magnetic flux density data obtained thereby, and the surface defect is detected.

磁化用ヨークlのコイルlaに電流を通じてヨーク1か
ら磁力線12を発生させると、第3図に示すように、磁
力線12が鋼板2の表面内を通って、鋼板2の表面が磁
化される。この磁化された鋼板2は、その表面もしくは
表面内近傍に、第4図尾示すように、傷等の欠陥部13
があると、漏洩磁束が生じるので、そこでの磁束密度B
が大きくなっているが、磁化の方向がX軸方向であるの
で。
When a current is passed through the coil la of the magnetizing yoke l to generate magnetic lines of force 12 from the yoke 1, the lines of magnetic force 12 pass through the surface of the steel plate 2, and the surface of the steel plate 2 is magnetized, as shown in FIG. This magnetized steel plate 2 has defects such as scratches 13 on the surface or near the surface, as shown in the bottom of FIG.
If there is, leakage magnetic flux will occur, so the magnetic flux density B
is large because the direction of magnetization is in the X-axis direction.

磁束密度Bの方向成分は、第5図に示すように、X方向
成分Bx、Z方向成分BZが大さく、Y方向成分BYは
小さい。そこで、鋼板2の表面での磁束密度Bの測定は
、X方向成分Bx又はZ方向成分Bzの1方、例えばX
方向成分Bxについて行なう。そのために、複数個の磁
気センサー3の各々は、磁束密度BのX方向成分Bxを
測定できる姿勢でスライドパー7上に載置しておく。
Regarding the directional components of the magnetic flux density B, as shown in FIG. 5, the X-direction component Bx and the Z-direction component BZ are large, and the Y-direction component BY is small. Therefore, when measuring the magnetic flux density B on the surface of the steel plate 2, one of the X-direction component Bx or the Z-direction component Bz, for example,
This is performed for the direction component Bx. For this purpose, each of the plurality of magnetic sensors 3 is placed on the slider 7 in a posture that allows measurement of the X-direction component Bx of the magnetic flux density B.

以上のような複数個の磁気センサー3によって鋼板2の
表面での磁束密度としてBのX方向成分Bx  を連続
的に測定する。測定中、磁気センサー3の各々のX軸上
の位置は、スライドパー7の移動量を移動量測定手段1
1によって測定することによって求められるので、磁束
密度の測定値Bxは、磁気センサー3のX軸上の位置と
対応させて、磁気センサー3の各々毎にメモリーに逐次
記憶していく。演算器は、測定中又は測定完了後、メモ
リーに記憶された磁束密度の測定データBxを呼出し、
向えば第6図に示すような演算を行なって、鋼板20表
面に存在する欠陥部の位置を求め、表面欠陥全検出する
The plurality of magnetic sensors 3 as described above continuously measure the X-direction component Bx of B as the magnetic flux density on the surface of the steel plate 2. During measurement, the position of each magnetic sensor 3 on the
1, the measured value Bx of the magnetic flux density is sequentially stored in the memory for each magnetic sensor 3 in correspondence with the position of the magnetic sensor 3 on the X axis. During the measurement or after the measurement is completed, the computing unit calls the magnetic flux density measurement data Bx stored in the memory,
Specifically, calculations as shown in FIG. 6 are performed to find the positions of defects existing on the surface of the steel plate 20, and all surface defects are detected.

すなわち、座標(Xi 、 Yi )に位置した磁気セ
ンサー3によって得られた磁束密度の測定値をBx(X
IIYL)としたときに、Bx(X1+ Yt )とB
x(Xl 、 −Yi )との差l Bx(L+ Yt
 )−Bx(X++ −yi)1を求めて、その差が一
足値αを超えているか否かを判別する。このような判別
金、X軸上の位置X、=X、〜x、1固定しながら、Y
軸上の対象な位置Y、=:Y、〜Ynおよび−Yi=−
Y、〜−Y、の全てについて行なう。そして、その差l
 Bx (Xt、 Yi ) −BX(X、、−Yユ)
1がαを超えている場合に、座標(X、、Y□)′また
は(x、 、−y□)の位置に相当する鋼板2の表面も
しくはその表面内近傍に欠陥ありとして、欠陥部を定め
、表面欠陥を検出する。
That is, the measured value of the magnetic flux density obtained by the magnetic sensor 3 located at the coordinates (Xi, Yi) is expressed as Bx(X
IIYL), Bx(X1+Yt) and B
Difference from x(Xl, -Yi) l Bx(L+ Yt
)-Bx(X++-yi)1 is determined, and it is determined whether the difference exceeds the step value α. In this case, while fixing the position X, = X, ~ x, 1 on the X axis, Y
Symmetrical positions on the axis Y, =:Y, ~Yn and -Yi = -
This is done for all of Y, to -Y. And the difference l
Bx (Xt, Yi) -BX (X,, -Yyu)
1 exceeds α, it is assumed that there is a defect on or near the surface of the steel plate 2 corresponding to the position of the coordinates (X, , Y□)' or (x, , -y□), and the defect is identified. and detect surface defects.

なお、以上は、磁束密度の測定値Bxからの表面欠陥の
検出の1例を示したもので、測定値Bx (X1+Yl
)のYl f Y、 = constとして、そのとき
のピーク値、平均値およびBx(χ) + YH”’ 
const )が描く曲線の積分値等から欠陥部の位置
を求め、表面欠陥を検出するなど、適宜の方法を使用で
きるのは言うまでもない。
The above is an example of detecting surface defects from the measured value Bx of magnetic flux density, and the measured value Bx (X1+Yl
) of Yl f Y, = const, the peak value, average value, and Bx(χ) + YH"'
It goes without saying that any suitable method can be used, such as determining the position of the defective portion from the integral value of the curve drawn by the curve (const) and detecting the surface defect.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の検出装置では、鋼板な
どの強磁性体の表面を磁化したのち、その表面での磁束
密度を磁気センサーで測定し、ぞして、測定された磁束
密度のデータから強磁圧体の表面での欠陥部の位置を演
算して、表面欠陥を検出するので、従来のような、磁化
した強磁性体の表面に磁粉を散布する手間を要すること
がない。
As explained above, in the detection device of the present invention, after magnetizing the surface of a ferromagnetic material such as a steel plate, the magnetic flux density on the surface is measured with a magnetic sensor, and the measured magnetic flux density is Since surface defects are detected by calculating the position of the defect on the surface of the ferromagnetic material, there is no need for the conventional method of scattering magnetic particles on the surface of the magnetized ferromagnetic material.

また、磁粉の作る模様を目視して表面欠陥ヲ横出すると
きのような、作業員による表面欠陥構出のバラ付きを生
ずることがない。
Further, there is no possibility of variations in the structure of the surface defects caused by the operator, as is the case when surface defects are identified by visually observing the pattern formed by the magnetic particles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の検出装置の1実施態様における測
定部を示す斜視図、第2図は、第1図の測定部での移動
手段の要部を示す斜視図、第3図は、第1図の測定部で
の磁化用ヨークによって鋼板表面が磁化されるところを
示す説明図、第4図は、第3図の磁化された鋼板表面の
欠陥部での磁束密度を示す説明図、第5図は、第3図の
磁化された鋼板表面での磁束密度の各方向成分を示す説
明図、第6図は、第1図の測定部の磁気センサーによっ
て得られた磁束密度の測定値から表面欠陥全検出すると
ころを示すフロチャートである。 図面において、 ■・・(磁化用ヨーク、  1a・°コイル、2・・鋼
板、       3・・磁気センサー、4・ 移動手
段、     6a、 6b・・・ガイドシャフト、7
・スライドバー、   8・・・ワイヤ、9 モータ、
      1oa−10f−プーリ、11・・移動量
測定手段、 12・・・磁力線、13・欠陥部、   
  B・・磁束密度、Bx・・磁束密度のX方向成分。 第1図 +   1a 2′ 柔22 b 7a    8 拳3図 l 宰5Δ 第6図
FIG. 1 is a perspective view showing a measuring section in one embodiment of the detection device of the present invention, FIG. 2 is a perspective view showing main parts of a moving means in the measuring section of FIG. 1, and FIG. An explanatory diagram showing where the steel plate surface is magnetized by the magnetization yoke in the measurement part of Fig. 1, Fig. 4 is an explanatory diagram showing the magnetic flux density at the defective part of the magnetized steel plate surface of Fig. 3, Figure 5 is an explanatory diagram showing the components of magnetic flux density in each direction on the surface of the magnetized steel plate in Figure 3, and Figure 6 is the measured value of magnetic flux density obtained by the magnetic sensor of the measurement section in Figure 1. 12 is a flowchart showing how all surface defects are detected. In the drawings, ■...(magnetization yoke, 1a.° coil, 2. steel plate, 3. magnetic sensor, 4. moving means, 6a, 6b... guide shaft, 7)
・Slide bar, 8...wire, 9 motor,
1oa-10f-pulley, 11. Movement amount measuring means, 12. Line of magnetic force, 13. Defect part,
B...Magnetic flux density, Bx...X direction component of magnetic flux density. Figure 1 + 1a 2' Soft 22 b 7a 8 Fist 3 Figure l Size 5Δ Figure 6

Claims (1)

【特許請求の範囲】[Claims] 強磁性体の表面に近接して配置された、前記強磁性体の
表面を磁化するための磁化用ヨークと、前記磁化用ヨー
クの下方に前記ヨークの長手方向と直角方向に配置され
た、前記強磁性体の表面の磁束密度を測定するための複
数個の磁気センサーと、前記複数個の磁気センサーを前
記磁化用ヨークの長手方向に移動するための移動手段と
、前記複数個の磁気センサーによつて測定された前記強
磁性体の表面での磁束密度のデータから、前記強磁性体
の表面に存在する欠陥部の位置を演算するための演算器
とからなることを特徴とする、強磁性体の表面欠陥検出
装置。
a magnetizing yoke for magnetizing the surface of the ferromagnetic material, disposed close to the surface of the ferromagnetic material; and a magnetizing yoke disposed below the magnetizing yoke in a direction perpendicular to the longitudinal direction of the yoke. a plurality of magnetic sensors for measuring magnetic flux density on the surface of a ferromagnetic material; a moving means for moving the plurality of magnetic sensors in the longitudinal direction of the magnetization yoke; A ferromagnetic device comprising: a calculator for calculating the position of a defective portion existing on the surface of the ferromagnetic material from data of the magnetic flux density on the surface of the ferromagnetic material thus measured. Body surface defect detection device.
JP25082885A 1985-11-11 1985-11-11 Surface defect detecting device for ferromagnetic body Pending JPS62112052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25082885A JPS62112052A (en) 1985-11-11 1985-11-11 Surface defect detecting device for ferromagnetic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25082885A JPS62112052A (en) 1985-11-11 1985-11-11 Surface defect detecting device for ferromagnetic body

Publications (1)

Publication Number Publication Date
JPS62112052A true JPS62112052A (en) 1987-05-23

Family

ID=17213632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25082885A Pending JPS62112052A (en) 1985-11-11 1985-11-11 Surface defect detecting device for ferromagnetic body

Country Status (1)

Country Link
JP (1) JPS62112052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054158A1 (en) * 2017-09-13 2019-03-21 コニカミノルタ株式会社 Nondestructive inspecting device, nondestructive inspecting system, and nondestructive inspecting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054158A1 (en) * 2017-09-13 2019-03-21 コニカミノルタ株式会社 Nondestructive inspecting device, nondestructive inspecting system, and nondestructive inspecting method

Similar Documents

Publication Publication Date Title
US6914427B2 (en) Eddy current probe having sensing elements defined by first and second elongated coils and an associated inspection method
EP2506003B1 (en) Methods And Apparatus For The Inspection Of Plates And Pipe Walls
CN102759567B (en) The EDDY CURRENT identification of steel pipe inside and outside wall defect and evaluation method under DC magnetization
CN106247171B (en) Pipeline defect detection method, pipeline defect detection device and pipeline defect detection equipment
WO2007088913A1 (en) Damage detecting device or and damage detection method
Rocha et al. Studies to optimize the probe response for velocity induced eddy current testing in aluminium
JP2006292496A (en) Device and method for detecting and inspecting flaw by means of ac electromagnetic field measurement method
JPS62112052A (en) Surface defect detecting device for ferromagnetic body
WO2016197972A1 (en) Method, device and apparatus for detecting pipeline defect
JPH04269653A (en) Leakage magnetic flux detector
US20110273171A1 (en) Method and device for determining whether there is a change in a substrate beneath a layer covering the substrate
Blanco et al. Simulation for magnetic flux leakage signal interpretation: A FE-approach to support in-line magnetic pipeline pigging
JP5222714B2 (en) Nondestructive inspection method and nondestructive inspection equipment
JP2002277442A (en) Non-destructive inspection method and apparatus
CN111323476B (en) Crack direction judging method based on force magnetic effect
CN113008940A (en) Method and apparatus for detecting layer inconsistencies within a composite
CN103968754B (en) A kind of automatic laser surveys chi instrument
JPH07128294A (en) Method and device for checking deterioration of nuclear reactor pressure vessel
WO2011089733A1 (en) Testing method using guided wave
CN108627569B (en) Triangular surrounding excitation type eddy current sensor and coil winding method thereof
JPS60125560A (en) Method for inspecting metal surface
JPH0210151A (en) Magnetic flaw detector
JP2021076535A (en) Nondestructive inspection method and inspection device
WO2006103483A2 (en) Magnetic imaging equipment for non-destructive testing of magnetic and/or electrically conductive materials
JPH0543066U (en) Eddy current flaw detector