JP2002277442A - Non-destructive inspection method and apparatus - Google Patents

Non-destructive inspection method and apparatus

Info

Publication number
JP2002277442A
JP2002277442A JP2001074672A JP2001074672A JP2002277442A JP 2002277442 A JP2002277442 A JP 2002277442A JP 2001074672 A JP2001074672 A JP 2001074672A JP 2001074672 A JP2001074672 A JP 2001074672A JP 2002277442 A JP2002277442 A JP 2002277442A
Authority
JP
Japan
Prior art keywords
flux density
magnetic flux
test object
leakage magnetic
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001074672A
Other languages
Japanese (ja)
Other versions
JP4113681B2 (en
Inventor
Yuji Nakasone
祐司 中曽根
Yoshifumi Iwasaki
祥史 岩崎
Toru Shimizu
徹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Found Advancement Sci & Tech
Foundation For Advancement Of Science & Technology
Original Assignee
Found Advancement Sci & Tech
Foundation For Advancement Of Science & Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Found Advancement Sci & Tech, Foundation For Advancement Of Science & Technology filed Critical Found Advancement Sci & Tech
Priority to JP2001074672A priority Critical patent/JP4113681B2/en
Publication of JP2002277442A publication Critical patent/JP2002277442A/en
Application granted granted Critical
Publication of JP4113681B2 publication Critical patent/JP4113681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect cracks of materials to be inspected comprising a non- magnetic material. SOLUTION: The materials to be inspected comprising the non-magnetic material undergoes a magnetizing processing. The distribution of leakage flux density of the magnetized materials to be inspected is measured to estimate at least one of the direction in which damaged sites of the materials to be inspected spread based on the distribution pattern of the flux density peak value of the distribution of the leakage flux density, the degree of the damages of the damaged sites of the materials to be inspected based on the flux density peak value of the distribution of the leakage flux density and the lengths of the damaged sites of the materials to be inspected based on the distance between the flux density peak values of the distribution of the leakage flux density.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非破壊検査方法及
び非破壊検査装置に係り、特に、非磁性体の被検査体か
らの漏洩磁束密度を測定して被検査体の損傷部を検査す
る非破壊検査方法および非破壊検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-destructive inspection method and a non-destructive inspection device, and more particularly to a method for measuring a leakage magnetic flux density of a non-magnetic material from a test object to inspect a damaged portion of the test object. The present invention relates to a non-destructive inspection method and a non-destructive inspection device.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来よ
り、強磁性体である鋼管や鋼板に入った亀裂の位置や大
きさなどの検出方法は種々提案されている。例えば、特
開平06−294850号公報では、アモルファス磁芯
のヒステリシス特性を利用して、強磁性体からなる被検
査体の強制磁化に起因する漏洩磁束や誘導磁化に起因す
る微小な磁束密度変化を検出し、各種の非破壊検査を行
う方法が提案されている。
2. Description of the Related Art Various methods have been proposed for detecting the position and size of cracks in ferromagnetic steel pipes or steel plates. For example, in Japanese Patent Application Laid-Open No. 06-294850, the leakage magnetic flux caused by the forced magnetization and the minute magnetic flux density change caused by the induced magnetization of the test object made of a ferromagnetic material are utilized by utilizing the hysteresis characteristic of the amorphous magnetic core. Methods for detecting and performing various nondestructive inspections have been proposed.

【0003】しかしながら、この非破壊検査方法では被
検査体が強磁性体である場合には亀裂の位置の検出はで
きるものの、被検査体が非磁性体の場合には、亀裂を検
出することはできないという問題があった。
However, this nondestructive inspection method can detect the position of a crack when the object to be inspected is a ferromagnetic material, but cannot detect a crack when the object to be inspected is a nonmagnetic material. There was a problem that it was not possible.

【0004】本発明は上記問題点を解消するためになさ
れたもので、披検査体が非磁性体であっても亀裂を検出
することが可能な非破壊検査方法および非破壊検査装置
を提供することを目的とする。
The present invention has been made to solve the above problems, and provides a non-destructive inspection method and a non-destructive inspection device capable of detecting a crack even if the test object is a non-magnetic material. The purpose is to:

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明の非破壊検査方法は、非磁性体からなる
被検査体を着磁処理し、着磁処理した前記被検査体の漏
洩磁束密度分布を測定し、前記漏洩磁束密度分布の磁束
密度ピーク値の分布パターンに基づく前記被検査体の損
傷部の進展方向、前記漏洩磁束密度分布の磁束密度ピー
ク値に基づく前記被検査体の損傷部の損傷程度、及び前
記漏洩磁束密度分布の磁束密度ピーク値間の距離に基づ
く前記被検査体の損傷部の損傷長、の少なくとも1つを
推定する。また、第3の発明の非破壊検査装置は、非磁
性体からなる被検査体を着磁処理する着磁処理手段と、
前記着磁処理手段により着磁処理された前記被検査体の
漏洩磁束密度分布を測定する漏洩磁束密度分布測定手段
と、前記漏洩磁束密度分布の磁束密度ピーク値の分布パ
ターンに基づく前記被検査体の損傷部の進展方向、前記
漏洩磁束密度分布の磁束密度ピーク値に基づく前記被検
査体の損傷部の損傷程度及び前記漏洩磁束密度分布の磁
束密度ピーク値間の距離に基づく前記被検査体の損傷部
の損傷の長さの少なくとも1つを推定する推定手段とを
含んで構成されている。
In order to achieve the above object, a nondestructive inspection method according to a first aspect of the present invention is to provide a non-destructive inspection method, comprising: magnetizing a test object made of a non-magnetic material; The leakage magnetic flux density distribution is measured, and the direction of development of the damaged portion of the test object based on the distribution pattern of the magnetic flux density peak value of the leakage magnetic flux density distribution, and the inspection target based on the magnetic flux density peak value of the leakage magnetic flux density distribution At least one of a damage degree of the damaged part of the body and a damage length of the damaged part of the test object based on a distance between magnetic flux density peak values of the leakage magnetic flux density distribution is estimated. Further, the nondestructive inspection apparatus of the third invention comprises a magnetizing means for magnetizing a test object made of a nonmagnetic material,
A leakage magnetic flux density distribution measuring means for measuring a leakage magnetic flux density distribution of the inspection object magnetized by the magnetization processing means; and the inspection object based on a distribution pattern of magnetic flux density peak values of the leakage magnetic flux density distribution. Direction of the damaged portion, the degree of damage to the damaged portion of the test object based on the magnetic flux density peak value of the leakage magnetic flux density distribution and the distance between the magnetic flux density peak values of the leakage magnetic flux density distribution. Estimating means for estimating at least one of the damage lengths of the damaged part.

【0006】非磁性体に発生した損傷部はマルテンサイ
ト相への変態によって強磁性体化するという特性を有す
る。第1及び第3の発明に拠れば、マルテンサイト変態
した非磁性体の損傷部は着磁により磁化され、損傷部に
沿って漏洩磁束密度の磁束密度ピーク値が分布すること
から、漏洩磁束密度分布の磁束密度ピーク値の分布パタ
ーンに基づいて被検査体の損傷部分の進展方向を推定す
ることができる。また、非磁性体からなる被検査体の損
傷部の損傷程度と漏洩磁束密度分布の磁束密度ピーク値
とは比例関係にあるので、漏洩磁束密度分布の磁束密度
ピーク値に基づいて前記被検査体の損傷部の損傷程度を
推定することができる。さらに、非磁性体からなる被検
査体の損傷部の損傷長と漏洩磁束密度分布の磁束密度ピ
ーク値間の距離とは比例関係にあるので、磁束密度ピー
ク値間の距離に基づいて前記被検査体の損傷部の損傷の
長さを推定することができる。
[0006] The damaged portion generated in the non-magnetic material has a characteristic that it becomes ferromagnetic by transformation into a martensite phase. According to the first and third aspects of the present invention, the damaged portion of the non-magnetic material transformed into martensite is magnetized by magnetization, and the peak value of the leakage magnetic flux density is distributed along the damaged portion. Based on the distribution pattern of the magnetic flux density peak values of the distribution, it is possible to estimate the propagation direction of the damaged portion of the test object. Further, since the degree of damage of the damaged portion of the test object made of a non-magnetic material is proportional to the magnetic flux density peak value of the leakage magnetic flux density distribution, the test object is determined based on the magnetic flux density peak value of the leakage magnetic flux density distribution. The degree of damage of the damaged part can be estimated. Further, since the damage length of the damaged portion of the test object made of a nonmagnetic material and the distance between the magnetic flux density peak values of the leakage magnetic flux density distribution are in a proportional relationship, the test object is inspected based on the distance between the magnetic flux density peak values. The length of injury of the body injury can be estimated.

【0007】第2の発明の非破壊検査方法は、非磁性体
からなる被検査体を複数方向から着磁処理し、着磁処理
した複数の着磁処理方向での前記被検査体の漏洩磁束密
度分布を各々測定し、前記各々の漏洩磁束密度分布のパ
ターンに基づく前記被検査体の損傷部の形状、前記各々
の漏洩磁束密度分布のピーク値に基づく前記被検査体の
損傷部の損傷程度、及び前記各々の漏洩磁束密度分布の
磁束密度ピーク値間の距離に基づく前記被検査体の損傷
部の損傷長、の少なくとも1つを推定する。また、第4
の発明の非破壊検査装置は、非磁性体からなる被検査体
を複数方向から着磁処理する着磁処理手段と、前記着磁
処理手段による複数の着磁処理方向での前記被検査体の
漏洩磁束密度分布を各々測定する漏洩磁束密度分布測定
手段と、前記各々の漏洩磁束密度分布のパターンに基づ
く前記被検査体の損傷部の形状、前記各々の漏洩磁束密
度分布の磁束密度ピーク値に基づく前記被検査体の損傷
部の損傷程度、前記各々の漏洩磁束密度分布の磁束密度
ピーク値間の距離に基づく前記被検査体の損傷部の損傷
長の少なくとも1つを推定する推定手段とを含んで構成
されている。第2及び第4の発明に拠れば、複数の着磁
方向での被検査体の漏洩磁束密度分布を各々測定し、各
々の漏洩磁束密度分布のパターン、磁束密度ピーク値、
磁束密度ピーク値間の距離に基づいて前記被検査体の損
傷部の形状、損傷部の損傷程度、損傷部の損傷の長さを
各々推定するので、より正確に被検査体の損傷部の形状
の推定、損傷部の損傷程度の推定、損傷部の損傷の長さ
の推定をすることができる。
According to a second aspect of the present invention, there is provided a non-destructive inspection method, wherein an inspection object made of a non-magnetic material is magnetized in a plurality of directions, and the leakage magnetic flux of the inspection object in the plurality of magnetized processing directions. The density distribution is measured, and the shape of the damaged portion of the test object based on the pattern of the leakage magnetic flux density distribution, the degree of damage of the damaged portion of the test object based on the peak value of the leakage magnetic flux density distribution And a damage length of a damaged portion of the inspection object based on a distance between magnetic flux density peak values of the respective leakage magnetic flux density distributions. Also, the fourth
A non-destructive inspection apparatus according to the invention comprises: a magnetizing means for magnetizing an object to be inspected made of a non-magnetic material from a plurality of directions; and Leakage magnetic flux density distribution measuring means for measuring each of the magnetic flux density distributions, the shape of the damaged portion of the test object based on the pattern of each magnetic flux density distribution, the magnetic flux density peak value of each magnetic flux density distribution Estimating means for estimating at least one of a damage degree of the damaged portion of the test object based on a distance between magnetic flux density peak values of the respective leakage magnetic flux density distributions based on a degree of damage of the damaged portion of the test object. It is comprised including. According to the second and fourth inventions, the leakage magnetic flux density distribution of the test object in each of a plurality of magnetization directions is measured, and the pattern of each leakage magnetic flux density distribution, the magnetic flux density peak value,
The shape of the damaged part of the test object, the degree of damage of the damaged part, and the length of the damage of the damaged part are estimated based on the distance between the magnetic flux density peak values. Of the damaged part, the degree of damage to the damaged part, and the length of damage to the damaged part.

【0008】第1または第2の発明は、前記被検査体を
着磁処理する前に消磁処理することにより、第3または
第4の発明は、前記被検査体を消磁処理する消磁処理手
段を更に備えることにより、方向が明確でない磁化状態
を解消できるので、着磁処理による磁化の方向を明確に
することができる。
According to the first or second invention, the object to be inspected is demagnetized before the magnetization of the object to be inspected. According to the third or fourth invention, the degaussing means for demagnetizing the object to be inspected is provided. By further providing, it is possible to eliminate the magnetization state in which the direction is not clear, so that the direction of the magnetization by the magnetization process can be clarified.

【0009】また、第1及び第2の発明の前記漏洩磁束
密度分布の測定、第3及び第4の発明の前記漏洩磁束密
度分布測定手段による漏洩磁束密度分布測定は、薄膜フ
ラッグスゲートセンサ、ホールセンサおよびSQUID
(超伝導量子干渉計)などの磁気センサにより適切に行
うことができる。
The measurement of the leakage magnetic flux density distribution of the first and second inventions and the measurement of the leakage magnetic flux density distribution by the leakage magnetic flux density distribution measuring means of the third and fourth inventions are performed by using a thin film flag gate sensor, Sensor and SQUID
(Superconducting quantum interferometer) or the like can be appropriately performed.

【0010】[0010]

【発明の実施の形態】まず、本実施の形態の原理につい
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the principle of the present embodiment will be described.

【0011】SUS304鋼平板を用いて以下の条件で
疲労試験を実施し、マルテンサイト相分布及び漏洩磁束
密度分布を測定して、亀裂と漏洩磁束密度分布との関係
を調査した。
A fatigue test was carried out using a SUS304 steel plate under the following conditions, and the martensite phase distribution and the leakage magnetic flux density distribution were measured to investigate the relationship between the crack and the leakage magnetic flux density distribution.

【0012】疲労試験は応力範囲Δσ=一定、繰返し速
度10Hz、応力比R=0.1の正弦波状の繰返し荷重
を負荷し、長さ3.6mmのスリットから亀裂を進展さ
せた。負荷する応力の範囲(全振幅)Δσの値を数レベ
ル変化させて実施し、2a=3.9〜15.1mm(a
/W=0.1〜0.4、W:試験片幅)の亀裂を導入し
た。試験終了時の応力拡大係数範囲ΔKの値は18〜3
7MPam1/2の範囲であった。なお、応力拡大係数範
囲ΔKとは、破壊力学でよく用いられているパラメータ
の1つで、亀裂先端近傍の応力場を一義的に定義する量
であり、ΔK=FΔσ(πa)1/2というように、弾性
論から求められる補正係数F、亀裂の長さの半分aと負
荷応力範囲Δσによって表され、部材中に存在する亀裂
先端の損傷の程度を表すパラメータである。
In the fatigue test, a sinusoidal repetitive load having a stress range Δσ = constant, a repetition rate of 10 Hz and a stress ratio R = 0.1 was applied, and a crack was propagated from a slit having a length of 3.6 mm. The value of the range (total amplitude) Δσ of the stress to be applied is changed by several levels, and 2a = 3.9 to 15.1 mm (a
/W=0.1 to 0.4, W: width of test piece). The value of the stress intensity factor range ΔK at the end of the test is 18 to 3
The range was 7 MPam 1/2 . The stress intensity factor range ΔK is one of parameters frequently used in fracture mechanics, and is an amount that uniquely defines a stress field near a crack tip, and is expressed as ΔK = FΔσ (πa) 1/2. As described above, the parameter is represented by the correction coefficient F obtained from the theory of elasticity, a half of the crack length a and the applied stress range Δσ, and is a parameter indicating the degree of damage to the crack tip existing in the member.

【0013】上記疲労試験によって亀裂を生じた被検査
体の漏洩磁束密度は、以下の装置により測定した。この
測定装置は、図1に示すように、Z軸スタンド16のリ
フト部先端16Aに固定された磁気センサ検出部12を
備えている。磁気センサ検出部12は、配線を介して磁
気センサ本体14と接続されている。磁気センサ本体1
4には、直流電源24およびディジタルボルトメータ2
2が接続されており、ディジタルボルトメータ22はパ
ーソナルコンピュータ26と接続されている。また、載
置台18Aが、磁気センサ検出部12の下方に位置する
ようにXYテーブル18が配置され、XYテーブル18
を構成するX軸テーブル18BおよびY軸テーブル18
Cがステージコントローラ20と接続されている。ステ
ージコントローラ20はパーソナルコンピュータ26と
接続されている。なお、試験では、磁気センサとして1
〜10-5Gの測定範囲を持つ薄膜フラックスゲート型磁
気センサ(FGセンサ)を使用している。
[0013] The leakage magnetic flux density of the test object cracked in the fatigue test was measured by the following apparatus. As shown in FIG. 1, the measuring device includes a magnetic sensor detector 12 fixed to a tip 16A of a lift portion of a Z-axis stand 16. The magnetic sensor detector 12 is connected to the magnetic sensor main body 14 via a wiring. Magnetic sensor body 1
4 includes a DC power supply 24 and a digital voltmeter 2.
2 is connected, and the digital voltmeter 22 is connected to a personal computer 26. The XY table 18 is arranged so that the mounting table 18A is located below the magnetic sensor detector 12.
X-axis table 18B and Y-axis table 18
C is connected to the stage controller 20. The stage controller 20 is connected to a personal computer 26. In the test, one magnetic sensor was used.
A thin film flux gate magnetic sensor (FG sensor) having a measurement range of 10 to 10 -5 G is used.

【0014】次に、被検査体の漏洩磁束密度の測定方法
について図2のブロック図に示す手順にしたがって説明
する。
Next, a method of measuring the leakage magnetic flux density of the test object will be described according to the procedure shown in the block diagram of FIG.

【0015】まず、手順100で、非磁性体である被検
査体28に消磁処理を施す。この処理は、自然磁化によ
る被検査体の磁化の方向が明確でないことから、自然磁
化の影響を防止するために行う処理であるが、必ずしも
消磁処理を行う必要はなく、消磁処理を行わずに後述の
手順に進むこともできる。なお、消磁処理の方法として
は、徐々に強さが弱まっていく交流磁界を被検査体にか
け、その部材の磁化を打ち消すことにより行うことがで
きる。
First, in step 100, a test object 28, which is a non-magnetic material, is subjected to degaussing processing. This process is performed to prevent the influence of spontaneous magnetization because the direction of the magnetization of the test object due to spontaneous magnetization is not clear.However, it is not always necessary to perform degaussing process. It is also possible to proceed to the procedure described below. The degaussing process can be performed by applying an alternating magnetic field whose strength gradually decreases to the object to be inspected and canceling the magnetization of the member.

【0016】次に、手順102で、被検査体28に生じ
ている亀裂の進展方向(以下「X軸方向」という)に着
磁処理を行う。着磁処理は、図3に示すように、S極−
N極の方向を同方向にした0.4Tの永久磁石二つで、
X軸方向に被検査体28を挟み込むようにして被検査体
28を磁化させ、被検査体から既知の向きに磁界が発生
するようにすることで行うことができる。なお、着磁処
理は、被検査体がX軸方向に磁気的飽和状態になる程度
の磁界をかけることによっても行うことができる。
Next, in step 102, a magnetization process is performed in a direction in which a crack generated in the inspection object 28 (hereinafter referred to as "X-axis direction"). As shown in FIG.
Two 0.4T permanent magnets with the same direction of the N pole
This can be performed by magnetizing the test object 28 so as to sandwich the test object 28 in the X-axis direction, and generating a magnetic field in a known direction from the test object. The magnetizing process can also be performed by applying a magnetic field that causes the test object to be in a magnetically saturated state in the X-axis direction.

【0017】次に、手順106で、被検査体28からの
漏洩磁束密度分布を測定する。漏洩磁束密度分布の測定
は、以下のように行う。図1に示すように被検査体28
を非破壊検査装置10のXYステージ載置台18A上に
載置し、Z軸スタンド16を調整して、被検査体28と
磁気センサ検出部12との距離(リフトオフ値)を一定
に保つ。そして、パーソナルコンピュータ26でXYテ
ーブル18を制御することにより被検査体28を移動さ
せて磁気センサ検出部12で被検査体28の走査を行
い、被検査体28からの漏洩磁束密度分布を測定する。
なお、前述のリフトオフ値は被検査体の磁化量を考慮し
て設定するが、使用する磁気センサの測定限界を超えな
い範囲であれば任意の値をとることが可能である。
Next, in step 106, the distribution of the magnetic flux leakage from the device under test 28 is measured. The measurement of the leakage magnetic flux density distribution is performed as follows. As shown in FIG.
Is mounted on the XY stage mounting table 18A of the nondestructive inspection apparatus 10, and the Z-axis stand 16 is adjusted to keep the distance (lift-off value) between the inspection object 28 and the magnetic sensor detector 12 constant. Then, by controlling the XY table 18 with the personal computer 26, the test object 28 is moved, the magnetic sensor detector 12 scans the test object 28, and measures the leakage magnetic flux density distribution from the test object 28. .
Note that the above-described lift-off value is set in consideration of the amount of magnetization of the object to be inspected, but may be any value as long as it does not exceed the measurement limit of the magnetic sensor to be used.

【0018】以下に上記測定により得られた測定結果を
示す。
The measurement results obtained by the above measurement are shown below.

【0019】[測定結果1]応力振幅Δσ=200MP
aで、2a=14.1mm(a/W=0.4)、ΔK=
33.0 MPam1/2の損傷を受けたSUS304平板
でのマルテンサイト相分布及び漏洩磁束密度分布の測定
結果は、図5に示すとおりである。図5の(A)は、亀
裂近傍のマルテンサイト相分布、(B)は、X軸方向着
磁処理時の被検査体からのリフトオフ値1.5mmにお
ける漏洩磁束密度分布、(C)は、Z軸方向着磁処理時
の被検査体からのリフトオフ値2.5mmにおける漏洩
磁束密度分布を示す。
[Measurement result 1] Stress amplitude Δσ = 200MP
a, 2a = 14.1 mm (a / W = 0.4), ΔK =
FIG. 5 shows the measurement results of the martensite phase distribution and the leakage magnetic flux density distribution in the SUS304 flat plate damaged by 33.0 MPam 1/2 . 5A is a distribution of a martensite phase in the vicinity of a crack, FIG. 5B is a leakage magnetic flux density distribution at a lift-off value of 1.5 mm from a test object during the X-axis direction magnetization processing, and FIG. 7 shows a leakage magnetic flux density distribution at a lift-off value of 2.5 mm from a test object during a Z-axis direction magnetization process.

【0020】[測定結果2]応力振幅Δσ=242MP
aで、2a=10.6mm(a/W=0.29)、ΔK
=33.0 MPam1/2の損傷を受けたSUS304平
板でのマルテンサイト相分布及び漏洩磁束密度分布の測
定結果は、図6に示すとおりである。図6の(A)は、
亀裂近傍のマルテンサイト相分布、(B)は、X軸方向
着磁処理時の被検査体からのリフトオフ値1.5mmに
おける漏洩磁束密度分布、(C)は、Z軸方向着磁処理
時の被検査体からのリフトオフ値2.5mmにおける漏
洩磁束密度分布を示す。
[Measurement result 2] Stress amplitude Δσ = 242MP
a, 2a = 10.6 mm (a / W = 0.29), ΔK
FIG. 6 shows the measurement results of the martensite phase distribution and the leakage magnetic flux density distribution in the SUS304 flat plate damaged at = 33.0 MPam 1/2 . (A) of FIG.
Martensite phase distribution near cracks, (B) shows leakage magnetic flux density distribution at a lift-off value of 1.5 mm from the test object during X-axis magnetization, and (C) shows leakage magnetic flux density during Z-axis magnetization. 5 shows a leakage magnetic flux density distribution at a lift-off value of 2.5 mm from a test object.

【0021】[測定結果3]応力振幅Δσ=200MP
aで、2a=10.3mm(a/W=0.29)、ΔK
=24.5MPam1/2の損傷を受けたSUS304平
板でのマルテンサイト相分布及び漏洩磁束密度分布の測
定結果は、図7に示すとおりである。図7の(A)は、
亀裂近傍のマルテンサイト相分布、(B)は、X軸方向
着磁処理時の被検査体からのリフトオフ値1.5mmに
おける漏洩磁束密度分布、(C)は、Z軸方向着磁処理
時の被検査体からのリフトオフ値2.5mmにおける漏
洩磁束密度分布を示す。
[Measurement result 3] Stress amplitude Δσ = 200MP
a, 2a = 10.3 mm (a / W = 0.29), ΔK
FIG. 7 shows the measurement results of the distribution of the martensite phase and the distribution of the leakage magnetic flux in the SUS304 plate damaged at = 24.5 MPam 1/2 . (A) of FIG.
Martensitic phase distribution near cracks, (B) shows leakage magnetic flux density distribution at 1.5 mm lift-off value from test object during X-axis magnetization, and (C) shows leakage magnetic flux density during Z-axis magnetization. 4 shows a leakage magnetic flux density distribution at a lift-off value of 2.5 mm from a test object.

【0022】測定結果1、2及び3より得られたX軸方
向着磁処理時の漏洩磁束密度分布を示す図5(B)、図
6(B)、図7(B)によれば、X軸方向に着磁処理を
行った場合、亀裂に沿って正と負の漏洩磁束密度のピー
クが現れ、亀裂先端の両近傍で漏洩磁束密度の最小値な
いしは最大値が現れていることが確認できる。これは、
亀裂近傍に誘起したマルテンサイト相が(図5(A)、
図6(A)、図7(A)参照)、着磁処理によって図5
(B)、図6(B)、図7(B)それぞれの下図に示す
ようにその生成領域内でN極、S極の両極をもつ一つの
磁石のようになっているためである。このことから、亀
裂周辺に形成されたウェイク領域が周囲の生地組織に比
べて強い磁性体になっており、亀裂先端に近づくにつれ
その傾向は顕著になっているということが分かる。
According to FIGS. 5 (B), 6 (B) and 7 (B) showing the leakage magnetic flux density distribution during the X-axis direction magnetizing treatment obtained from the measurement results 1, 2 and 3, When the magnetizing treatment is performed in the axial direction, peaks of the positive and negative leakage magnetic flux densities appear along the crack, and it can be confirmed that the minimum value or the maximum value of the leakage magnetic flux density appears near both ends of the crack. . this is,
The martensitic phase induced in the vicinity of the crack (FIG. 5A)
6 (A) and FIG. 7 (A)).
(B), FIG. 6 (B), and FIG. 7 (B), as shown in the respective lower figures, it is like a single magnet having both N pole and S pole in the generation region. This indicates that the wake area formed around the crack is a stronger magnetic material than the surrounding fabric structure, and that the tendency becomes more pronounced as approaching the crack tip.

【0023】また、測定結果1、2及び3より得られた
Z軸方向着磁処理時の漏洩磁束密度分布を示す図5
(C)、図6(C)、図7(C)によれば、Z軸方向に
着磁処理を行った場合、亀裂先端の両近傍で漏洩磁束密
度のピークが現れている。これもX軸方向に着磁処理し
た場合と同様に、着磁処理によって図5(C)、図6
(C)、図7(C)それぞれの下図に示すようにマルテ
ンサイト領域が磁石のようになっているためであると考
えられる。
FIG. 5 shows the leakage magnetic flux density distribution at the time of the magnetizing treatment in the Z-axis direction obtained from the measurement results 1, 2 and 3.
According to (C), FIG. 6 (C), and FIG. 7 (C), when the magnetization process is performed in the Z-axis direction, peaks of the leakage magnetic flux density appear near both sides of the crack tip. As in the case where the magnetizing process is performed in the X-axis direction, FIG.
This is considered to be because the martensite region is like a magnet as shown in the lower diagram of each of FIG. 7C and FIG. 7C.

【0024】上記測定結果より、測定された漏洩磁束密
度のピーク値の分布のパターンに基づいて、被検査体の
亀裂の進展方向を推定することができる。例えば、測定
により図5(A)に示すような漏洩磁束密度分布が得ら
れた場合には、漏洩磁束密度のピーク値に沿って、X軸
方向に延びた亀裂が生じていることを推定することがで
きる。
From the above measurement results, it is possible to estimate the crack propagation direction of the test object based on the distribution pattern of the peak value of the measured leakage magnetic flux density. For example, when the leakage magnetic flux density distribution as shown in FIG. 5A is obtained by the measurement, it is estimated that a crack extending in the X-axis direction is generated along the peak value of the leakage magnetic flux density. be able to.

【0025】次に、温度:273K、X軸方向に着磁処
理したときのリフトオフ値:1.5mm、Z軸方向に着
磁処理したときのリフトオフ値:2.5mmとし、最終
的な亀裂長、負荷応力振幅Δσ、及びΔKレベルを変化
させ、その他の条件は上記疲労試験と同一にしてSUS
304平板での疲労試験を実施し、前述の手順100〜
106と同様にして漏洩磁束密度分布を測定した。
Next, the temperature was 273 K, the lift-off value when magnetized in the X-axis direction was 1.5 mm, and the lift-off value when magnetized in the Z-axis direction was 2.5 mm. , The applied stress amplitude Δσ, and ΔK level were changed, and the other conditions were the same as those in the above fatigue test.
A fatigue test was performed on a 304 plate, and the above procedure 100 to 100 was performed.
106, the leakage magnetic flux density distribution was measured.

【0026】X軸方向に着磁処理した場合の、測定によ
って得られた漏洩磁束密度のピークの最小値をBzmin
最大値をBzmaxとし、そのピーク間距離を2LAとした
時、漏洩磁束密度のピーク値Bzmin、Bzmaxと部材の受
けた損傷程度ΔKとの関係を図8に、ピーク間距離2L
Aと実際の亀裂長さ2aとの関係を図9に示す。
When the magnetizing treatment is performed in the X-axis direction, the minimum value of the leakage magnetic flux density peak obtained by the measurement is represented by B zmin ,
Assuming that the maximum value is B zmax and the distance between the peaks is 2 LA, the relationship between the peak values B zmin and B zmax of the leakage magnetic flux density and the degree of damage ΔK received by the member is shown in FIG.
FIG. 9 shows the relationship between A and the actual crack length 2a.

【0027】また、Z軸方向に着磁処理した場合の、測
定によって得られた漏洩磁束密度のピーク値をそれぞれ
zmax1、Bzmax2とし、そのピーク間距離を2LBと
した時、漏洩磁束密度のピーク値Bzmax1、Bzmax2と
ΔKとの関係を図10に、ピーク間距離2LBと実際の
亀裂長さ2aの関係を図11に示す。
When the peak values of the leakage magnetic flux densities obtained by the measurement when the magnetization treatment is performed in the Z-axis direction are B zmax 1 and B zmax 2 and the distance between the peaks is 2 LB, FIG. 10 shows the relationship between the peak values B zmax 1 and B zmax 2 of the density and ΔK, and FIG. 11 shows the relationship between the distance 2LB between the peaks and the actual crack length 2a.

【0028】図8、図10に示されるように、Bzmin
zmaxと負荷したΔKとの間、Bzm ax1、Bzmax2と負
荷したΔKとの間には線形的な関係が成立し、また、異
なった亀裂長に対しても同じΔK値に対してはほぼ同じ
値のBzmin、BzmaxやBzmax1、Bzmax2が得られる。
すなわち、測定される漏洩磁束密度のピーク値はΔK値
に依存することが分かる。したがって、BzminおよびB
zmax、Bzmax1およびBzmax2を測定することによって
部材の受けた損傷程度を推定することができる。
As shown in FIGS. 8 and 10, B zmin ,
Between B zmax and the load was [Delta] K, B zm ax 1, a linear relationship is established between the B zmax 2 and the load was [Delta] K, also with respect to different same [Delta] K value against the crack length substantially the same value of B zmin, B zmax and B zmax 1, B zmax 2 is obtained Te.
That is, it is understood that the peak value of the measured leakage magnetic flux density depends on the ΔK value. Therefore, B zmin and B
zmax, it is possible to estimate the received degree of damage of the member by measuring B zmax 1 and B zmax 2.

【0029】また、図9、図11に示されるように、漏
洩磁束密度のピーク間距離と実際の亀裂長の関係におい
ても線形的な関係が成立することから、漏洩磁束密度の
ピーク間距離を測定することにより実際の亀裂長を推定
することができる。
Further, as shown in FIGS. 9 and 11, a linear relationship is established in the relationship between the peak distance of the leakage magnetic flux density and the actual crack length. By measuring, the actual crack length can be estimated.

【0030】さらに、図5、図6、及び図7に示される
ように、同一の亀裂であっても、着磁処理の方向によっ
て測定される磁束密度分布の形状が異なることから、磁
束密度分布の形状から部材に入ったき裂の進展方向も推
定することができる。
Further, as shown in FIG. 5, FIG. 6, and FIG. 7, since the shape of the magnetic flux density distribution measured depending on the direction of the magnetization process differs even for the same crack, the magnetic flux density distribution The propagation direction of the crack that has entered the member can also be estimated from the shape.

【0031】次に、図面を参照して本発明の実施の形態
を説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0032】本実施の形態の非破壊検査装置は、図1に
示した前記測定装置と同様の構成を有するので、ここで
はその説明を省略する。パーソナルコンピュータ26の
図示しない記憶部には、前述の測定によって得られた、
漏洩磁束密度分布の磁束ピーク値の分布から亀裂の進展
方向を推定する亀裂進展方向データ、漏洩磁束密度の磁
束ピーク値と亀裂程度との関係を対応付けた亀裂程度デ
ータ、及び漏洩磁束密度の磁束ピーク値間距離と亀裂の
長さとの関係を対応付けた亀裂長データが記憶されてい
る。
The non-destructive inspection apparatus of the present embodiment has the same configuration as that of the measuring apparatus shown in FIG. 1, and a description thereof will be omitted. The storage unit (not shown) of the personal computer 26 stores the data obtained by the above-described measurement.
Crack growth direction data for estimating the direction of crack propagation from the distribution of magnetic flux peak values in the leakage magnetic flux density distribution, crack degree data in which the relationship between the magnetic flux peak value of the leakage magnetic flux density and the degree of the crack is associated, and the magnetic flux of the leakage magnetic flux density Crack length data in which the relationship between the distance between peak values and the length of the crack is associated is stored.

【0033】次に、本実施の形態の非破壊検査装置を用
いた非破壊検査方法について説明する。
Next, a non-destructive inspection method using the non-destructive inspection device of the present embodiment will be described.

【0034】前述の手順100〜106と同様にして、
非磁性体である被検査体28に消磁処理及び着磁処理を
施し、漏洩磁束密度分布を測定する。
In the same manner as in the above procedures 100 to 106,
The test object 28, which is a non-magnetic material, is subjected to a demagnetization process and a magnetization process, and the leakage magnetic flux density distribution is measured.

【0035】次に、手順108で、被検査体の損傷個所
の評価を行う。
Next, in step 108, a damaged portion of the inspection object is evaluated.

【0036】前述の試験結果から、非磁性体の亀裂部分
近傍はマルテンサイト変態によって強磁性体化している
ことが確認されており、測定された漏洩磁束密度の磁束
ピーク値の分布パターンに基づいて、被検査体の亀裂の
進展方向を推定することができる。
From the above test results, it has been confirmed that the vicinity of the crack portion of the non-magnetic material has become ferromagnetic due to martensitic transformation, and based on the distribution pattern of the peak value of the measured leakage magnetic flux density. Thus, it is possible to estimate the direction of crack propagation in the test object.

【0037】また、前述の試験結果から、漏洩磁束密度
分布の磁束密度ピーク値と被検査体の損傷程度とは比例
関係にあることが知られている。そこで、測定された漏
洩磁束密度分布の磁束密度ピーク値から被検査体の損傷
程度を推定することができる。
From the above test results, it is known that the peak value of the magnetic flux density in the leakage magnetic flux density distribution is proportional to the degree of damage to the device under test. Thus, the degree of damage to the test object can be estimated from the measured magnetic flux density peak value of the leakage magnetic flux density distribution.

【0038】さらに、前述の試験結果から、漏洩磁束密
度分布の磁束密度ピーク値は亀裂先端の両近傍に現れ、
磁束密度ピーク値の間の距離と被検査体の亀裂の長さと
は比例関係にあることが知られている。そこで、測定さ
れた漏洩磁束密度分布の磁束密度ピーク値間の距離から
被検査体の亀裂の長さを推定することができる。
Further, from the above test results, the peak values of the magnetic flux density of the leakage magnetic flux density distribution appear near both sides of the crack tip,
It is known that the distance between the peak values of the magnetic flux density and the crack length of the test object are in a proportional relationship. Therefore, the length of the crack in the test object can be estimated from the distance between the measured magnetic flux density peak values of the leakage magnetic flux density distribution.

【0039】次に、手順110で、上述の被検査体の損
傷個所の評価に基づいて非破壊的検出法の確立を行う。
Next, in step 110, a non-destructive detection method is established based on the above-described evaluation of the damaged portion of the inspection object.

【0040】パーソナルコンピュータ26の前記記憶部
には、上記手順により測定された被検査体28の漏洩磁
束密度分布データが記憶されている。パーソナルコンピ
ュータ26の図示しない入力部から、被検査体の亀裂形
状、亀裂程度および亀裂長さのいづれか1つの推定処理
の指示を入力すると、図13に示す亀裂推定処理が行わ
れる。
The storage section of the personal computer 26 stores the leakage magnetic flux density distribution data of the test object 28 measured according to the above procedure. When an instruction for estimating any one of the crack shape, crack degree, and crack length of the inspection object is input from an input unit (not shown) of the personal computer 26, the crack estimation processing shown in FIG. 13 is performed.

【0041】ステップ120で、入力された指示が被検
査体の亀裂進展方向の推定処理かどうかを判断する。入
力された指示が被検査体の亀裂進展方向推定処理の場合
には、ステップ122で前記記憶部に記憶されている亀
裂形状データで漏洩磁束密度分布データのパターンを解
析することにより被検査体の亀裂進展方向の推定を行
い、ステップ124で推定された被検査体の亀裂進展方
向をパーソナルコンピュータ26の表示部26Aに表示
して本処理を終了する。
In step 120, it is determined whether or not the input instruction is a process for estimating the crack growth direction of the test object. If the input instruction is a process for estimating the crack growth direction of the test object, the pattern of the leakage magnetic flux density distribution data is analyzed in step 122 by using the crack shape data stored in the storage unit. The crack growth direction is estimated, and the crack growth direction of the test object estimated in step 124 is displayed on the display unit 26A of the personal computer 26, followed by terminating the present process.

【0042】入力された指示が被検査体の亀裂進展方向
の推定処理でない場合には、ステップ130で、入力さ
れた指示が被検査体の亀裂程度の推定処理かどうかを判
断する。入力された指示が被検査体の亀裂程度の推定処
理の場合には、ステップ132で前記記憶部に記憶され
ている漏洩磁束密度分布の磁束ピーク値を抽出し、ステ
ップ134で磁束ピーク値及び前記記憶部に記憶されて
いる亀裂程度データに基づいて亀裂の程度を推定し、ス
テップ136で推定された被検査体の亀裂程度をパーソ
ナルコンピュータ26の表示部26Aに表示して本処理
を終了する。
If the input instruction is not the process of estimating the crack growth direction of the object to be inspected, it is determined in step 130 whether or not the input instruction is the process of estimating the degree of crack of the object to be inspected. When the input instruction is a process of estimating the degree of cracking of the test object, the magnetic flux peak value of the leakage magnetic flux density distribution stored in the storage unit is extracted in step 132, and the magnetic flux peak value and the magnetic flux peak value are extracted in step 134. The degree of crack is estimated based on the degree-of-crack data stored in the storage unit, the degree of crack of the inspected object estimated in step 136 is displayed on the display unit 26A of the personal computer 26, and the process ends.

【0043】入力された指示が被検査体の亀裂程度の推
定処理でない場合には、ステップ140で、入力された
指示が被検査体の亀裂長の推定処理かどうかを判断す
る。入力された指示が被検査体の亀裂長の推定処理の場
合には、ステップ142で前記記憶部に記憶されている
漏洩磁束密度分布のデータに基づいて磁束ピーク値間の
距離を算出する。そして、ステップ144で算出された
磁束ピーク値間の距離と前記記憶部に記憶されている亀
裂長データに基づいて被検査体の亀裂長を推定し、ステ
ップ146で推定された被検査体の亀裂長をパーソナル
コンピュータ26の表示部26Aに表示して本処理を終
了する。
If the input instruction is not a process of estimating the degree of cracking of the object to be inspected, it is determined in step 140 whether the input instruction is a process of estimating the crack length of the object to be inspected. If the input instruction is a process for estimating the crack length of the test object, the distance between the magnetic flux peak values is calculated in step 142 based on the leakage magnetic flux density distribution data stored in the storage unit. Then, the crack length of the test object is estimated based on the distance between the magnetic flux peak values calculated in step 144 and the crack length data stored in the storage unit, and the crack length of the test object estimated in step 146 is determined. The length is displayed on the display unit 26A of the personal computer 26, and the process ends.

【0044】入力された指示が被検査体の亀裂長の推定
処理でない場合には、ステップ150でエラー表示をし
て本処理を終了する。
If the input instruction is not the process of estimating the crack length of the object to be inspected, an error is displayed in step 150 and the process is terminated.

【0045】本推定処理に拠れば、測定された漏洩磁束
密度の磁束ピーク値の分布に基づいて、自動的に被検査
体の亀裂の進展方向、程度及び長さの推定を行うことが
できる。
According to this estimation processing, the direction, extent and length of the crack propagation in the test object can be automatically estimated based on the distribution of the measured magnetic flux peak value of the leakage magnetic flux density.

【0046】以上説明したように、本実施の形態に拠れ
ば、非磁性体からなる被検査体を着磁処理し、着磁処理
した被検査体の漏洩磁束密度分布を測定し、測定により
得られた漏洩磁束密度分布のパターンに基づいて被検査
体の亀裂の進展方向を推定することができ、測定により
得られた漏洩磁束密度分布の磁束密度ピーク値に基づい
て被検査体の亀裂の程度を推定することができ、測定に
より得られた漏洩磁束密度分布の磁束密度ピーク値間の
距離に基づいて被検査体の亀裂の長さを推定することが
できる。
As described above, according to the present embodiment, the test object made of a non-magnetic material is magnetized, and the leakage magnetic flux density distribution of the magnetized test object is measured. The direction of crack propagation in the test object can be estimated based on the pattern of the leakage magnetic flux density distribution obtained, and the degree of cracking of the test object based on the magnetic flux density peak value of the leakage magnetic flux density distribution obtained by measurement Can be estimated, and the length of the crack in the test object can be estimated based on the distance between the magnetic flux density peak values of the leakage magnetic flux density distribution obtained by the measurement.

【0047】なお、本実施の形態では、X軸方向とZ軸
方向の2方向から着磁処理を行い、各々の場合の漏洩磁
束密度分布を測定して損傷個所の評価を行ったが、任意
の一方向から着磁処理をした場合の漏洩磁束密度分布の
測定結果から損傷個所の評価を行うこともできる。
In the present embodiment, the magnetizing process is performed in two directions, the X-axis direction and the Z-axis direction, and the leakage magnetic flux density distribution in each case is measured to evaluate the damaged portion. It is also possible to evaluate the damaged portion from the measurement result of the leakage magnetic flux density distribution when the magnetization process is performed from one direction.

【0048】また、本実施の形態では、被検査体の上に
遮蔽物を置かずに漏洩磁束密度の測定を行ったが、亀裂
の発生している部材の上にステンレス鋼をのせた場合、
すなわち損傷個所と磁気センサ検出部12との間に遮蔽
物を置いた場合でも、漏洩磁束密度の変化を捉えること
もできる。したがって、表面に現れずに内部に発生した
亀裂などの損傷についても、被検査体からの漏洩磁束密
度を測定することにより検出することができる。
In this embodiment, the leakage magnetic flux density was measured without placing a shield on the object to be inspected. However, when stainless steel was placed on a member having a crack,
That is, even when a shield is placed between the damaged portion and the magnetic sensor detection section 12, a change in the leakage magnetic flux density can be detected. Therefore, damage such as a crack generated inside without being shown on the surface can also be detected by measuring the leakage magnetic flux density from the test object.

【0049】また、本実施の形態では、XYテーブルを
水平移動させて被検査体の漏洩磁束密度分布を測定した
が、図12に示すように、磁気センサ検出部12を手動
によって走査し漏洩磁束密度を測定することもできる。
この方法に拠れば、図12(B)に示すように、鋼管の
ように曲面を持つ部材の漏洩磁束密度の測定も容易に行
うことができる。
In this embodiment, the XY table is horizontally moved to measure the leakage magnetic flux density distribution of the test object. As shown in FIG. 12, the magnetic sensor detector 12 is manually scanned to detect the leakage magnetic flux density. Density can also be measured.
According to this method, as shown in FIG. 12B, the measurement of the leakage magnetic flux density of a member having a curved surface such as a steel pipe can be easily performed.

【0050】[0050]

【発明の効果】以上説明したように、第1及び第3の発
明に拠れば、非磁性体に発生した損傷部はマルテンサイ
ト相への変態によって強磁性体化するという特性を有
し、マルテンサイト変態した非磁性体の損傷部は着磁に
より磁化され、損傷部に沿って漏洩磁束密度の磁束密度
ピーク値が分布することから、漏洩磁束密度分布の磁束
密度ピーク値の分布パターンに基づいて被検査体の損傷
部分の進展方向を推定することができる。また、非磁性
体からなる被検査体の損傷部の損傷程度と漏洩磁束密度
分布の磁束密度ピーク値とは比例関係にあるので、漏洩
磁束密度分布の磁束密度ピーク値に基づいて前記被検査
体の損傷部の損傷程度を推定することができる。さら
に、非磁性体からなる被検査体の損傷部の損傷の長さと
漏洩磁束密度分布の磁束密度ピーク値間の距離とは比例
関係にあるので、磁束密度ピーク値間の距離に基づいて
前記被検査体の損傷部の損傷長を推定することができ
る、という効果が得られる。
As described above, according to the first and third aspects of the present invention, the damaged portion generated in the non-magnetic material has the property that it becomes ferromagnetic by transformation into the martensite phase, The damaged portion of the non-magnetic material that has undergone site transformation is magnetized by magnetization, and the magnetic flux density peak value of the leakage magnetic flux density is distributed along the damaged portion. The direction of development of the damaged portion of the test object can be estimated. Further, since the degree of damage of the damaged portion of the test object made of a non-magnetic material is proportional to the magnetic flux density peak value of the leakage magnetic flux density distribution, the test object is determined based on the magnetic flux density peak value of the leakage magnetic flux density distribution. The degree of damage of the damaged part can be estimated. Further, since the length of the damaged portion of the test object made of a non-magnetic material and the distance between the magnetic flux density peak values of the leakage magnetic flux density distribution are in a proportional relationship, the distance between the magnetic flux density peak values is determined based on the distance between the magnetic flux density peak values. The effect is obtained that the damage length of the damaged part of the test object can be estimated.

【0051】第2及び第4の発明に拠れば、複数の着磁
方向での被検査体の漏洩磁束密度分布を各々測定し、各
々の漏洩磁束密度分布のパターン、磁束密度ピーク値、
磁束密度ピーク値間の距離に基づいて前記被検査体の損
傷部の形状、損傷部の損傷程度、損傷部の損傷長を各々
推定するので、より正確に被検査体の損傷部の形状の推
定、損傷部の損傷程度の推定、損傷部の損傷長の推定を
することができる、という効果が得られる。
According to the second and fourth aspects of the present invention, the leakage magnetic flux density distribution of the test object in each of a plurality of magnetization directions is measured, and the pattern of each leakage magnetic flux density distribution, the magnetic flux density peak value,
Since the shape of the damaged portion of the test object, the damage degree of the damaged portion, and the damage length of the damaged portion are estimated based on the distance between the magnetic flux density peak values, the shape of the damaged portion of the test object can be more accurately estimated. Thus, it is possible to estimate the degree of damage to the damaged portion and the damage length of the damaged portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本実施の形態の非破壊検査装置の概略構成図
である。
FIG. 1 is a schematic configuration diagram of a nondestructive inspection apparatus according to the present embodiment.

【図2】 本実施の形態の非破壊検査手順の概略を示す
図である。
FIG. 2 is a diagram schematically illustrating a non-destructive inspection procedure according to the present embodiment.

【図3】 X軸方向に着磁処理する方法の一例を示す図
である。
FIG. 3 is a diagram illustrating an example of a method of performing a magnetization process in an X-axis direction.

【図4】 Z軸方向に着磁処理する方法の一例を示す図
である。
FIG. 4 is a diagram illustrating an example of a method of performing a magnetization process in a Z-axis direction.

【図5】 測定結果1の(A)はマルテンサイト相分布
を示す分布図であり、(B)はX軸方向に着磁処理した
場合の漏洩磁束密度分布を示す分布図であり、(C)は
Z軸方向に着磁処理した場合の漏洩磁束密度分布を示す
分布図である。
5A is a distribution diagram showing a martensite phase distribution, and FIG. 5B is a distribution diagram showing a leakage magnetic flux density distribution when magnetized in the X-axis direction. FIG. () Is a distribution diagram showing a leakage magnetic flux density distribution when a magnetization process is performed in the Z-axis direction.

【図6】 測定結果2の(A)はマルテンサイト相分布
を示す分布図であり、(B)はX軸方向に着磁処理した
場合の漏洩磁束密度分布を示す分布図であり、(C)は
Z軸方向に着磁処理した場合の漏洩磁束密度分布を示す
分布図である。
6A is a distribution diagram showing a martensite phase distribution, and FIG. 6B is a distribution diagram showing a leakage magnetic flux density distribution when magnetized in the X-axis direction. () Is a distribution diagram showing a leakage magnetic flux density distribution when a magnetization process is performed in the Z-axis direction.

【図7】 測定結果3の(A)はマルテンサイト相分布
を示す分布図であり、(B)はX軸方向に着磁処理した
場合の漏洩磁束密度分布を示す分布図であり、(C)は
Z軸方向に着磁処理した場合の漏洩磁束密度分布を示す
分布図である。
7A is a distribution diagram showing a martensite phase distribution, and FIG. 7B is a distribution diagram showing a leakage magnetic flux density distribution when magnetized in the X-axis direction. FIG. () Is a distribution diagram showing a leakage magnetic flux density distribution when a magnetization process is performed in the Z-axis direction.

【図8】 X軸方向に着磁処理した場合の漏洩磁束密度
のピーク値Bzmin、B zmaxと部材の受けた損傷程度ΔK
の関係を示すグラフである。
FIG. 8: Leakage magnetic flux density when magnetized in the X-axis direction
Peak value Bzmin, B zmaxAnd the degree of damage ΔK received by the member
5 is a graph showing the relationship of FIG.

【図9】 X軸方向に着磁処理した場合のピーク間距離
2LAと実際の亀裂長さ2aの関係を示すグラフであ
る。
FIG. 9 is a graph showing the relationship between the peak-to-peak distance 2LA and the actual crack length 2a when magnetized in the X-axis direction.

【図10】 Z軸方向に着磁処理した場合の漏洩磁束密
度のピーク値Bzmin、Bzmaxと部材の受けた損傷程度Δ
Kの関係を示すグラフである。
FIG. 10 shows peak values B zmin and B zmax of the leakage magnetic flux density when the magnetizing process is performed in the Z-axis direction and the damage degree Δ of the member.
6 is a graph showing the relationship of K.

【図11】 Z軸方向に着磁処理した場合のピーク間距
離2LAと実際の亀裂長さ2aの関係を示すグラフであ
る。
FIG. 11 is a graph showing the relationship between the peak-to-peak distance 2LA and the actual crack length 2a when magnetizing in the Z-axis direction.

【図12】 本発明の他の実施の形態の概略説明図であ
る。
FIG. 12 is a schematic explanatory view of another embodiment of the present invention.

【図13】 本実施の形態の亀裂推定処理のフローチャ
ート図である。
FIG. 13 is a flowchart of a crack estimation process according to the present embodiment.

【符号の説明】 12 磁気センサ検出部 14 磁気センサ本体 16 Z軸スタンド 18 XYテーブル 20 ステージコントローラ 22 ディジタルボルトメータ 24 直流電源 26 パーソナルコンピュータ 28 被検査体[Description of Signs] 12 Magnetic sensor detector 14 Magnetic sensor main body 16 Z-axis stand 18 XY table 20 Stage controller 22 Digital voltmeter 24 DC power supply 26 Personal computer 28 Inspection object

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 徹 東京都新宿区神楽坂1−3 学校法人東京 理科大学内 Fターム(参考) 2F063 AA11 AA43 BB05 BB10 BC05 DA01 DA05 DB01 DB05 DD02 GA52 LA17 LA29 MA05 ZA01 ZA03 2G053 AA11 AA14 AB22 BA02 BA15 BB12 BB13 BC20 CA18 CB28 DA01 DB24  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toru Shimizu 1-3 Term Kagurazaka, Shinjuku-ku, Tokyo F-term in the Tokyo University of Science (reference) 2F063 AA11 AA43 BB05 BB10 BC05 DA01 DA05 DB01 DB05 DD02 GA52 LA17 LA29 MA05 ZA01 ZA03 2G053 AA11 AA14 AB22 BA02 BA15 BB12 BB13 BC20 CA18 CB28 DA01 DB24

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 非磁性体からなる被検査体を着磁処理
し、 着磁処理した前記被検査体の漏洩磁束密度分布を測定
し、 前記漏洩磁束密度分布の磁束密度ピーク値の分布パター
ンに基づく前記被検査体の損傷部の進展方向、前記漏洩
磁束密度分布の磁束密度ピーク値に基づく前記被検査体
の損傷部の損傷程度、及び前記漏洩磁束密度分布の磁束
密度ピーク値間の距離に基づく前記被検査体の損傷部の
損傷長、の少なくとも1つを推定する非破壊検査方法。
1. A test object made of a non-magnetic material is magnetized, a leakage magnetic flux density distribution of the test object magnetized is measured, and a distribution pattern of a magnetic flux density peak value of the leakage magnetic flux density distribution is obtained. The direction of damage of the damaged portion of the test object based on the direction of damage of the damaged portion of the test object based on the magnetic flux density peak value of the leakage magnetic flux density distribution, and the distance between the magnetic flux density peak values of the leakage magnetic flux density distribution A non-destructive inspection method for estimating at least one of a damage length of a damaged portion of the inspection object based on the inspection result.
【請求項2】 非磁性体からなる被検査体を複数方向か
ら着磁処理し、 着磁処理した複数の着磁処理方向での前記被検査体の漏
洩磁束密度分布を各々測定し、 前記各々の漏洩磁束密度分布の磁束密度ピーク値の分布
パターンに基づく前記被検査体の損傷部の進展方向、前
記各々の漏洩磁束密度分布のピーク値に基づく前記被検
査体の損傷部の損傷程度、及び前記各々の漏洩磁束密度
分布の磁束密度ピーク値間の距離に基づく前記被検査体
の損傷部の損傷長、の少なくとも1つを推定する非破壊
検査方法。
2. A test object made of a non-magnetic material is magnetized from a plurality of directions, and a leakage magnetic flux density distribution of the test object in a plurality of magnetized directions is measured. The direction of development of the damaged part of the test object based on the distribution pattern of the magnetic flux density peak value of the leakage magnetic flux density distribution, the degree of damage to the damaged part of the test object based on the peak value of each of the leakage magnetic flux density distributions, and A non-destructive inspection method for estimating at least one of a damage length of a damaged portion of the inspection object based on a distance between magnetic flux density peak values of the respective leakage magnetic flux density distributions.
【請求項3】 前記被検査体を着磁処理する前に消磁処
理することを特徴とする請求項1または2に記載の非破
壊検査方法。
3. The nondestructive inspection method according to claim 1, wherein a degaussing process is performed before the subject is magnetized.
【請求項4】 前記漏洩磁束密度分布の測定は、磁気セ
ンサで行うことを特徴とする請求項1乃至3のいづれか
1項に記載の非破壊検査方法。
4. The nondestructive inspection method according to claim 1, wherein the measurement of the leakage magnetic flux density distribution is performed by a magnetic sensor.
【請求項5】 非磁性体からなる被検査体を着磁処理す
る着磁処理手段と、 前記着磁処理手段により着磁処理された前記被検査体の
漏洩磁束密度分布を測定する漏洩磁束密度分布測定手段
と、 前記漏洩磁束密度分布の磁束密度ピーク値の分布パター
ンに基づく前記被検査体の損傷部の形状、前記漏洩磁束
密度分布の磁束密度ピーク値に基づく前記被検査体の損
傷部の損傷程度及び前記漏洩磁束密度分布の磁束密度ピ
ーク値間の距離に基づく前記被検査体の損傷部の損傷長
の少なくとも1つを推定する推定手段と、 を備えた非破壊検査装置。
5. A magnetizing means for magnetizing a test object made of a nonmagnetic material, and a leakage magnetic flux density for measuring a leakage magnetic flux density distribution of the test object magnetized by the magnetizing processing means. Distribution measuring means, the shape of the damaged part of the test object based on the distribution pattern of the magnetic flux density peak value of the leakage magnetic flux density distribution, and the shape of the damaged part of the test object based on the magnetic flux density peak value of the leakage magnetic flux density distribution. Estimating means for estimating at least one of a damage length and a damage length of a damaged portion of the test object based on a damage degree and a distance between magnetic flux density peak values of the leakage magnetic flux density distribution.
【請求項6】 非磁性体からなる被検査体を複数方向か
ら着磁処理する着磁処理手段と、 前記着磁処理手段による複数の着磁処理方向での前記被
検査体の漏洩磁束密度分布を各々測定する漏洩磁束密度
分布測定手段と、 前記各々の漏洩磁束密度分布の磁束密度ピーク値の分布
パターンに基づく前記被検査体の損傷部の形状、前記各
々の漏洩磁束密度分布の磁束密度ピーク値に基づく前記
被検査体の損傷部の損傷程度、前記各々の漏洩磁束密度
分布の磁束密度ピーク値間の距離に基づく前記被検査体
の損傷部の損傷長の少なくとも1つを推定する推定手段
と、 を備えた非破壊検査装置。
6. A magnetizing means for magnetizing a test object made of a non-magnetic material from a plurality of directions, and a leakage magnetic flux density distribution of the test object in a plurality of magnetizing directions by the magnetizing processing means. Magnetic flux density distribution measuring means for measuring each of: a shape of a damaged portion of the test object based on a distribution pattern of a magnetic flux density peak value of each of the magnetic flux density distributions; and a magnetic flux density peak of each of the magnetic flux density distributions Estimating means for estimating at least one of a degree of damage to a damaged portion of the test object based on a value and a damage length of a damaged portion of the test object based on a distance between magnetic flux density peak values of the respective leakage magnetic flux density distributions. And a non-destructive inspection device comprising:
【請求項7】 前記被検査体を消磁処理する消磁処理手
段を更に備えたことを特徴とする請求項5または6に記
載の非破壊検査装置。
7. The nondestructive inspection apparatus according to claim 5, further comprising: a degaussing means for degaussing the object to be inspected.
【請求項8】 前記漏洩磁束密度分布測定手段は、磁気
センサであることを特徴とする請求項5乃至7のいづれ
か1項に記載の非破壊検査装置。
8. The non-destructive inspection apparatus according to claim 5, wherein said leakage magnetic flux density distribution measuring means is a magnetic sensor.
JP2001074672A 2001-03-15 2001-03-15 Nondestructive inspection method and nondestructive inspection device Expired - Fee Related JP4113681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001074672A JP4113681B2 (en) 2001-03-15 2001-03-15 Nondestructive inspection method and nondestructive inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001074672A JP4113681B2 (en) 2001-03-15 2001-03-15 Nondestructive inspection method and nondestructive inspection device

Publications (2)

Publication Number Publication Date
JP2002277442A true JP2002277442A (en) 2002-09-25
JP4113681B2 JP4113681B2 (en) 2008-07-09

Family

ID=18931894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001074672A Expired - Fee Related JP4113681B2 (en) 2001-03-15 2001-03-15 Nondestructive inspection method and nondestructive inspection device

Country Status (1)

Country Link
JP (1) JP4113681B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345157A (en) * 2004-05-31 2005-12-15 Toshiba Corp Crack depth inspection method of metallic material
JP2006337042A (en) * 2005-05-31 2006-12-14 Uchihashi Estec Co Ltd Flaw detection method of metal body, and scanning-type magnetic detector
JP2006337039A (en) * 2005-05-31 2006-12-14 Uchihashi Estec Co Ltd Defect-detecting method of metal body, and scanning type magnetic detector
JP2006337041A (en) * 2005-05-31 2006-12-14 Uchihashi Estec Co Ltd Flaw detection method of metal body, and scanning-type magnetic detector
JP2007071657A (en) * 2005-09-06 2007-03-22 Chubu Electric Power Co Inc History measurement method of stress intensity factor range and crack development evaluation method
JP2007127508A (en) * 2005-11-02 2007-05-24 Tokyo Univ Of Science Nondestructive inspection method and nondestructive inspection device
JP2007331140A (en) * 2006-06-13 2007-12-27 Mie Univ Repairing method of mold containing magnetic body
JP2008002859A (en) * 2006-06-21 2008-01-10 Kobe Univ Non-destructive testing method of austenite stainless steel and its device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345157A (en) * 2004-05-31 2005-12-15 Toshiba Corp Crack depth inspection method of metallic material
JP2006337042A (en) * 2005-05-31 2006-12-14 Uchihashi Estec Co Ltd Flaw detection method of metal body, and scanning-type magnetic detector
JP2006337039A (en) * 2005-05-31 2006-12-14 Uchihashi Estec Co Ltd Defect-detecting method of metal body, and scanning type magnetic detector
JP2006337041A (en) * 2005-05-31 2006-12-14 Uchihashi Estec Co Ltd Flaw detection method of metal body, and scanning-type magnetic detector
JP4598601B2 (en) * 2005-05-31 2010-12-15 双日マシナリー株式会社 Defect detection method for metal body and scanning type defect detector
JP4600989B2 (en) * 2005-05-31 2010-12-22 双日マシナリー株式会社 Defect detection method for metal body and scanning magnetic detector
JP4619864B2 (en) * 2005-05-31 2011-01-26 双日マシナリー株式会社 Defect detection method for metal body and scanning magnetic detector
JP2007071657A (en) * 2005-09-06 2007-03-22 Chubu Electric Power Co Inc History measurement method of stress intensity factor range and crack development evaluation method
JP2007127508A (en) * 2005-11-02 2007-05-24 Tokyo Univ Of Science Nondestructive inspection method and nondestructive inspection device
JP2007331140A (en) * 2006-06-13 2007-12-27 Mie Univ Repairing method of mold containing magnetic body
JP2008002859A (en) * 2006-06-21 2008-01-10 Kobe Univ Non-destructive testing method of austenite stainless steel and its device

Also Published As

Publication number Publication date
JP4113681B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
Wilson et al. Residual magnetic field sensing for stress measurement
Tsukada et al. Detection of inner cracks in thick steel plates using unsaturated AC magnetic flux leakage testing with a magnetic resistance gradiometer
Wang et al. Dipole modeling of stress-dependent magnetic flux leakage
JPS63502457A (en) Methods and apparatus for non-destructive material testing and magnetic structural material investigation
JP5892341B2 (en) Hardening depth measuring method and quenching depth measuring device
Kikuchi et al. Feasibility study of application of MFL to monitoring of wall thinning under reinforcing plates in nuclear power plants
JP2002277442A (en) Non-destructive inspection method and apparatus
JP2010048552A (en) Nondestructive inspecting device and method
JPH04269653A (en) Leakage magnetic flux detector
Watson et al. Development and optimisation of low-power magnetic flux leakage inspection parameters for mild steel welds
Kikuchi et al. Feasibility study of magnetic flux leakage method for condition monitoring of wall thinning on tube
Oka et al. Fatigue dependence of residual magnetization in austenitic stainless steel plates
Gotoh et al. Proposal of electromagnetic inspection method of hardened depth of steel using 3-D nonlinear FEM taking account of hysteresis
JP2004294341A (en) Flaw detection method and flaw detection apparatus by pulsed remote field eddy current
JP2008002859A (en) Non-destructive testing method of austenite stainless steel and its device
Gotoh et al. Analysis of electromagnetic inspection method of opposite side carburization depth in steel plate taking account of minor loop
JP3889016B2 (en) Nondestructive detection method of high temperature fatigue damage area
JP3317190B2 (en) Fatigue crack detection method
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
Yoshioka et al. Proposal of electromagnetic inspection of opposite side defect in steel using 3-D nonlinear FEM taking account of minor loop and residual magnetism
Nadzri et al. Development of ECT probe for back side crack evaluation
JP7454165B2 (en) Magnetic material measurement probe and magnetic material measurement device
Fujii et al. Examination of inspecting method of opposite side defect in steel plate using AC and DC magnetic field
JP2011252787A (en) Hardening quality inspection device
JP2000304725A (en) Method for measuring thickness of transformation layer of steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060530

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060530

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees