JP2007331140A - Repairing method of mold containing magnetic body - Google Patents

Repairing method of mold containing magnetic body Download PDF

Info

Publication number
JP2007331140A
JP2007331140A JP2006163048A JP2006163048A JP2007331140A JP 2007331140 A JP2007331140 A JP 2007331140A JP 2006163048 A JP2006163048 A JP 2006163048A JP 2006163048 A JP2006163048 A JP 2006163048A JP 2007331140 A JP2007331140 A JP 2007331140A
Authority
JP
Japan
Prior art keywords
mold
magnetic flux
magnetic field
residual stress
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006163048A
Other languages
Japanese (ja)
Other versions
JP5004324B2 (en
Inventor
Shigeo Kotake
茂夫 小竹
Hiroya Kimura
浩也 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie University NUC
Sumiden Electronics Ltd
Original Assignee
Mie University NUC
Sumiden Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie University NUC, Sumiden Electronics Ltd filed Critical Mie University NUC
Priority to JP2006163048A priority Critical patent/JP5004324B2/en
Publication of JP2007331140A publication Critical patent/JP2007331140A/en
Application granted granted Critical
Publication of JP5004324B2 publication Critical patent/JP5004324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the point at issue wherein the residual stress or hair crack in a mold caused by an uncertain element at the time of mold operation or molding processing in various processing methods such as grinding, cutting, discharge processing, etc. can not be accurately estimated over a deep range from the surface of the mold in a conventional technique and the proper repairing of the mold can not be performed. <P>SOLUTION: A magnetic flux density sensor is three-dimensionally moved and scanned along the surface of a material containing a magnetic body to detect the intensity and vector of a magnetic field and the mold is repaired on the basis of the evaluation of the removal quantity of residual stress caused at the time of processing of the mold, the evaluation of the crack produced in the vicinity of the surface of the mold and the evaluation of wire discharge processing. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁性体を含む材料よりなる金型について、これを研削や切削、放電加工、通電焼結やレーザー焼結等、様々な加工法により作製する際および使用時に逆磁歪現象により金型表面に生成した磁場ベクトルおよび磁場強度を磁束密度センサーを用いて残留応力や表面亀裂の分布や位置を導出し、残留応力や表面亀裂を除去する金型の補修方法に関するものである。 The present invention relates to a mold made of a material containing a magnetic material, which is produced by various magnetoresistive methods such as grinding, cutting, electric discharge machining, electric current sintering, laser sintering, etc. The present invention relates to a method of repairing a mold that uses a magnetic flux density sensor to derive the distribution and position of residual stress and surface cracks from a magnetic field vector and magnetic field intensity generated on the surface, and removes residual stress and surface cracks.

プレス用金型および成形用金型には、研削や切削、放電加工や通電焼結、レーザー焼結等、様々な加工法による型作製時において、加工時に溶融を伴うような高温から室温へと急冷される場合があり、また射出成形などの熱間金型としての使用時における圧縮と冷却の繰り返しが与えられるなど、その作製時や使用時に大きな熱応力が発生する。これらの多くは表面において引張応力として働くため、金型表面に微細なヘアークラックの発生を誘導する。また金型用の素材が硬さを重視した脆性材料であるため破壊靭性値は小さく、微細なクラックの存在により金型の寿命は大きく低下する。 For press dies and molding dies, from the high temperature that causes melting during processing to room temperature when making dies by various processing methods such as grinding, cutting, electric discharge machining, electric current sintering, laser sintering, etc. There is a case where it is rapidly cooled, and a large thermal stress is generated during its production or use, such as compression and cooling repeated during use as a hot mold such as injection molding. Many of these work as tensile stresses on the surface and induce the generation of fine hair cracks on the mold surface. In addition, since the mold material is a brittle material that places importance on hardness, the fracture toughness value is small, and the life of the mold is greatly reduced due to the presence of fine cracks.

そのため金型の内部に存在する残留応力を減らすために、加工表面層の除去による金型の補修方法や金型を作成する最適な加工プロセスを求めるなどの努力がなされており、これらの指針を与えるべく、金型表面の内部応力の分布や亀裂の位置を正確に測定し、このデーターに基づいた金型の補修技術は重要となってきている。 For this reason, in order to reduce the residual stress existing inside the mold, efforts are being made to find a method for repairing the mold by removing the processed surface layer and an optimal machining process for creating the mold. Therefore, it is important to accurately measure the distribution of internal stress on the mold surface and the position of cracks, and to repair the mold based on this data.

一方、金型の作製は、多種多様の加工を経て行われることが多い。熱処理から焼入処理、焼き戻し処理を経て金型材が供された後、数段階に分けた放電加工や切削加工、研削加工を経て作製される。 On the other hand, a mold is often manufactured through a wide variety of processes. After the mold material is provided through heat treatment, quenching treatment, and tempering treatment, it is manufactured through electrical discharge machining, cutting, and grinding divided into several stages.

その中でも、難加工材である金型の最終成形に多く使用される放電加工においては、切断時や成形時に溶融温度から、加工液の温度まで急激に冷やされるため、加工表面に大きな熱応力が生じることが多い。 Among them, in electrical discharge machining, which is often used for final molding of molds that are difficult to process materials, a large thermal stress is applied to the machining surface because it is rapidly cooled from the melting temperature to the temperature of the machining fluid during cutting and molding. Often occurs.

また切削加工や研削加工においても、金型に使用される難削材を高効率に生産する必要性から、高い切削・研削応力で高速強加工を施す場合が多く、同様に加工表面に大きな残留応力部が生じる可能性がある。 Also in cutting and grinding, due to the necessity of highly efficient production of difficult-to-cut materials used in dies, high-speed strong machining is often performed with high cutting and grinding stress, and a large amount of residue remains on the machining surface as well. Stressed parts may occur.

しかしながら、加工後の金型は歪みや寸法誤差を嫌うために一般に焼き戻し処理を行うことはできず、これらの残留応力の影響は避け難い。 However, since the mold after processing dislikes distortion and dimensional error, it cannot generally be tempered and it is difficult to avoid the influence of these residual stresses.

そのため従来、金型の表面に残留応力を持つ表面加工層の除去のために、研磨や化学的処理による表面仕上げ工程が施されてきたが、表面加工層の深さは金型材や個々の加工履歴によって大きく異なるため、適切な除去量を決定する指標が求められていた。 For this reason, surface finishing processes such as polishing and chemical treatment have been applied to remove the surface processing layer with residual stress on the mold surface, but the depth of the surface processing layer depends on the mold material and individual processing. Since it varies greatly depending on the history, an index for determining an appropriate removal amount has been demanded.

一般に金型の加工は、金型の部位を考慮し、放電加工や切削加工、研削加工、そして最終仕上げ加工など、それぞれの加工法の特徴を活かした加工法の組み合わせが工夫されている。それらの加工履歴を含めた内部残留応力の評価法は、これらのプロセスにおける適切な加工パラメーターを求める意味で重要となる。 In general, in the machining of molds, combinations of machining methods that take advantage of the characteristics of each machining method, such as electric discharge machining, cutting machining, grinding machining, and final finishing machining, have been devised in consideration of the part of the mold. The evaluation method of internal residual stress including the processing history is important in terms of obtaining appropriate processing parameters in these processes.

従来、金型などの物体表面の残留応力は、X線による回折ピーク位置の変化の測定によって評価されてきた。例えば、非特許文献1が公知である。しかしながら、X線は遷移金属試料の数μmの深さにしか侵入しないことから、数十μm〜数百μmのオーダーで存在する物体内部の残留応力を検出するためには、物体内部の測定対象が露出するまで物体表面の素材を除去し、露出した新たな表面の残留応力を測定する必要があった。しかしながら、一旦素材を除去してしまうと、除去前に物体内部で釣り合っていた内部応力が解放されてしまうため、応力の再配分が生じ、物体表面の残留応力状態は除去前とは全く異なったものとなってしまっていた。そのため、従来の手法では、物体内部の残留応力分布を直接実測する方法は未だ実現されてこなかった。 Conventionally, the residual stress on the surface of an object such as a mold has been evaluated by measuring the change in the diffraction peak position by X-rays. For example, Non-Patent Document 1 is known. However, since X-rays penetrate only to the depth of several μm of the transition metal sample, in order to detect the residual stress inside the object existing on the order of several tens μm to several hundred μm, the measurement object inside the object It was necessary to remove the material on the object surface until the surface was exposed and to measure the residual stress on the new exposed surface. However, once the material is removed, the internal stress that was balanced inside the object before the removal is released, so stress redistribution occurs, and the residual stress state on the object surface is completely different from that before the removal. It was a thing. Therefore, in the conventional method, a method for directly measuring the residual stress distribution inside the object has not yet been realized.

またX線測定は放射線を用いるため、装置は大がかりで高価であり、その取り扱いも被爆等の危険性から一般者が手軽に行なえるものではないなどの欠点があった。 In addition, since X-ray measurement uses radiation, the apparatus is large and expensive, and the handling of the apparatus has disadvantages such that it is not easy for the general public to handle due to the danger of exposure.

X線応力測定法 改著養賢堂日本材料学会著 (1981)X-ray Stress Measurement Method Revised by Yokendo The Japan Society of Materials Science (1981)

一方、金型の熱応力等、内部応力について解析を行い、より実工程に即した金型を設計する方法として、有限要素法を用いる方法が種々検討されている。例えば特許文献1では、実測した温度分布から、金型内部に発生する熱応力分布を求め、金型の目的の位置における熱疲労寿命を予測する方法が提案されている。 On the other hand, various methods using the finite element method have been studied as a method of analyzing the internal stress such as the thermal stress of the mold and designing the mold according to the actual process. For example, Patent Document 1 proposes a method of obtaining a thermal stress life at a target position of a mold by obtaining a thermal stress distribution generated in the mold from an actually measured temperature distribution.

特開2000−246394号公報JP 2000-246394 A

しかしながら、放電加工や切削加工等、金型に多用される加工方法では、同じ作製条件でも、被加工材表面の温度分布は安定せず、不確定要素は多い。また加工先端では溶融温度に達するのに、その周囲では室温近くになるなど局所的に温度変化が大きく、温度を正確に実測するのは困難であり、計算に大きな誤差を与えかねない。
また、さらに現場で数多く使用される金型について個々に必要な個所の温度測定を行い、計算で予測を行うには、手間のほかに熟練と知識が必要となり、有効な方法とは考えられない。
However, in machining methods frequently used for molds such as electric discharge machining and cutting, the temperature distribution on the workpiece surface is not stable even under the same production conditions, and there are many uncertain factors. In addition, although the temperature at the processing tip reaches the melting temperature, there is a large temperature change locally, such as near the room temperature, and it is difficult to accurately measure the temperature, which may cause a large error in the calculation.
In addition, in order to make temperature predictions for individual molds that are frequently used in the field and to make predictions through calculations, skill and knowledge are required in addition to labor, and this is not considered an effective method. .

一方、鉄などの強磁性材料は、応力により透磁率が変化する現象が知られており、この性質を利用して、高周波の励磁電源により外部から磁束を与え、検査材料を透過する磁束密度の変化を測定することにより、構造材料の経年劣化を非破壊的に測定する手法が提案されている。例えば特許文献2においては、磁化回路の一部にまたは全体に試料を置き、応力を付加させた際の、透磁率の変化を用いた手法を提案している。 On the other hand, a ferromagnetic material such as iron is known to have a phenomenon in which the magnetic permeability changes due to stress. Using this property, magnetic flux is applied from the outside by a high-frequency excitation power supply and has a magnetic flux density that passes through the inspection material. A method has been proposed for measuring non-destructive deterioration of structural materials by measuring changes. For example, Patent Document 2 proposes a technique using a change in magnetic permeability when a sample is placed on a part of or the whole of a magnetization circuit and stress is applied.

他方、例えば特許文献3においては、異なる方向から2種の磁化回路を置き、試料の一部を磁化回路として通すことにより、繰り返しかかる応力による疲労に起因して生じる透磁率の異方性を透磁率の変化から測定する手法を提案している。 On the other hand, in Patent Document 3, for example, by placing two types of magnetization circuits from different directions and passing a part of the sample as a magnetization circuit, the magnetic anisotropy caused by fatigue due to repeated stress is transmitted. A method to measure from the change of magnetic susceptibility is proposed.

特開2001-21538号公報Japanese Patent Laid-Open No. 2001-21538 特開2002-350403号公報JP 2002-350403 A

しかしながら、これらの手法では、外部から磁束を励磁して印加しなければならず、磁束は広がることから、高い空間分解能を持つ材料の評価は難しい。また透磁率は外部磁場に対して、非線形に振る舞うため、励磁場の振幅にも大きく影響され、定量的な測定が望めないなどの問題が存在する。 However, in these methods, magnetic flux must be excited and applied from the outside, and the magnetic flux spreads. Therefore, it is difficult to evaluate a material having high spatial resolution. Further, since the magnetic permeability behaves nonlinearly with respect to the external magnetic field, there is a problem that it is greatly influenced by the amplitude of the excitation field and quantitative measurement cannot be expected.

さらに非特許文献2においては、外部から直流磁界や交流磁界を印可することにより発生する歪み量の差から残留応力を見積もる手法を紹介している。 Further, Non-Patent Document 2 introduces a method for estimating a residual stress from a difference in strain generated by applying a DC magnetic field or an AC magnetic field from the outside.

中川平三郎、機械の研究, 56巻3号(2004)p.397Heizaburo Nakagawa, Machine Research, Vol.56, No.3 (2004) p.397

しかしながら、この手法では、印可磁場の空間的広がりから高い空間分解能を期待することは出来ず、また残留応力の分布を評価するためには、局所的な歪みの測定が必要となるなど、測定が複雑になる等の問題が存在する。 However, with this method, high spatial resolution cannot be expected from the spatial extent of the applied magnetic field, and local strain measurement is required to evaluate the residual stress distribution. There are problems such as complexity.

また近年、疲労現象において繰り返し付与される応力により変化する漏れ磁束密度をSQUID等の高感度磁気センサーにより測定し、応力負荷過程における経時的変化の差分から、オーステナイト系ステンレス鋼等の疲労度を推定する方法が提案されている(特許文献4)。 In recent years, leakage magnetic flux density that changes due to stress repeatedly applied in fatigue phenomena is measured by a highly sensitive magnetic sensor such as SQUID, and the fatigue level of austenitic stainless steel, etc. is estimated from the difference in changes over time in the stress loading process. A method to do this has been proposed (Patent Document 4).

特開2005-055341号公報JP 2005-055341 A

しかしながらこの方法では、SQUIDといった特殊で、高価なセンサーを用いる必要があり、液体ヘリウムなどの冷却剤を必要とするため、一般の工場等に使えるシステムとはなり得ない。また試験的に繰り返し応力負荷を加えてそれに対する材料評価を行うだけでは、材料の代表的特性を評価できるだけであり、実際の個々の金型の各加工における特性を評価することにはならない。また疲労だけでは金型の特性評価には十分ではなく、むしろヘヤークラックや残留応力などの破壊靭性値に及ぼすパラメーターの評価を得る手法とはならない。 However, this method requires a special and expensive sensor such as SQUID, and requires a coolant such as liquid helium, so it cannot be a system that can be used in general factories. In addition, merely applying a repeated stress load on a trial basis and evaluating the material can only evaluate the typical characteristics of the material, and does not evaluate the characteristics of each individual mold in actual processing. In addition, fatigue alone is not sufficient for evaluating the characteristics of the mold, but rather does not provide a method for evaluating parameters affecting fracture toughness values such as hair cracks and residual stresses.

他方、金型の放電加工では、被加工材の各面に分けて、異なる方向から、様々なワイヤー位置で、数回の加工が施される。それらの加工履歴は、作成後の金型の加工工程を解析する意味で重要となる。 On the other hand, in the electric discharge machining of the mold, machining is performed several times at various wire positions from different directions separately on each surface of the workpiece. These machining histories are important in the sense of analyzing the machining process of the mold after creation.

従来、金型作製時におけるワイヤー放電加工等におけるワイヤーの位置や移動方向などの加工履歴を明らかにする手法は提案されてこなかった。SEMなど電子顕微鏡等で、加工表面のテクスチャーを解析することによって多少の推定は可能であるが、大掛かりな装置を用い真空チャンバー中で行う必要性があるため、複雑な面を簡便に評価することは難しかった。 Conventionally, a method for clarifying a processing history such as a wire position and a moving direction in wire electric discharge machining at the time of mold fabrication has not been proposed. Although some estimation is possible by analyzing the texture of the processed surface with an electron microscope such as SEM, it is necessary to carry out in a vacuum chamber using a large-scale apparatus, so a complex surface should be evaluated easily. Was difficult.

さらに金型は、作製時や使用時に大きな応力や熱影響が加えられるために、表面にヘヤークラック等の亀裂が入ることが多く、それが原因となって金型の不良が起こる。また製造工程で混入した異物があった場合、これも強度に影響を及ぼす。これら亀裂の発生や異物の存在を金型の保守管理時に検査等で知ることができれば、金型を補修することにより、製造プロセス時におけるラインの停止や不良品の製造を防ぐことができ、工業上、有用となる。 Furthermore, since large stresses and thermal influences are applied to the mold during production and use, cracks such as hair cracks often occur on the surface, which causes mold defects. In addition, if there is a foreign substance mixed in the manufacturing process, this also affects the strength. If it is possible to know the occurrence of cracks and the presence of foreign substances by inspection during the maintenance of the mold, repairing the mold can prevent line stoppage and manufacturing of defective products during the manufacturing process. It will be useful.

しかしながら、金型表面の亀裂は、一般に、割れによる表面の開口部は細く小さく内部には深いヘヤークラック的な形態を示し、表面を観察するだけでは容易にその存在を知ることができない。さらにクラックが内部にあった場合、その存在は外部から検出することは出来ない。また表面近傍に埋め込まれた異物の存在も表面からは容易には検出できない。 However, the cracks on the surface of the mold are generally thin and the openings on the surface are thin and show deep hair cracks in the interior, and the presence of the cracks cannot be easily known by simply observing the surface. Furthermore, if there is a crack inside, its presence cannot be detected from the outside. Also, the presence of foreign matter embedded near the surface cannot be easily detected from the surface.

これまで加工面のヘアークラックの検査法として、染色塗料の染み込み具合から探る浸透探傷試験法等や、外部磁場を印加した表面の磁束密度の変化を測る磁粉探傷試験法、外部印加交流磁場によって発生する渦電流の流れやすさを交流磁場コイルのインピーダンスの変化から探る渦流探傷試験法、超音波のエコーなどを検出する超音波探傷試験法などが提案されてきた。 Up to now, the method for inspecting hair cracks on the machined surface is generated by the penetrant flaw detection method, which is investigated from the penetration of dyed paint, the magnetic particle flaw detection method for measuring changes in the magnetic flux density on the surface to which an external magnetic field is applied, and the externally applied AC magnetic field. There have been proposed an eddy current flaw detection test method for detecting the ease of flow of eddy current from the change in impedance of an AC magnetic field coil, and an ultrasonic flaw detection test method for detecting ultrasonic echoes.

しかしながら、浸透探傷試験法は、表面の浅い傷と深い傷を明確に区別するものではなく、また検査後に塗料を除去する必要があることから、金型等、表面の精度を気にする部材には向かない。 However, the penetrant testing method does not clearly distinguish between shallow and deep scratches on the surface, and it is necessary to remove the paint after the inspection. Is not suitable.

また渦流探傷試験法は、装置も大掛かりであり、且つコイルのインピーダンスの変化が、表面からの距離や表面の凹凸、内部組織の抵抗変化にも影響されるため、その信号が必ずしも、割れ等の欠陥に対応しない。 The eddy current testing method is also a large-scale device, and changes in coil impedance are also affected by distance from the surface, surface irregularities, and changes in internal tissue resistance. Does not deal with defects.

さらに磁粉探傷試験法は、外部磁場により、一旦、全体を磁化する必要があり、また探傷後、消磁の作業が必要となることから、金型に狂いを生じさせやすい。また部材のサイズによっては大掛かりな装置が必要となる。さらに、外部から印加した磁束の乱れは、ヘアークラックよりもむしろ、表面の突起や凹みによって引き起こされることから、深い傷の探傷には向かない。 Furthermore, in the magnetic particle testing method, it is necessary to magnetize the whole once with an external magnetic field, and it is necessary to demagnetize after the testing. Further, depending on the size of the member, a large-scale device is required. Furthermore, the disturbance of the magnetic flux applied from the outside is not suitable for deep flaw detection because it is caused by surface protrusions and dents rather than hair cracks.

最後に超音波探傷法は、音波が部材全体に広がってしまうため、表面にある傷を特異的に見つける方法にはなりえず、また解析も複雑になることから、現場向きの手法ではない。加えて、音波の波長長さの制限から、精密金型部品等の小型金型では、複雑な形状を持つ表面からの反射が生じることから、これらの部材の探傷には向かない。 Finally, the ultrasonic flaw detection method is not a method suitable for the field because the sound wave spreads over the entire member, so it cannot be a method for specifically finding a flaw on the surface and the analysis is complicated. In addition, because of the limitation of the wavelength length of sound waves, small molds such as precision mold parts are not suitable for flaw detection of these members because reflection from a surface having a complicated shape occurs.

従来のこれら技術では、研削や切削、放電加工等の様々な加工法における作製時やプレス金型や成形金型としての使用時における不確定な要素によって生じる金型内部の残留応力やヘヤークラックを表面から深い範囲にわたって正確に見積もることはできず、そのため適切な金型補修を行うことはできなかった。また金型を扱う現場で、有効な空間分解能を保ったまま、簡便に内部応力を評価する方法を供することはできないため、一般の工場での金型補修に内部応力やヘヤークラック等の検査を取り入れることはできなかった。また内部応力の他に金型のワイヤー放電加工プロセスにおける加工履歴の情報を与える手法は提案されてこなかった。 With these conventional technologies, residual stress and hair cracks inside the mold caused by uncertain factors during production in various processing methods such as grinding, cutting, and electrical discharge machining, and when used as a press mold or molding mold are eliminated. It was not possible to estimate accurately over a deep area from the surface, and therefore it was not possible to perform appropriate mold repair. In addition, since it is not possible to provide a method for simply evaluating internal stress while maintaining effective spatial resolution at the site where molds are handled, inspection of internal stress and hair cracks etc. is required for mold repairs at general factories. It was not possible to incorporate. In addition to the internal stress, no method has been proposed to give information on machining history in the wire electric discharge machining process of the mold.

そこで強磁性体を含む材料からなる金型内部の残留応力を精度よく検出し、その情報に基づいて残留応力を除去する最適な金型の補修方法を提供することが本発明の課題である。 Accordingly, it is an object of the present invention to provide an optimal mold repair method for accurately detecting residual stress inside a mold made of a material containing a ferromagnetic material and removing the residual stress based on the information.

本発明は、強磁性体を含む材料からなる金型表面近傍の残留応力やヘヤークラックを評価し、これを元におこなう金型の補修において、内部応力に起因した逆磁歪み現象によって発生した該金型の表面の磁場ベクトルと磁場強度を、磁束密度センサーとしてホール素子やMI(Magneto
Impedance)素子を用い、該金型の表面を、3次元的に移動走査させて磁場強度と磁場ベクトルを検出することを特徴とする。又、ワイヤー放電加工において、ワイヤーの切り込み位置や移動方向を簡便に評価するために、上記と同様の検査方法を用い、加工履歴に依存した磁場の符号の向きや変化から、加工履歴の情報を得ることを特徴とする。
The present invention evaluates residual stresses and hair cracks in the vicinity of a mold surface made of a material containing a ferromagnetic material, and repairs the mold based on this to generate the inverse magnetostriction phenomenon caused by internal stress. The magnetic field vector and magnetic field strength of the mold surface can be used as a magnetic flux density sensor for Hall elements and MI (Magneto).
Impedance) element is used, and the surface of the mold is moved and scanned three-dimensionally to detect the magnetic field strength and the magnetic field vector. In wire electrical discharge machining, in order to easily evaluate the cutting position and moving direction of the wire, the same inspection method as described above is used, and information on the machining history is obtained from the direction and change of the magnetic field sign depending on the machining history. It is characterized by obtaining.

本発明は、本発明者らの考案になる特許文献5で提案されている磁性体を含む材料の破断原因等を際に、該材料の破断表面を、磁束密度センサーを3次元的に移動走査させて磁場強度と磁場ベクトルを検出することを特徴とする検査方法を、金型の加工の際に生じる残留応力の評価や残留応力の除去量の評価および表面近傍に発生した亀裂の評価やワイヤー放電加工における加工時の情報の評価に応用し、これを元に金型の補修をおこなうものである。 The present invention scans a magnetic flux density sensor in a three-dimensional manner over the fracture surface of a material containing a magnetic material proposed in Patent Document 5 proposed by the present inventors. The inspection method is characterized by detecting the magnetic field strength and the magnetic field vector, and evaluating the residual stress generated during the machining of the mold, the amount of residual stress removed, the evaluation of cracks generated near the surface, and the wire It is applied to the evaluation of information at the time of machining in electric discharge machining, and the mold is repaired based on this.

特願2005−57442号公報Japanese Patent Application No. 2005-57442

測定対象の強磁性体を含む材料からなる金型の材料とは、例えば鉄のα相やマルテンサイト相を含むSKD鋼や炭素鋼や粉末高速度鋼(粉末ハイス)、コバルトを含有した高速度鋼(コバルトハイス)に代表される金型用鉄合金や工具鋼、鉄鋼材料がある。また強磁性体であるコバルト合金やニッケル合金、鉄アルミニウム金属間化合物を金属炭化物の焼結マトリックスとする超硬合金がある。またコバルトを主とする工具鋼であるステライトがある。さらに高温用の金型材であるニッケル系合金のハステロイや超合金がある。また銅にコバルトを数パーセント混ぜた二相分離合金等を用いることにより、型彫放電加工時の相手電極材の評価も可能となる。産業上大半の金型が磁性体を含む材料であり、本手法の対象となる。 For example, SKD steel, carbon steel, powder high-speed steel (powder high-speed steel), and high-speed cobalt-containing materials including the alpha phase and martensite phase of iron. There are iron alloys for molds, tool steels, and steel materials represented by steel (cobalt high speed steel). In addition, there are cobalt alloys and nickel alloys that are ferromagnetic materials, and cemented carbides that use iron-aluminum intermetallic compounds as a sintered matrix of metal carbides. There is also stellite, which is a tool steel mainly composed of cobalt. Further, there are nickel alloy hastelloy and superalloy, which are mold materials for high temperature. In addition, by using a two-phase separated alloy in which cobalt is mixed in several percent, the counterpart electrode material can be evaluated at the time of die-sinking electric discharge machining. Most industrial molds are materials that contain magnetic material, and are the subject of this method.

又、ホール素子とは、半導体中を流れる電流に対して垂直に掛かる磁界強度に比例して、電流と磁界方向に垂直にローレンツ力が働き電圧が発生するという原理に基づいたセンサーである。これを三つの異なる方向の磁場強度を測る様に並べた複合センサーを用いることにより、3次元の磁場ベクトルとその絶対値である磁場強度を同時に検出することができる。 The Hall element is a sensor based on the principle that a Lorentz force acts on the current and the direction of the magnetic field perpendicularly to the magnetic field strength applied perpendicularly to the current flowing in the semiconductor to generate a voltage. By using a composite sensor in which these are arranged so as to measure the magnetic field strengths in three different directions, the three-dimensional magnetic field vector and the magnetic field strength that is the absolute value thereof can be detected simultaneously.

この発明である強磁性体を含む材料からなる金型内部の残留応力の検査方法によれば、金型の作製時や修正時、使用時に導入された金型内部の残留応力によって逆磁歪現象として発生した漏れ磁束ベクトルの分布の変化から、金型表面近傍に残留する内部応力の分布を評価することが可能となる。また本検査方法が、簡便で且つ安価で且つ安全な方法であることから、工場の現場においても容易に使用でき、同じプロセスで作製しても、残留応力量が一定しない金型の個々の検査を可能にし、金型の表面加工層を研削等により除去することにより内部の残留応力を取り除く作業において、最小限必要な除去量を見積もるのに必要な情報を与え、それに応じて個々の金型の作製時や使用時における補修を可能にする。 According to the method for inspecting a residual stress inside a mold made of a material containing a ferromagnetic material according to the present invention, an inverse magnetostriction phenomenon is caused by a residual stress inside the mold introduced when the mold is manufactured, corrected, or used. It is possible to evaluate the distribution of internal stress remaining in the vicinity of the mold surface from the change in the distribution of the generated leakage magnetic flux vector. In addition, since this inspection method is simple, inexpensive and safe, it can be easily used at the factory site, and individual inspections of molds with residual stress that are not constant even if they are manufactured using the same process. In the work to remove the residual stress inside by removing the surface processing layer of the mold by grinding, etc., the information necessary to estimate the minimum required removal amount is given, and each mold is accordingly This makes it possible to repair at the time of production and use.

さらにこれにより、金型内部の残留応力を極力無くすように工夫を行う上で、例えば金型作製時の加工プロセスのパラメーターを最適化する作業に指針を与える。 In addition, this provides a guideline for optimizing the parameters of the machining process at the time of mold production, for example, in order to eliminate the residual stress inside the mold as much as possible.

さらに金型の使用時において定期的に漏れ磁束ベクトルの分布を測定することにより、その変化から、例えば射出成形型における加熱冷却による熱応力や研削加工時に生じた加工残留応力やプレス加工における衝撃力等によって金型表面に入ったクラックや異物の位置と大きさを見積もることができ、欠陥の入った一部の金型の交換や補修による処置を施すことにより、金型の寿命を大幅に向上させ、急なラインの停止等のトラブルを未然に防ぐことを可能にする。 In addition, by periodically measuring the distribution of the magnetic flux leakage vector during the use of the mold, for example, thermal stress due to heating / cooling in the injection mold, machining residual stress generated during grinding, and impact force in pressing It is possible to estimate the position and size of cracks and foreign matter that have entered the mold surface, etc., and greatly improve the life of the mold by replacing or repairing some defective molds. This makes it possible to prevent troubles such as a sudden line stop.

加えてワイヤー放電加工におけるワイヤーの移動方向に磁束ベクトルが変化し、その符号が移動方向に依存することから、金型作製時におけるワイヤーカットの履歴を評価することが可能になり、例えば、他社によって作製された金型の加工プロセスを理解する上での重要な情報を与える。また残留応力を小さくするよう、異なる面での加工手順を最適化する上で必要な情報を与える。 In addition, the magnetic flux vector changes in the direction of movement of the wire in wire electrical discharge machining, and the sign depends on the direction of movement, making it possible to evaluate the history of wire cuts during mold fabrication. It provides important information for understanding the machining process of the mold. In addition, information necessary for optimizing the processing procedure on different surfaces is provided so as to reduce the residual stress.

図1に示すように、試料をXYZステージに乗せ、3次元またはそれに準じた磁束密度測定が可能な磁気センサーを計りたい金型表面の直上に配置する。以下、試料の測定面に平行な面内にx軸とy軸を互いに垂直に取り、測定面の法線方向に離れる向きにz軸を取る。
またこのセンサーには、1mm程度センサー位置よりも飛び出た形で柔らかく弾性変形可能な金属の針が併設してある。金型試料と金属針間の電気伝導測定により、センサーの金型表面からの距離が1mm以下の一定に保たれるように工夫されている。センサーと試料との関係を図2に示す。
As shown in FIG. 1, a sample is placed on an XYZ stage, and a magnetic sensor capable of measuring a three-dimensional or equivalent magnetic flux density is disposed immediately above the surface of a mold to be measured. Hereinafter, the x axis and the y axis are perpendicular to each other in a plane parallel to the measurement surface of the sample, and the z axis is taken away from the normal direction of the measurement surface.
The sensor is also equipped with a soft, elastically deformable metal needle that protrudes from the sensor position by about 1 mm. By measuring the electrical conductivity between the mold sample and the metal needle, the sensor is designed to keep the distance from the mold surface constant at 1 mm or less. The relationship between the sensor and the sample is shown in FIG.

表面からの距離が一定になるようにステージのz方向の高さを調整後、金型表面から漏れ出た3次元方向の磁束密度を測定し、有効な磁束密度が得られていることを確認する。測定した残留磁束ベクトルを磁気測定装置により定量化し、デジタル化した後、コンピューターに記録する。XYステージを用いてセンサーを金型表面のXY端に移動させた後、金属針−金型間の電気伝導度の情報によりzステージをコンピューターにより制御し、金型表面からの高さが一定に保たれるように保持する。これを繰り返しながらセンサーの分解能以下でXY方向にステージを走査させ、金型表面上に漏れ出た3次元磁束密度ベクトルの分布を得る。この3次元磁束密度ベクトルをコンピューター上に保存し、そのベクトルの大きさや向きの変化を解析することにより、金型の残留応力やワイヤー放電加工プロセスの履歴、表面のヘアークラックの分布を評価する。この測定装置は、特許文献2における装置と同じものが使用でき、磁束密度を効率良く集め、試料センサー間の距離を一定に保つための高透磁率材料からなる探針と弾性片持ち梁であるセンサー保持棒を有するなどの工夫も有効である。 After adjusting the height of the stage in the z direction so that the distance from the surface is constant, measure the magnetic flux density in the three-dimensional direction that leaks from the mold surface, and confirm that an effective magnetic flux density is obtained. To do. The measured residual magnetic flux vector is quantified by a magnetometer, digitized, and recorded in a computer. After moving the sensor to the XY end of the mold surface using the XY stage, the z stage is controlled by a computer based on information on the electrical conductivity between the metal needle and the mold, and the height from the mold surface is kept constant. Hold to be kept. By repeating this, the stage is scanned in the XY direction below the resolution of the sensor, and a distribution of the three-dimensional magnetic flux density vector leaking onto the mold surface is obtained. This three-dimensional magnetic flux density vector is stored on a computer, and changes in the magnitude and direction of the vector are analyzed to evaluate the residual stress of the mold, the history of wire EDM process, and the distribution of hair cracks on the surface. This measuring apparatus can be the same as the apparatus in Patent Document 2, and is a probe and an elastic cantilever made of a high magnetic permeability material for efficiently collecting the magnetic flux density and keeping the distance between the sample sensors constant. Devices such as having a sensor holding bar are also effective.

本発明における強磁性体を含む材料からなる金型内部の残留応力を検査する方法の実施例の一つ目を以下に記す。試料としてSKD鋼、粉末ハイス鋼、WC-Coからなる超硬合金数種からなる20×65×20mmサイズの板を用意する。これをワイヤー放電加工により、厚み方向に切断し、20×65×10mmサイズの板とする。その後、20×65mmの面を長手方向に4分割し、20×20mmの1つと20×15mmの3つの計4領域に分け、最初の領域をそのままにし、残りの3つを50μm、100μm、150μmの深さにそれぞれ精密研削加工を施す。またワイヤー放電加工による垂直方向の影響を見積もるため、各領域の境界に放電加工を1mm深さになるように施す。これらの加工は、放電加工および精密研削加工の各パラメーターによる本測定法の測定能を見積もるため特に用意されたものである。今回加工を施された試料断面の概略を図3に示す。 The first embodiment of the method for inspecting the residual stress inside the mold made of a material containing a ferromagnetic material in the present invention will be described below. A 20 × 65 × 20 mm size plate made of several cemented carbides made of SKD steel, powdered high-speed steel, and WC-Co is prepared as a sample. This is cut in the thickness direction by wire electric discharge machining to obtain a 20 × 65 × 10 mm size plate. After that, the 20 × 65mm surface is divided into four in the longitudinal direction, and divided into four areas, one 20 × 20mm and 20 × 15mm, leaving the first area as it is, and the remaining three are 50μm, 100μm, 150μm. Precision grinding is applied to each depth. Further, in order to estimate the influence in the vertical direction due to wire electric discharge machining, electric discharge machining is performed at a boundary of each region to a depth of 1 mm. These processes are especially prepared for estimating the measuring ability of the present measuring method according to the parameters of electric discharge machining and precision grinding. An outline of a cross section of the sample processed this time is shown in FIG.

次に試料加工面の磁性を、図1に示す装置を用いて、3次元磁束密度センサーを走査(走査線間隔0.2mm、速度1秒/ステップ)させ、漏れ磁束密度の測定を行う。その際、加工面からの距離を0.5mmと一定になるようにステージのz方向の高さを調整し、加工面とセンサーをほぼ接した状態に置いた。x、y、z各方向の磁束密度を磁束密度測定装置により電気信号に変換後、AD変換器によりデジタル化し、PCにより各位置での3次元磁束密度ベクトルデータを記録した。その後、XYステージを用いて、センサーを次の位置へ移動させ、再び測定を行った。これを繰り返すことにより、加工面のXY面上に存在する3次元漏れ磁束密度ベクトルの分布図を得た。本試料においては高い平面度がでているためzステージの制御を行う必要はないが、試料によっては高さ方向の変化に応じてzステージを制御して、センサーと試料面との距離を1mm以下の一定距離に保つ必要がある。 Next, the magnetic flux on the sample processed surface is measured by scanning a three-dimensional magnetic flux density sensor (scanning line interval 0.2 mm, speed 1 second / step) using the apparatus shown in FIG. At that time, the height of the stage in the z direction was adjusted so that the distance from the processing surface was constant at 0.5 mm, and the processing surface and the sensor were almost in contact with each other. The magnetic flux density in each of the x, y, and z directions was converted into an electrical signal by a magnetic flux density measuring device, digitized by an AD converter, and three-dimensional magnetic flux density vector data at each position was recorded by a PC. Thereafter, using the XY stage, the sensor was moved to the next position, and measurement was performed again. By repeating this, a distribution map of the three-dimensional leakage magnetic flux density vector existing on the XY plane of the machined surface was obtained. Since this sample has high flatness, it is not necessary to control the z stage, but depending on the sample, the z stage is controlled according to the change in the height direction, and the distance between the sensor and the sample surface is 1 mm. It is necessary to keep the following constant distance.

本試料の場合、ワイヤー放電加工を施した際に発生する加工表面近傍の熱応力によって、逆磁歪現象として試料表面に漏れ磁束が生じる。また放電加工面により熱応力の存在する表面加工層の一部を研削処理により除去加工し、試料表面の漏れ磁束密度を減少させる。測定した漏れ磁束密度の分布の変化から、試料加工面内部に存在する残留応力の深さ方向の分布を明らかにすることができる。 In the case of this sample, a leakage magnetic flux is generated on the sample surface as an inverse magnetostriction phenomenon due to thermal stress in the vicinity of the processed surface generated when wire electric discharge machining is performed. Further, a part of the surface processed layer where thermal stress is present is removed by the grinding process by the electric discharge processed surface to reduce the leakage magnetic flux density on the sample surface. From the change in the distribution of the measured leakage magnetic flux density, the distribution in the depth direction of the residual stress existing inside the sample processing surface can be clarified.

強磁性体を含む材料からなる金型のワイヤー放電加工表面には、切断時に溶融した表面加工層が、加工液によって急冷されたために熱収縮し、引張り応力を受けている。今回の超硬合金の場合、金属炭化物をつなぐマトリックスのコバルトは応力の方向に磁場ベクトルが向く性質を示し、そのため、より強い熱応力を受けた放電加工面ほど、加工面方向に平行に微細な磁石が並ぶこととなり、その結果、磁束密度がワイヤー放電の切り進んだ方向に一方の極から他方の極へと変化している。今回用いた粉末ハイスやSKD鋼においても同様の性質を示す。 On the wire electric discharge machining surface of a die made of a material containing a ferromagnetic material, the surface machining layer melted at the time of cutting is rapidly cooled by the machining liquid, and is subjected to tensile stress. In the case of this cemented carbide, cobalt in the matrix that connects the metal carbides has the property that the magnetic field vector is oriented in the direction of the stress. Therefore, the EDM surface subjected to stronger thermal stress is finer in parallel to the machining surface direction. As a result, the magnetic flux density is changed from one pole to the other pole in the direction in which the wire discharge proceeds. The same properties are exhibited in the powdered high-speed steel and SKD steel used this time.

そのため磁化強度の変化の傾きが大きい試料ほど、表面加工層において熱応力を強く受けていることを意味し、傾きの小さな試料ほど表面加工層の熱応力が少ないことを意味する。 Therefore, a sample with a larger inclination of the change in magnetization intensity means that the surface processed layer is more strongly subjected to thermal stress, and a sample with a smaller inclination means that the thermal stress of the surface processed layer is smaller.

図4と図5に超硬合金に放電加工した試料における漏れ磁束密度の分布を示す。図4は、加工面に存在する3次元磁束ベクトル分布の鳥瞰図を、図5には、加工面をz方向から見た3次元磁束ベクトルの分布図である。放電加工のみを施した面においてのみ、大きな磁束密度の変化が観察されたが、ある深さ以上の研削を施した面では、磁束密度の傾きを観察することはできなかった。よって今回放電加工を施した本超硬合金の試料の場合、十分な深さの研削によって加工層の熱影響部が十分に取り除くことができたものと判断された。 FIG. 4 and FIG. 5 show the distribution of leakage magnetic flux density in a sample subjected to electric discharge machining to a cemented carbide. FIG. 4 is a bird's-eye view of the three-dimensional magnetic flux vector distribution existing on the processing surface, and FIG. 5 is a distribution diagram of the three-dimensional magnetic flux vector when the processing surface is viewed from the z direction. A large change in the magnetic flux density was observed only on the surface subjected to electric discharge machining, but the gradient of the magnetic flux density could not be observed on the surface subjected to grinding to a certain depth or more. Therefore, in the case of the present cemented carbide sample subjected to the electric discharge machining this time, it was judged that the heat-affected zone of the processed layer could be sufficiently removed by grinding at a sufficient depth.

一方、図6にSKD工具鋼を加工した試料における漏れ磁束密度の分布を示す。放電加工のみの面に対して、研削を施すほど、磁束密度の変化が小さくなっている様子が観察されるが、150μm研削された後も、若干の傾きが残っており、この程度の研削では、加工層の熱影響部が十分には取り除けていないことが分かる。この傾向は、粉末ハイスを加工した試料においても同様であった。
一般に、SKD鋼や粉末ハイスは、超硬合金に比べ柔らかく、ヤング率や降伏応力も低いことから、一定の熱応力に対して、深い加工影響部が残ることが知られており、今回の結果は、従来の報告である非特許文献3とも一致する。以上の結果から、本発明が表面加工層の残留応力の半定量化に有用であり、これを元に金型表面の研削による補修加工に適切な深さの情報を与えうることが分かる。
On the other hand, FIG. 6 shows the distribution of leakage magnetic flux density in a sample obtained by machining SKD tool steel. It is observed that the change in magnetic flux density decreases as grinding is performed only on the surface of EDM, but there is still a slight inclination after 150μm grinding. It can be seen that the heat-affected zone of the processed layer is not sufficiently removed. This tendency was the same also in the sample which processed the powder high speed.
In general, SKD steel and powder HSS are softer than cemented carbide and have a low Young's modulus and yield stress. Is consistent with Non-Patent Document 3, which is a conventional report. From the above results, it can be seen that the present invention is useful for semi-quantification of the residual stress of the surface processed layer, and based on this, information on the depth appropriate for repair processing by grinding of the mold surface can be given.

緒方勳他、精密工学会誌, 57巻1号(1991)p.144-149Satoshi Ogata et al., Journal of Japan Society for Precision Engineering, 57 (1) (1991) p.144-149

一方、同じ応力に対してもどれだけ磁場ベクトルが揃うかは、材料が固有に持つ磁歪み係数に依存しており、図4〜6の分布の度合いが、直接熱応力の値に変換されるわけではない。この係数は同じ鉄合金でも組成とともに変化することから、金型として使用する材料については、これらの物性値を明らかにしておく必要がある。これまで調べられてきた磁歪係数については、例えば非特許文献4に詳しい。幸い強磁性体の逆磁歪現象は弾性応力に比例して発生するため、多結晶材料については、曲げ試験や圧縮試験等の機械的試験によって、簡単に見積もることができる。特に応力に対して同じ方向に磁場ベクトルが向く材料であるのか、逆に応力とは垂直方向に磁場ベクトルが向く材料であるのかは、測定した磁場ベクトルの方向を元に応力を解釈する本発明にとって重要である。さらなるより精密な測定は、単結晶による精密な測定を必要とし、実用材については、今後の研究により、精密な磁歪係数の数値化が望まれる。 On the other hand, how much the magnetic field vectors are aligned for the same stress depends on the magnetostriction coefficient inherent to the material, and the degree of distribution in FIGS. 4 to 6 is directly converted to the value of thermal stress. is not. Since this coefficient changes with the composition even in the same iron alloy, it is necessary to clarify these physical property values for the material used as the mold. The magnetostriction coefficient that has been investigated so far is detailed in Non-Patent Document 4, for example. Fortunately, the inverse magnetostriction phenomenon of ferromagnets occurs in proportion to the elastic stress, so that polycrystalline materials can be easily estimated by mechanical tests such as bending tests and compression tests. In particular, the present invention interprets stress based on the direction of the measured magnetic field vector to determine whether the magnetic field vector is oriented in the same direction with respect to the stress or, conversely, whether the magnetic field vector is oriented perpendicularly to the stress. Is important to. Further more precise measurement requires precise measurement with a single crystal, and for practical materials, it is desired to quantify the precise magnetostriction coefficient through future research.

MagnetostrictionTheory and Applications of Magnetoelasticity, Etiennedu Tremolet de Lacheisserie, CRC Press (1993)MagnetostrictionTheory and Applications of Magnetoelasticity, Etiennedu Tremolet de Lacheisserie, CRC Press (1993)

他方、一般に金型は、主たる加工に寄与し、応力が掛かる部分ほど、複雑な形状を示すため、外部に漏れ出る磁束密度ベクトルは、これら形状の効果を大きく受ける。また複数の加工面が接する領域においては、他の面から漏れ出る磁束ベクトルの影響も無視できない。図4〜6の具体例は、いずれも単純な平面であったためにこれらの効果は無視できたが、それでも端の領域においては形状効果が観察された。 On the other hand, in general, the mold contributes to main processing, and the portion where stress is applied shows a more complicated shape. Therefore, the magnetic flux density vector leaking to the outside is greatly affected by these shapes. Further, in a region where a plurality of machining surfaces are in contact, the influence of magnetic flux vectors leaking from other surfaces cannot be ignored. Since all of the specific examples in FIGS. 4 to 6 were simple planes, these effects could be ignored, but shape effects were still observed in the edge region.

厳密には、本手法を具体的な金型材のより定量的な残留応力分布の評価手段に使う際に、前述した材料物性に依存した磁歪係数を考慮した解析の他に、試料全域の測定に基づく形状も考慮した評価をおこなう必要がある。しかしながら、主たる残留応力による漏れ磁束密度は加工面近傍に現れることから、半定量な解析にはこれでも十分に役立つことが期待される。 Strictly speaking, when this method is used as a means of evaluating the more quantitative residual stress distribution of a specific mold material, in addition to the analysis taking into account the magnetostriction coefficient depending on the material properties described above, it can be used to measure the entire sample area. It is necessary to evaluate the shape based on the shape. However, since the leakage magnetic flux density due to the main residual stress appears in the vicinity of the machined surface, it is expected to be useful enough for semi-quantitative analysis.

もっとも、多結晶で使用する場合が大半である金型においては、残留応力の度合いを半定量化する目的であれば、簡便な試験で十分であり、また同じ材料間で応力の大小を議論するのであれば、正確な係数が分からなくとも簡単な比較は可能となる However, for molds that are mostly used in polycrystals, simple tests are sufficient for the purpose of semi-quantifying the degree of residual stress, and discuss the magnitude of stress between the same materials. , Simple comparisons are possible without knowing the exact coefficients.

他方、ワイヤー放電加工においては、超硬合金中のコバルトのように磁場ベクトルが応力の方向に向く材料からなる場合は、ワイヤーの進行方向に対して左側にある材料はN極からS極に、逆に右側にある材料はS極からN極に変化する。 On the other hand, in wire electric discharge machining, when the magnetic field vector is made of a material that is oriented in the direction of stress, such as cobalt in the cemented carbide, the material on the left side of the wire traveling direction is changed from the N pole to the S pole. Conversely, the material on the right changes from the S pole to the N pole.

また図4〜6に示した4つの領域の境界に面に垂直方向に切断線を導入した場合、同様に線の左右で逆の極が発生している様子が観察される。これは、切断面に平行な面で観測した上記の結果と同じ現象である。 When cutting lines are introduced in the direction perpendicular to the plane at the boundaries of the four regions shown in FIGS. 4 to 6, it is observed that opposite poles are generated on the left and right sides of the lines. This is the same phenomenon as the above result observed on a plane parallel to the cut surface.

この様に極の変化方向と左右の切断の向きには、常に一定の関係が存在する。これは切断の際に生じる回転モーメントが原因となっているものと考えられる。この現象を応用すると、金型作成時のワイヤーの進行方向を明らかにすることが可能となる。 In this way, there is always a fixed relationship between the change direction of the pole and the direction of the left and right cutting. This is considered to be caused by a rotational moment generated during cutting. When this phenomenon is applied, it becomes possible to clarify the traveling direction of the wire when creating the mold.

他方、一般にワイヤー放電による入力熱量は一定せず、切断部の移動とともに材料周囲の境界条件も変化することから、温度分布は複雑となり、それに伴う熱応力分布もそれほど単純ではない。また加工機の持つ特性から、切断加工時の投入エネルギーが経時的に変化する場合もあり、これらの特性を知ることは、最適な金型設計には必要不可欠である。 On the other hand, the amount of heat input by wire discharge is generally not constant, and the boundary conditions around the material change with the movement of the cutting part. Therefore, the temperature distribution is complicated, and the accompanying thermal stress distribution is not so simple. In addition, the energy input at the time of cutting may change over time due to the characteristics of the processing machine. Knowing these characteristics is essential for optimal mold design.

例えば、図7に示すように、別の放電加工機により超硬試料に加工を施した場合、放電加工面の磁束密度測定から、磁束密度の大きさの周期的な変化が観察される場合があり、均一と考えていた放電加工面に何らかの負均一性を与える加工放電エネルギーの周期的な変化が存在していたことが示唆される。 For example, as shown in FIG. 7, when machining a carbide sample with another electric discharge machine, periodic changes in the magnitude of the magnetic flux density may be observed from the measurement of the magnetic flux density on the electric discharge machining surface. It is suggested that there was a periodic change in machining discharge energy that gives some negative uniformity to the EDM surface that was considered uniform.

さらに、超硬合金に放電加工した試料において測定した図4、図5で示した漏れ磁束ベクトルのうち、測定面から垂直なz成分を除いた、測定面内に存在するx、yの2成分からなるベクトルの加工面内の分布を図8に示す。漏れ磁束ベクトルは、加工面内で特徴的な流れを示しているが、特に加工面の数箇所に流れの特異点である渦が存在していることが分かる。またこれらの渦の存在する領域は全て、磁束ベクトルの大きさが小さい。 Further, among the leakage magnetic flux vectors shown in FIGS. 4 and 5 measured in the sample subjected to the electrical discharge machining to the cemented carbide, two components x and y existing in the measurement surface excluding the z component perpendicular to the measurement surface. FIG. 8 shows the distribution of the vector consisting of Although the leakage magnetic flux vector shows a characteristic flow in the machining surface, it can be seen that vortices, which are singular points of the flow, exist in several places on the machining surface. Further, all the regions where these vortices are present have a small magnetic flux vector.

これらの渦の領域を光学顕微鏡で観察すると、細長い割れが観察される。これら表面の傷は、磁束のxyベクトルの渦が観察されない位置にも存在することから、渦近傍の割れが、他の傷とは異なる内部方向に深い亀裂の入ったヘアークラックである可能性がある。 When these vortex regions are observed with an optical microscope, elongated cracks are observed. Since these surface scratches are also present at positions where vortices of the xy vector of the magnetic flux are not observed, there is a possibility that the cracks near the vortex are hair cracks with deep cracks in the internal direction different from other scratches. is there.

金型の表面加工層に内部方向に割れの進んだヘアークラックや異物が存在した場合、加工面方向の残留応力は緩和され、さらに残留応力場は、面内のクラック周りで特異点を持つ。よって残留応力の逆磁歪現象で生じた漏れ磁束ベクトルのxy成分の表すベクトル分布もクラック周りで渦等の特異点からくる分布を示す。また磁歪み係数の異なる材料においては、これらの特異点がベクトルのxy成分の発散となる場合も考えられる。 When hair cracks or foreign substances that are cracked in the inner direction exist in the surface processing layer of the mold, the residual stress in the processing surface direction is relaxed, and the residual stress field has a singular point around the crack in the surface. Therefore, the vector distribution represented by the xy component of the leakage flux vector generated by the inverse magnetostriction phenomenon of residual stress also shows a distribution coming from a singular point such as a vortex around the crack. In materials with different magnetostriction coefficients, these singular points may be the divergence of the xy component of the vector.

このことから、上記の漏れ磁束密度の加工面内の2次元ベクトルの特異点である渦や発散が、大きな応力緩和を生じさせるヘアークラックや異物の存在を示すものと考えられ、本手法が従来にはない欠陥検出の手法となることを示唆する。ヘアークラックがプレスや射出成型で使用される金型の寿命を決めることから、本手法は、工業上、重要となるものと考えられる。このクラック位置の情報を元に本発明では、除去加工等による金型の補修を可能にする。 From this, it is considered that vortices and divergence, which are singular points of the two-dimensional vector in the machining surface of the above-mentioned leakage magnetic flux density, indicate the presence of hair cracks and foreign matters that cause large stress relaxation. This suggests that this is a defect detection method that is not available. Since the hair rack determines the life of the mold used in press and injection molding, this method is considered to be important in industry. Based on the information on the crack position, in the present invention, the mold can be repaired by removal processing or the like.

本発明における強磁性体を含む材料からなる金型内部の残留応力を検査する方法の実施例の二つ目を以下に記す。試料としてWC-Coからなる超硬合金からなる20×65×20mmサイズの板を用意する。これを高速研削加工により、表面研削をおこない、20×65×10mmサイズの板とする。その後、20×65mmの面を長手方向に4分割し、20×20mmの1つと20×15mmの3つの計4領域に分け、最初の領域をそのままにし、残りの3つを50μm、100μm、150μmの深さにそれぞれ精密研削加工を施す。これらの加工は、高速研削加工および精密研削加工の各パラメーターによる本測定法の測定能を見積もるため特に用意されたものである。今回加工を施された試料断面の様子は図3と同じである。 A second embodiment of the method for inspecting the residual stress inside the mold made of a material containing a ferromagnetic material in the present invention will be described below. A 20 × 65 × 20 mm size plate made of cemented carbide made of WC-Co is prepared as a sample. This is subjected to surface grinding by high-speed grinding to form a plate of 20 × 65 × 10 mm size. After that, the 20 × 65mm surface is divided into four in the longitudinal direction, and divided into four areas, one 20 × 20mm and 20 × 15mm, leaving the first area as it is, and the remaining three are 50μm, 100μm, 150μm. Precision grinding is applied to each depth. These processes are especially prepared in order to estimate the measurement ability of this measurement method according to each parameter of high-speed grinding and precision grinding. The cross section of the sample processed this time is the same as in FIG.

次に試料加工面の磁性を、図1に示す装置を用いて、3次元磁束密度センサーを走査(走査線間隔0.2mm、速度1秒/ステップ)させ、漏れ磁束密度の測定を行う。その際の測定条件や測定パラメーターは、実施例1の場合と同じである。 Next, the magnetic flux on the sample processed surface is measured by scanning a three-dimensional magnetic flux density sensor (scanning line interval 0.2 mm, speed 1 second / step) using the apparatus shown in FIG. The measurement conditions and measurement parameters at that time are the same as those in Example 1.

本試料の場合、高速研削加工を施した際に発生する加工表面近傍の熱応力によって、逆磁歪現象として試料表面に漏れ磁束が生じる。一般に研削砥石は、中央部が高く周辺部が低い丸みを帯びた形状をしていることから、この砥石を平行移動して研削面を広げていく際に、砥石の中央部に当たる面には、周辺部に比べて、大きな応力が生じる。 In the case of this sample, a leakage magnetic flux is generated on the sample surface as an inverse magnetostriction phenomenon due to thermal stress in the vicinity of the processed surface that is generated when high-speed grinding is performed. In general, the grinding wheel has a rounded shape with a high central part and a low peripheral part, so when expanding the grinding surface by translating this grinding wheel, the surface that hits the central part of the grinding wheel A larger stress is generated than in the peripheral part.

また一般に研削は固定した砥石に対して試料を固定したテーブルを走らせながら行なうが、その際、既に研削されたラインで凹みがある場合には、次のラインのその位置でより大きな応力が掛かり、さらに研削が進むことにより、同様に凹みを生じさせる。この現象により、表面ではあまり凹凸の変化が内容に見える研削後の加工面に砥石の研削方向に研削面の応力が大きく変化し、これに対応する残留磁束ベクトルの分布が生じる In general, grinding is performed while running a table with a sample fixed against a fixed grindstone, but if there is a dent in the already ground line, a greater stress is applied at that position on the next line, As grinding progresses further, dents are similarly generated. Due to this phenomenon, the stress on the grinding surface changes greatly in the grinding direction of the grinding wheel on the ground surface after the surface where the unevenness appears to be too much on the surface, and the distribution of the residual magnetic flux vector corresponding to this changes.

図9に高速研削加工を施した試料の残留磁束ベクトル分布を、図10に摺動面精度の悪い通常の研削加工を施した試料の残留磁束ベクトル分布を示す。図で見るように加工面の残留磁束ベクトルは、研削ラインの方向に垂直に分布し、主として後者の機構による応力分布が検出されたものと考えられる。 FIG. 9 shows a residual magnetic flux vector distribution of a sample subjected to high speed grinding, and FIG. 10 shows a residual magnetic flux vector distribution of a sample subjected to normal grinding with poor sliding surface accuracy. As seen in the figure, the residual magnetic flux vector on the machined surface is distributed perpendicularly to the direction of the grinding line, and it is considered that the stress distribution due to the latter mechanism was mainly detected.

また表面加工層の一部を研削処理により除去加工した場合、実施例1同様、試料表面の漏れ磁束密度を減少させる。測定した漏れ磁束密度の分布の変化から、試料加工面内部に存在する残留応力の深さ方向の分布を明らかにすることができる。この残留応力の情報を元に金型の最終研削加工の条件が明らかとなり、金型の作製時に適切な補修を加えることが可能となる。 When a part of the surface processed layer is removed by grinding, the leakage magnetic flux density on the sample surface is reduced as in the first embodiment. From the change in the distribution of the measured leakage magnetic flux density, the distribution in the depth direction of the residual stress existing inside the sample processing surface can be clarified. Based on the information on the residual stress, the conditions of the final grinding process of the mold are clarified, and appropriate repairs can be made when the mold is manufactured.

以上のように加工面の3次元磁束ベクトルの分布を評価することにより、様々な加工時に導入された残留応力や表面近傍の割れを評価することができる。これはその他の加工である、切削加工やレーザーや電流による焼結加工においても同じであり、こうした金型の補修に威力を発揮する。 As described above, by evaluating the distribution of the three-dimensional magnetic flux vector on the processing surface, it is possible to evaluate the residual stress introduced during various processing and cracks near the surface. This is the same in other processes such as cutting and sintering by laser or electric current, and it is effective for repairing such molds.

本発明の磁性体を含む材料を用いて作製された金型表面の残留漏れ磁束ベクトル測定により、金型の寿命に大きく影響する金型表面の残留応力の大きさや異物の存在およびヘアークラックの発生が評価できるようになり、この情報に基づいた金型の補修によって、以下のような、産業上の様々な利用可能性が生まれる。 Residual leakage flux vector measurement of the mold surface made using the material containing the magnetic material of the present invention, the magnitude of residual stress on the mold surface, the presence of foreign matter and the occurrence of hair cracks that greatly affect the life of the mold Can be evaluated, and the repair of the mold based on this information creates various industrial applicability as follows.

まず産業上大半の金型が磁性体を含む材料であるフェライト鋼や金型鋼、工具鋼やコバルトや強磁性金属間化合物を含む超硬合金、ニッケルα相を含む超合金等を用いて作成されていることから、大半の金型が本手法による以下の応用が可能となる。また銅にコバルトを数パーセント混ぜた二相分離合金等を用いることにより、型彫放電加工時の相手電極材の評価による補修も可能となる。 First, most industrial molds are made of ferritic steel, mold steel, tool steel, cemented carbide containing cobalt and ferromagnetic intermetallic compounds, superalloy containing nickel α phase, etc. Therefore, most molds can be applied by the following method. Further, by using a two-phase separated alloy in which several percent of cobalt is mixed with copper, it becomes possible to perform repair by evaluating the mating electrode material at the time of die-sinking electric discharge machining.

残留漏れ磁束ベクトルの大きさやベクトルの向きの変化から、作成時に導入された金型表面の残留応力の分布を評価することが可能となり、金型の加工時や補修時のパラメーターを最適化する際の指針として使える。例えば、残留応力が少なくなるような放電加工の電流量やパルス周波数、切断速度などの値を変化させて作った金型の表面残留応力を最小化することにより、最適な放電加工機のプロセス条件を見出すことが容易になる。 It is possible to evaluate the distribution of residual stress on the mold surface introduced at the time of creation based on the magnitude of the residual leakage magnetic flux vector and the change in the vector direction. When optimizing the parameters during mold machining and repair It can be used as a guideline. For example, optimal electrical discharge machine process conditions can be achieved by minimizing the surface residual stress of molds made by changing values such as the amount of electric current, pulse frequency, and cutting speed of electrical discharge machining that reduce residual stress. It becomes easy to find out.

また型彫放電加工において相手電極材に銅コバルト合金等、磁性相を含む電極材を用いることにより、電極の消耗部位や残留応力部位を磁性により明らかにすることも可能となる。 Further, by using an electrode material containing a magnetic phase, such as a copper-cobalt alloy, as a counterpart electrode material in the die-sinking electric discharge machining, it becomes possible to clarify the wear part and residual stress part of the electrode by magnetism.

これら作成時の加工パラメーターを最適化できることは、高速研削加工やマシニングセンター等の切削加工、その他レーザーや電流の放電や通電加熱を用いた粉末焼結などの金型作成プロセスにおいても同じである。逆に本手法による残留応力の解析から、個々の加工法の特徴や残留応力を作る原因を明らかにすることができるため、金型の補修の他、従来の金型の加工プロセスの改良や、新たな加工プロセスの創成にも有用である。 The ability to optimize the machining parameters at the time of production is the same in the mold production process such as high-speed grinding, machining such as a machining center, and other powder sintering using laser, electric current discharge or current heating. Conversely, from the analysis of residual stress by this method, it is possible to clarify the characteristics of each processing method and the cause of the residual stress, so in addition to repairing the mold, improvement of the conventional mold processing process, It is also useful for creating new processing processes.

他方、金型の中で、破損が致命的になる部位や使用時に大きな応力が掛かる部位は決まっているため、部位に合わせて残留応力を制御した金型の作成や補修も可能となり、多少の残留応力が気にならない部位の金型作成の効率化を図ることも可能となる。 On the other hand, in the mold, the part where damage is fatal and the part where large stress is applied during use is determined, so it is possible to create and repair molds with controlled residual stress according to the part, It is also possible to improve the efficiency of mold production in a region where residual stress is not a concern.

また一般の金型作成においては、放電加工や高速研削加工、高速切削加工において表面に大きく入った表面加工層が存在するため、これを精密研削や機械研磨、電界研磨により除去する工程を含む場合が多い。 Also, in general mold making, there is a surface processing layer that has entered the surface greatly in electric discharge machining, high-speed grinding processing, and high-speed cutting processing, and therefore includes a process of removing this by precision grinding, mechanical polishing, or electropolishing. There are many.

しかしながら、除去量をいくらにするかの判定は難しく、少なく除去した場合は、残留応力の存在により金型の寿命が短くなる可能性があり、また過剰に除去した場合は、余分なコストとなって跳ね返る。 However, it is difficult to determine how much to remove, and if it is removed in a small amount, there is a possibility that the life of the mold will be shortened due to the presence of residual stress. Bounce back.

本手法を用いれば、実施例1のように、一定除去加工後に磁束密度ベクトルの測定をおこなうことにより、どの程度の除去加工によって表面加工層の残留応力を減らすことができるかの指針を与えることが可能となり、最低限の除去加工量を与えることから、適切な補修を可能とする。 By using this method, as in Example 1, by measuring the magnetic flux density vector after constant removal processing, a guideline is given as to how much the residual stress of the surface processing layer can be reduced by the removal processing. Since the minimum amount of removal processing is given, appropriate repair is possible.

また後述するように表面のヘアークラックや異物を推定できることから、一定除去加工後に磁束密度ベクトルの測定をおこなうことにより、応力負荷部のクラックや異物を完全に除く作業も可能となる。これにより、最適な最終仕上げ加工や補修加工を個々の金型に施すことが可能となる。 Further, since hair cracks and foreign matter on the surface can be estimated as will be described later, it is possible to completely remove cracks and foreign matter in the stress load portion by measuring the magnetic flux density vector after the constant removal processing. Thereby, it becomes possible to perform optimal final finishing processing and repair processing to each metal mold | die.

一方、金型において加工時や使用時において発生するヘアークラック等の深い割れや異物の存在は、使用時における金型破損の大きな原因となり、高価な金型の寿命を大きく減少させるばかりでなく、不意なラインの停止を誘発し、工場全体の効率を大きく下げる結果を招く。 On the other hand, the presence of deep cracks such as hair cracks and foreign matters that occur during processing and use in the mold is a major cause of mold breakage during use, not only greatly reducing the life of expensive molds, This will cause an unexpected line stoppage and result in a significant reduction in the efficiency of the entire plant.

本手法は、従来の残留応力測定法に比べて、簡単であり、安価・安全で、高速化も可能なことから、現場でのラインや工程に入れ込むことができ、個々の金型における全数検査も可能となる。そのため金型の作製時や使用途中のメインテナンス等の補修において、金型の表面に生じたクラックの有無を調べることができ、適切な補修を施すことが出来る。一般に金型などの高硬度材はシビアな加工や使用環境を要求するため、個々の金型表面加工層の残留応力は一様ではないため、この全数検査による補修の可能性は、個々の金型製品の信頼性を大きく向上させる。 Compared to conventional residual stress measurement methods, this method is simpler, cheaper, safer, and faster, so it can be used in on-site lines and processes. Inspection is also possible. Therefore, it is possible to examine the presence or absence of cracks generated on the surface of the mold during repair of the mold during maintenance or during maintenance, and appropriate repair can be performed. In general, high-hardness materials such as molds require severe processing and usage environments, and the residual stress of each die surface processing layer is not uniform. The reliability of mold products is greatly improved.

本手法は、小さな精密金型から自動車用金型や大型プレス機用金型などにも適応可能であり、金型のサイズには特に依存しないことから、様々な産業の金型の全数検査やメインテナンスにおける補修に有効である。 This method can be applied from small precision molds to molds for automobiles and large press machines, etc. and is not particularly dependent on the size of the mold. Effective for maintenance in maintenance.

さらに本手法により、加工プロセスにおける切断方向や研削方向、切削方向が明らかになることから、未知の条件でされた金型の工程を明らかにすることにも有用となる。例えばワイヤー放電加工においては、複数の加工工程を組み合わせて金型を作るが、これら一回一回の切断方向がNSの磁場の向きから分かることにより、切断の順序なども類推することが可能となる。また研削や切削装置の剛性などの推定も可能となる。 In addition, the cutting direction, grinding direction, and cutting direction in the machining process can be clarified by this method, so that it is useful for clarifying the mold process performed under unknown conditions. For example, in wire electric discharge machining, a mold is made by combining a plurality of machining processes. By knowing the cutting direction at a time from the direction of the NS magnetic field, it is possible to infer the order of cutting. Become. In addition, it is possible to estimate the rigidity of grinding and cutting devices.

以上のように本発明により、安価で簡便に強磁性体を含む材料からなる金型の残留応力やヘヤークラック等の欠陥を取り除く金型の作成方法や補修方法が可能となり、産業上、有益なものとなることが期待される。
As described above, according to the present invention, it is possible to provide a mold making method and a repair method for removing defects such as residual stress and hair cracks of a die made of a material containing a ferromagnetic material at a low cost, which is industrially useful. Expected to be something.

本発明の実施の一形態を示した図である。It is the figure which showed one Embodiment of this invention. 本発明の実施の一形態におけるセンサー部を示した図である。It is the figure which showed the sensor part in one Embodiment of this invention. 本発明により測定された磁性体を含む材料の加工法の試料断面図Sample sectional view of processing method of material containing magnetic material measured by the present invention 本発明により測定された超硬合金のワイヤー放電加工面の磁束密度ベクトル分布を示した図である。It is the figure which showed the magnetic flux density vector distribution of the wire electric discharge machining surface of the cemented carbide measured by this invention. 本発明により測定された超硬合金のワイヤー放電加工面の磁束密度ベクトル分布をz方向から示した図である。It is the figure which showed the magnetic flux density vector distribution of the wire electric discharge machining surface of the cemented carbide measured by this invention from the z direction. 本発明により測定されたSKD工具鋼ワイヤー放電加工面の磁束密度ベクトル分布を示した図である。It is the figure which showed the magnetic flux density vector distribution of the SKD tool steel wire electric discharge machining surface measured by this invention. 本発明により測定された超硬合金の別のワイヤー放電加工機による加工面の磁束密度ベクトル分布を示した図である。It is the figure which showed the magnetic flux density vector distribution of the processed surface by another wire electric discharge machine of the cemented carbide measured by this invention. 本発明により測定された超硬合金のワイヤー放電加工面のxy成分のみを取り出した磁束密度ベクトルの分布を示した図である。It is the figure which showed distribution of the magnetic flux density vector which took out only the xy component of the wire electric discharge machining surface of the cemented carbide measured by this invention. 本発明により測定された超硬合金の高速研削加工面の磁束密度ベクトル分布を示した図である。It is the figure which showed the magnetic flux density vector distribution of the high-speed grinding processed surface of the cemented carbide measured by this invention. 本発明により測定された超硬合金の摺動面精度の悪い研削加工面の磁束密度ベクトル分布を示した図である。It is the figure which showed magnetic flux density vector distribution of the grinding surface where the sliding surface precision of the cemented carbide alloy measured by this invention was bad.

符号の説明Explanation of symbols

1 3次元磁束密度センサー素子部
2 3次元磁束密度センサー制御部
3 制御用コンピューター
4 自動XYZステージ
5 試料
6 試料保持部
7 センサー位置調整部
8 センサー保持棒
9 探針
10 放電加工または研削加工を施した面
11 放電加工または研削加工を施した後、50μm除去加工を施した面
12 放電加工または研削加工を施した後、100μm除去加工を施した面
13 放電加工または研削加工を施した後、150μm除去加工を施した面
14 磁化率(テスラ)
15 2次元磁束ベクトルの渦
1 3D magnetic flux density sensor element
2 3D magnetic flux density sensor control unit 3 Control computer 4 Automatic XYZ stage 5 Sample 6 Sample holding unit 7 Sensor position adjustment unit 8 Sensor holding rod 9 Probe 10 Surface 11 subjected to electric discharge machining or grinding 11 Electric discharge machining or grinding After the surface is processed, the surface is subjected to 50 μm removal processing 12 After being subjected to electric discharge machining or grinding processing, the surface is subjected to 100 μm removal processing 13 After being subjected to electric discharge processing or grinding processing, the surface 14 is subjected to 150 μm removal processing 14 Magnetization Rate (Tesla)
15 Vortex of two-dimensional magnetic flux vector

Claims (3)

磁性体を含む材料よりなる金型において、これを作製する際および使用時に逆磁歪現象により金型表面に生成する磁場ベクトルおよび磁場強度を磁束密度センサーを用いて測定する第1ステップと、測定した磁場ベクトルおよび磁場強度の分布から残留応の分布を導出する第2ステップと、残留応力の分布に基づいて機械的又は化学的に残留応力を除去する第3ステップとで構成される金型の補修方法。 In a mold made of a material containing a magnetic material, a first step of measuring a magnetic field vector and a magnetic field intensity generated on the mold surface by an inverse magnetostriction phenomenon when the mold is manufactured and used by using a magnetic flux density sensor was measured. Repair of a mold composed of a second step of deriving a residual stress distribution from the magnetic field vector and magnetic field strength distribution and a third step of mechanically or chemically removing the residual stress based on the residual stress distribution. Method. 前記第2ステップにより得られた磁場ベクトルの特異点および磁場強度の低下度合いから表面近傍の亀裂や異物の位置を導出することを特徴とする請求項1に記載の金型の補修方法。 2. The method of repairing a mold according to claim 1, wherein the position of a crack or a foreign object near the surface is derived from a singular point of the magnetic field vector obtained by the second step and a degree of decrease in the magnetic field strength. 磁性体を含む材料よりなる金型について、これをワイヤー放電加工により作製する際に、逆磁歪現象により金型表面に生成した磁場ベクトルおよび磁場強度を磁束密度センサーを用いて測定することにより、ワイヤー放電加工におけるワイヤーの位置や移動方向などの加工履歴を明らかにする評価方法。
When a mold made of a material containing a magnetic material is manufactured by wire electric discharge machining, the magnetic field vector and magnetic field strength generated on the mold surface by the inverse magnetostriction phenomenon are measured using a magnetic flux density sensor, thereby Evaluation method to clarify machining history such as wire position and moving direction in EDM.
JP2006163048A 2006-06-13 2006-06-13 Repair method for molds containing magnetic material Expired - Fee Related JP5004324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006163048A JP5004324B2 (en) 2006-06-13 2006-06-13 Repair method for molds containing magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006163048A JP5004324B2 (en) 2006-06-13 2006-06-13 Repair method for molds containing magnetic material

Publications (2)

Publication Number Publication Date
JP2007331140A true JP2007331140A (en) 2007-12-27
JP5004324B2 JP5004324B2 (en) 2012-08-22

Family

ID=38931087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006163048A Expired - Fee Related JP5004324B2 (en) 2006-06-13 2006-06-13 Repair method for molds containing magnetic material

Country Status (1)

Country Link
JP (1) JP5004324B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198251A (en) * 2008-02-20 2009-09-03 Mie Univ Method of evaluating hardening range of iron and steel material by spontaneous magnetization
JP2011013147A (en) * 2009-07-03 2011-01-20 Jtekt Corp Affected layer detector
CN104374499A (en) * 2014-11-17 2015-02-25 西安交通大学 Welding residual stress measuring method based on XJTUOM three-dimensional optical surface scanning and measuring system
CN111590265A (en) * 2020-05-25 2020-08-28 哈尔滨鑫润工业有限公司 Mould repairing method based on laser scanning technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311165A (en) * 1987-06-12 1988-12-19 Kawasaki Steel Corp Method and apparatus for finding flaw with magnetism
JP2002122572A (en) * 2000-10-17 2002-04-26 Koji Yamada Method and apparatus for evaluation of material characteristic
JP2002277442A (en) * 2001-03-15 2002-09-25 Foundation For Advancement Of Science & Technology Non-destructive inspection method and apparatus
JP2004020513A (en) * 2002-06-20 2004-01-22 Yamanashi Prefecture Method and apparatus for detecting fatigue degree of hot mold
JP2005172525A (en) * 2003-12-09 2005-06-30 Nippon Steel Corp Magnetic field analysis method, magnetic field analysis system, and computer program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311165A (en) * 1987-06-12 1988-12-19 Kawasaki Steel Corp Method and apparatus for finding flaw with magnetism
JP2002122572A (en) * 2000-10-17 2002-04-26 Koji Yamada Method and apparatus for evaluation of material characteristic
JP2002277442A (en) * 2001-03-15 2002-09-25 Foundation For Advancement Of Science & Technology Non-destructive inspection method and apparatus
JP2004020513A (en) * 2002-06-20 2004-01-22 Yamanashi Prefecture Method and apparatus for detecting fatigue degree of hot mold
JP2005172525A (en) * 2003-12-09 2005-06-30 Nippon Steel Corp Magnetic field analysis method, magnetic field analysis system, and computer program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198251A (en) * 2008-02-20 2009-09-03 Mie Univ Method of evaluating hardening range of iron and steel material by spontaneous magnetization
JP2011013147A (en) * 2009-07-03 2011-01-20 Jtekt Corp Affected layer detector
CN104374499A (en) * 2014-11-17 2015-02-25 西安交通大学 Welding residual stress measuring method based on XJTUOM three-dimensional optical surface scanning and measuring system
CN111590265A (en) * 2020-05-25 2020-08-28 哈尔滨鑫润工业有限公司 Mould repairing method based on laser scanning technology

Also Published As

Publication number Publication date
JP5004324B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
Jiang et al. Recent progress of residual stress measurement methods: A review
Afkhami et al. Effects of manufacturing parameters and mechanical post-processing on stainless steel 316L processed by laser powder bed fusion
Rossini et al. Methods of measuring residual stresses in components
Vourna et al. A novel approach of accurately evaluating residual stress and microstructure of welded electrical steels
O’sullivan et al. Machinability of austenitic stainless steel SS303
Jang et al. Assessing welding residual stress in A335 P12 steel welds before and after stress-relaxation annealing through instrumented indentation technique
Vourna et al. An accurate evaluation of the residual stress of welded electrical steels with magnetic Barkhausen noise
Ruud A review of selected non-destructive methods for residual stress measurement
Srivastava et al. Monitoring of thermal damages upon grinding of hardened steel using Barkhausen noise analysis
JP5004324B2 (en) Repair method for molds containing magnetic material
Goch et al. Review of non-destructive measuring methods for the assessment of surface integrity: a survey of new measuring methods for coatings, layered structures and processed surfaces
del Conte et al. Barkhausen noise analysis as an alternative method to online monitoring of milling surfaces
Campos et al. In-situ magnetic inspection of the part fixture and the residual stress in micromilled hot-work tool steel
Karnati et al. A Comparative study on representativeness and stochastic efficacy of miniature tensile specimen testing
Nahak et al. Surface integrity assessment upon electric discharge machining of die steel using non-destructive magnetic barkhausen noise technique
Shimosaka et al. In-situ Evaluation of Surface Integrity Modifications by means of Barkhausen Noise Measurement
JPH05142203A (en) Method for diagnosing environmental stress cracking of high-strength material
Huang et al. Metal magnetic memory technique and its applications in remanufacturing
Kim et al. Non-destructive surface and subsurface characterization of the machined parts by using fiber optic Eddy current sensor
Shao et al. Stress dependence of Hall coefficient in a nickel-base superalloy
Harrison Detecting white layer in hard turned components using non-destructive methods
Alabdullah Machinability analysis of super austenitic stainless steel
Mašek et al. A comprehensive methodology for testing hard layers of cutting tool properties in orthogonal turning
Vértesy et al. Influence of the size of sample in magnetic adaptive testing
Buttle et al. Determination of residual stresses by magnetic methods.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees