WO2019054158A1 - Nondestructive inspecting device, nondestructive inspecting system, and nondestructive inspecting method - Google Patents

Nondestructive inspecting device, nondestructive inspecting system, and nondestructive inspecting method Download PDF

Info

Publication number
WO2019054158A1
WO2019054158A1 PCT/JP2018/031295 JP2018031295W WO2019054158A1 WO 2019054158 A1 WO2019054158 A1 WO 2019054158A1 JP 2018031295 W JP2018031295 W JP 2018031295W WO 2019054158 A1 WO2019054158 A1 WO 2019054158A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
magnetic
sensor
nondestructive inspection
application unit
Prior art date
Application number
PCT/JP2018/031295
Other languages
French (fr)
Japanese (ja)
Inventor
一直 丸山
森田 博
好之 橋本
清 高
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019541973A priority Critical patent/JPWO2019054158A1/en
Publication of WO2019054158A1 publication Critical patent/WO2019054158A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields

Definitions

  • the present invention relates to nondestructive inspection using magnetism.
  • the application range of nondestructive inspection using magnetism is diagnosis of fracture due to corrosion or deterioration of magnetic materials such as steel bars and wires, etc. which are enclosed in nonmagnetic materials such as concrete and rubber, especially road and Failure diagnosis of steel bars and reinforcing bars in bridge girder and bridge piers of railways and floor slabs can be mentioned.
  • an inspection apparatus based on the leakage flux method has been proposed.
  • the conventional magnetic nondestructive inspection system in the magnetic measurement in the state where the magnetic circuit is formed on the measurement object, the small magnetic field change generated at the fracture site of the measurement object is buried in the large magnetic field produced by the magnet for magnetic circuit generation.
  • Patent Document 1 As a method by two steps of “magnetization” and “measurement”, after magnetizing with a permanent magnet, the magnet is removed, and a pair of sensors disposed apart in the longitudinal direction are scanned in the longitudinal direction of rebar There is also described a technique for determining and determining a derivative value from the difference between measurement values of two sensors.
  • the change in the magnetic field generated on the fracture surface of the object to be measured is small, so it is difficult to catch the change in the magnetic field generated on the fracture site when the fog (embedding depth) of the object to be measured is deep There was a problem called.
  • the magnetic circuit is formed on the reinforcing bar which is the measurement object, PC steel material, etc., a large magnetic field change is generated at the fracture site of the measurement object as compared with the conventional method using the residual flux. Since it can be made to do, even if the fog (embedding depth) of the measuring object is deep, there is an effect that it is easy to catch the change of the magnetic field generated at the fracture site.
  • Patent Document 2 as a magnetic measurement method in a state where a magnetic circuit is formed on an object to be measured, a pair of magnets having different polarities is disposed to face each other, and the magnetic field of the pair of magnets is zeroed by balance.
  • Techniques for providing a magnetic sensor are described.
  • inspection is performed while moving in the longitudinal direction of the rebar to determine rebar breakage determination.
  • the judgment principle is that the magnetic force on the side with breakage becomes smaller and the balance collapses.
  • the position where the magnetic sensor is provided is limited, and it is impossible to install the magnetic sensor array in which a plurality of magnetic sensors are arranged.
  • the magnetic field generated by the magnetic circuit generation magnet for forming the magnetic circuit on the measurement object gives a large magnetic field to the magnetic sensor.
  • the magnetic field generated from the broken part of the measurement object to the magnetic sensor is small, the magnetic field component generated at the broken part of the measurement object is buried in the magnetic field generated by the aforementioned magnetic circuit generation magnet. There is a problem that becomes difficult.
  • the present invention has been made in view of the above problems in the prior art, and improves the detection accuracy of the magnetic field generated from the outside of the measurement object via the measurement object by the magnetic sensor, and performs nondestructive inspection inspection.
  • the task is to improve the accuracy.
  • the invention according to claim 1 for solving the above problems is a nondestructive inspection device in which a magnetic material contained in a nonmagnetic material is an object to be measured, These are arranged in the order of one magnetic field application unit, magnetic sensor, and the other magnetic field application unit, and the one magnetic field application unit and the one magnetic field application unit for the measurement object adjacent to the array and extending in the same direction.
  • the magnetic sensor is configured to detect a magnetic field from the same measurement object in a state where magnetic fields of opposite polarities are applied from the other magnetic field application unit to form a magnetic circuit,
  • Each of the magnetic field application units is a nondestructive inspection device in which the magnetic field directed to the magnetic sensor is reduced with respect to the magnetic field applied to the measurement object.
  • each of the magnetic field application units has a main magnet for generating a magnetic field to be applied to the measurement object, and the magnetic sensor among the magnetic field components generated by the main magnet
  • the nondestructive inspection device according to claim 1, further comprising a magnetic field adjusting member having an effect of reducing a magnetic field component to be directed between the main magnet and the magnetic sensor.
  • the invention according to claim 3 is that the magnetic field adjustment member is a Halbach-arrayed magnet in which three or more magnets having different magnetic directions are combined, and the Halbach-arrayed magnet has a strong magnetic field side due to the effect of Halbach-array. 3.
  • the invention according to claim 5 is the non-destructive according to any one of claims 1 to 4, wherein the one magnetic field application unit, the magnetic sensor, and the other magnetic field application unit are arranged on a straight line. It is an inspection device.
  • the magnetic sensor is parallel to a surface adjacent to the measurement object of the array and in the width direction orthogonal to an imaginary line connecting the one magnetic field application unit and the other magnetic field application unit.
  • the thickness dimension of the magnetic field adjustment member and the main magnet in the direction perpendicular to the surface adjacent to the measurement object of the array according to the invention of claim 7 is the same as that of claim 2 or 3. It is a nondestructive inspection device.
  • the invention according to claim 8 is the nondestructive inspection device according to any one of claims 1 to 7, wherein the magnetic sensor is composed of a plurality of magnetic sensors arranged in a predetermined array including a linear array and a staggered array. is there.
  • the magnetic sensor is constituted by a three-axis sensor capable of detecting magnetic field components in three axial directions orthogonal to each other or three single-axis sensors in which sensor axes are respectively arranged in the three axial directions. It is the nondestructive inspection device according to any one of claims 1 to 8.
  • the invention according to claim 10 is the nondestructive inspection device according to any one of claims 1 to 9, wherein the magnetic sensor is a tunnel type magnetoresistive sensor (TMR sensor).
  • TMR sensor tunnel type magnetoresistive sensor
  • the invention according to claim 11 comprises the nondestructive inspection device according to any one of claims 1 to 10, and an information processing device,
  • the information processing apparatus is a nondestructive inspection system that determines an abnormality of the measurement object based on measurement information received from the nondestructive inspection apparatus.
  • the nondestructive inspection device outputs, to the information processing device, surface data indicating a two-dimensional magnetic field distribution on a measurement surface of the measurement object facing the magnetic sensor,
  • the invention according to claim 13 uses the nondestructive inspection device according to any one of claims 1 to 10 to make the object to be measured face the magnetic sensor, and the magnetism of the object to be measured Obtain surface data indicating a two-dimensional magnetic field distribution on the measurement surface facing the sensor, It is a nondestructive inspection method which judges abnormalities of the measurement subject based on the surface data.
  • the detection accuracy of the magnetic sensor generated from the outside of the measurement object, that is, from the magnetic field application unit and passing through the measurement object can improve the inspection accuracy of the nondestructive inspection.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the nondestructive inspection system which concerns on one Embodiment of this invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a whole external view of the nondestructive inspection apparatus which concerns on one Embodiment of this invention. It is a schematic diagram which showed the intensity
  • the nondestructive inspection system 10 comprises a nondestructive inspection device 1 and a cloud computer 9, and the nondestructive inspection device 1 according to the present embodiment mainly comprises four blocks.
  • the sensor unit 2 which bears the center is a block for measuring the magnetism, and has a plurality of magnetic sensors 21 mounted thereon.
  • the magnetic sensor 21 may be a single-axis sensor that detects a magnetic field component in one axial direction from the measurement object direction, but is more preferably a three-axis sensor that can obtain a three-dimensional magnetic field distribution around the magnetic sensor.
  • the magnetic sensor 21 is known to be a Hall sensor as a semiconductor sensor, an MR sensor as a magnetoresistive sensor, an MI sensor, a TMR sensor (tunnel type magnetoresistive sensor), etc. However, a more sensitive TMR sensor (tunnel type magnetic sensor) It is preferable to apply a resistance sensor).
  • a TMR sensor tunnel type magnetoresistive sensor is an element whose resistance value changes due to magnetism, and by combining a resistance bridge circuit, magnetism can be converted into voltage and output.
  • the voltage generated by the magnetic sensor 21 is converted into a digital value by the A / D unit 22, and measurement data is transmitted to the outside through the mobile communication unit unit 23.
  • the sensor unit 2 is provided with a display unit 25 and an operation unit 26 in addition to the CPU 24 for overall control.
  • the transmitted data is subjected to a determination algorithm by the cloud computer 9 which is an example of the information processing apparatus of the present system, and the state determination of the measurement object is performed.
  • one magnetic field application unit and the other magnetic field application unit correspond to the left magnet unit 3L and the right magnet unit 3R.
  • the left magnet unit 3L and the right magnet unit 3R are basically symmetrical in the left-right direction, and are composed of the main magnets 31L, 31R and the magnetic field adjustment members 32L, 32R, respectively.
  • the polarities of the left and right main magnets 31L, 31R are opposite to each other, and the lower surface of the main magnets 31L, 31R, which is the opposing surface of the object to be measured, has N poles on one side and S poles on the other.
  • As the magnetic field adjustment members 32L and 32R a combination of a Halbach arrangement and a magnet is employed.
  • the sensor unit 2 and the left and right magnet units 3L and 3R are connected by the support mechanism 4 and held.
  • the support mechanism 4 not only holds the sensor unit 2 and the left and right magnet units 3L and 3R, but also has a mechanism for causing the sensor unit 2 and the left and right magnet units 3L and 3R to slide relative to each other. Enable magnetic measurement of
  • the whole external view of the nondestructive inspection apparatus 1 of this embodiment is shown in FIG.
  • the sensor unit 2 is disposed at the center of the support mechanism 4, and the sensor unit 2 can slide in the width direction X.
  • the left and right magnet units 3 ⁇ / b> L and 3 ⁇ / b> R are disposed at both ends of the central portion of the support mechanism 4 in the Y direction.
  • the support mechanism 4 is provided with a grip 41 so that the whole nondestructive inspection apparatus 1 can be stably held when carrying the whole of the nondestructive inspection apparatus 1 or when it is applied to an object to be measured.
  • FIG. 3A simulates the state after magnetization in a two-step procedure in which the conventional magnetization and measurement are performed separately.
  • the measurement object 8 assumes a reinforcing steel bar or PC steel material which is a magnetic material, and assumes a state in which a break of about 1 cm in gap is generated at the central portion (not shown non-magnetic material (concrete)) .same as below).
  • the object to be measured 8 is in the state of a weak bar magnet which is magnetized by magnetization.
  • the left end portion is magnetized to the N pole and the right end portion side to the S pole, and a leftward magnetic loop leakage magnetic field from the N extreme portion to the S extreme portion is generated in the gap portion of the fracture portion.
  • a leftward magnetic loop leakage magnetic field from the N extreme portion to the S extreme portion is generated in the gap portion of the fracture portion.
  • FIG. 3B simulates the formation of a magnetic circuit according to the measurement principle of the present invention.
  • the measurement object 8 is a reinforcing steel bar or PC steel
  • a break of about 1 cm in gap is generated at the central portion.
  • the measurement object 8 is in a state in which a magnetic circuit is formed inside the measurement object 8 by the magnetism of the magnet units 3L and 3R arranged above the left and right ends.
  • the magnetism emitted from the N pole of the right magnet unit 3R gathers at the measurement object 8 which is a magnetic body and passes through the inside, and then flows to the S pole of the left magnet unit 3L.
  • FIG. 3B simulates the formation of a magnetic circuit according to the measurement principle of the present invention.
  • a leftward magnetic loop-like leaked magnetic field is generated from the N extreme part to the S extreme part at the gap part in the middle of the broken part.
  • the magnetic flux density of the break gap also increases, resulting in a magnetic loop leakage magnetic field resulting in the break gap. Will also be strong.
  • each magnet unit 3L, 3R one in which a low carbon steel of 52 mm ⁇ 52 mm ⁇ 25 mm as a yoke material is brought into contact with one surface of a 52 mm ⁇ 52 mm ⁇ 25 mm neodymium magnet is applied, and magnet units 3L, 3 R A magnetic circuit is formed by disposing 300 mm above the position of 25 cm on each side in the longitudinal direction (Y direction) from the fracture site of the deformed steel bar.
  • a magnetic flux density of about 16 mT is generated at the central part of the gap cross section of the fractured part in the state shown in FIG. 3B in which the magnetic circuit is formed.
  • a constant magnetic flux density is obtained at the center of the gap section of the broken portion of the deformed steel bar due to the residual magnetic characteristics of the deformed steel bar. Remains, but the value only produces a flux density of around 2 mT.
  • the method of forming the magnetic circuit can generate a large leakage flux at the fracture site as compared with the method of utilizing the residual magnetic flux. Therefore, in the present invention, the nondestructive inspection of the deep fog measurement object 8 is enabled by using the method of forming the magnetic circuit on the measurement object 8. For example, in a device utilizing the conventional magnetic flux leakage flux method which performs magnetization and measurement in two steps, since the leaked magnetic flux is weak, the cover depth at which breakage of the object to be measured 8 can be determined is about 200 mm. On the other hand, in the method of forming the magnetic circuit of the present invention, since the leakage magnetic flux is strong, breakage can be detected even when the fog exceeds 200 mm.
  • PC steels that require high tension generally have smaller residual magnetic properties than crude irons such as rebar steel rods, and PC steels that are often placed in deep-cover positions
  • a method of determining the breakage while forming the magnetic circuit of the present invention is preferable.
  • FIG. 4 is a schematic view in which the sensor unit 2 is disposed at the center, and the magnet units 3L and 3R are disposed at the left and right, and shows that they are disposed adjacent to the measurement object 8 to form a magnetic circuit. . That is, these are arranged in the order of the magnet unit 3L, the magnetic sensor 21, and the magnet unit 3R, and the magnet unit 3L is placed on the measurement object 8 adjacent to the array and extending in the same direction (Y direction).
  • a magnetic circuit is formed by applying magnetic fields of opposite polarities to each other from 3R, and in this state, the magnetic sensor 21 detects the magnetic field from the object to be measured 8.
  • the direction in which the object to be measured extends in the Y direction is not limited to the longitudinal direction of the object, and the magnet units 3L and 3R oppose the left and right magnet units even when the width direction of the strip is Y direction. It is measurable if it is long.
  • a main rebar PC steel
  • the magnet units 3L and 3R as rod-like magnetic materials which are the measurement object 8, and one magnet unit (3R) is generated
  • a magnetic circuit is formed in which the magnetism flows into the other magnet unit (3L) through the main rebar.
  • the end faces of the S pole and the N pole are generated at the broken part, and a looped magnetic field is generated around the broken part.
  • the magnetic sensor 21 of the sensor unit 2 is a disturbance of the magnetic loop generated at the broken portion of the main rebar, it is vertical direction (Z direction) in the case of a single axis sensor, vertical direction in the case of a three axis sensor, left and right, front and back direction (XYZ direction The magnetic field component of) is detected.
  • Z direction vertical direction
  • XYZ direction front and back direction
  • the magnetic sensor 21 does not detect the disturbance because the disturbance of the magnetic loop occurring at the broken part does not occur.
  • a three-axis sensor capable of detecting magnetic field components in three axis directions orthogonal to each other is preferable, but three single axes in which sensor axes are respectively arranged in the three axis directions It may be configured by a combination of sensors.
  • the crossing rebar (starlap) 7 is arranged in parallel with the main rebar (8), but since it is arranged in parallel with the magnetic circuit, a large disturbance of the magnetic field occurs to the extent that it interferes with the measurement. There is no.
  • FIGS. 5 and 6 show schematic diagrams for explaining the influence of the magnetic field of the magnet on the magnetic sensor 21 for explaining the measurement principle of the present invention.
  • FIG. 5 shows the configuration of the comparative example, and normal main magnets 31L and 31R are disposed on the left and right of the magnetic sensor 21.
  • the bottom main surface side of the left main magnet 31L is an S pole, and the top surface side is an N pole. Inside the magnet, a magnetic flux is generated from the bottom surface side toward the top surface side.
  • the magnetism emitted from the top surface of the N pole returns to the S pole of the bottom surface in a loop. An upward magnetic field is generated at the bottom of the magnet.
  • the right main magnet 31R is reverse to the above, and the bottom side is N pole and the top side is S pole, and inside the magnet, magnetic flux is generated from the top side toward the bottom side. Outside the magnet, the magnetism emitted from the bottom of the north pole returns to the top south pole so as to form a loop. A downward magnetic field is generated at the bottom of the magnet.
  • the external magnetic field generated around the left and right main magnets 31L, 31R is also exposed to the strong magnetic field in the downward direction at the position near the left main magnet 31L. At a position near the magnet 31R, it is exposed to a strong magnetic field in the upward direction.
  • the magnetic sensor 21 it is not preferable that the magnetic sensor 21 be directly exposed to the magnetic field of the magnet as described above because it is necessary to capture minute changes in the magnetic field generated at the fracture site of the measurement object. Therefore, they are configured as shown in FIG.
  • region in FIG. 6 in the nondestructive inspection apparatus 1 of this embodiment is shown. Similar to the comparative example of FIG. 5, the normal main magnets 31L and 31R are disposed on the left and right of the magnetic sensor 21, and the magnetic field adjustment members 32L and 32R are disposed between the left and right main magnets 31L and 31R and the magnetic sensor 21. It is done.
  • the magnetic sensor 21 On the outside of the left main magnet 31L, the magnetism emitted from the upper surface of the N pole returns to the S pole of the bottom so as to draw a loop, but on the side where the magnetic field adjusting member 32L is disposed, the magnetic field adjusting member 32L becomes a wall, The magnetic sensor 21 is prevented from being exposed to strong magnetism.
  • the magnetism emitted from the bottom of the N pole returns to the S pole of the upper surface so as to draw a loop, but on the side where the magnetic field adjusting member 32R is disposed, the magnetic field adjusting member 32R is on the wall
  • the magnetic sensor 21 is prevented from being exposed to strong magnetism.
  • the magnetic sensor 21 is prevented from being directly exposed to the magnetic field of the magnet by the effects of the magnetic field adjustment members 32L and 32R, and the minute change in the magnetic field generated at the fracture site of the measurement object is accurately performed by the magnetic sensor 21. It becomes possible to capture.
  • FIGS. 7A and 7B show schematic diagrams for explaining the effect of the Halbach array magnet.
  • the faces of the N pole and the S pole of the magnet face each other, and the amount of magnetic flux generated at the pole face of the magnet is the same except for the direction of the magnetism.
  • FIG. 7A shows a comparative example, in which the magnets are arranged side by side simply by alternately switching the upper and lower polarities alternately, and the strengths of the magnetic fields generated on the upper surface side and the lower surface side are the same.
  • FIG. 7B is a schematic view of the case where the magnets are arranged in the Halbach arrangement. As shown in FIG.
  • FIGS. 8A and 8B show examples of effective combination arrangements of the main magnet and the Halbach magnet.
  • the magnet units 3L and 3R used in the present embodiment have a left-right symmetric configuration with a left-right pair.
  • the magnet units 3L and 3R are roughly divided into main magnets 31L and 31R, Halbach magnets (32L and 32R), a yoke 33, and a spacer 34.
  • the main magnets 31L and 31R are for forming a magnetic circuit on an object to be measured, and thus are realized using four neodymium magnets of approximately 50 mm square and 25 mm thickness, for example.
  • the Halbach magnet (32L, 32R) is configured by combining three neodymium magnets, and is disposed so that the side of the strong magnetic field faces the main magnet and the side of the weak magnetic field faces outward facing the magnetic sensor 21.
  • the main magnet 31L is disposed such that the N pole side is the bottom surface.
  • the middle magnet of Halbach magnet (32L) has the N pole facing the main magnet, and the upper and lower magnets of Halbach magnet (32L) are arranged with the N pole side facing the middle magnet of Halbach magnet (32L) Ru.
  • the N pole and the S pole are replaced.
  • the magnetic fields of the main magnets 31L, 31R are suppressed by the magnetic fields of the Halbach magnets (32L, 32R), and the magnetic force directed to the magnetic sensor 21 is reduced. That is, the magnetic field directed to the magnetic sensor 21 is reduced while the magnetic field applied to the measurement object 8 is intensified. Therefore, in the nondestructive inspection device 1, the magnetic field directed to the magnetic sensor 21 is reduced with respect to the magnetic field applied to the measurement object 8. Therefore, the magnetic sensor 21 can accurately detect the magnetic field component from the measurement object 8 without embedding it in the magnetic field directed from the magnet units 3L and 3R to the magnetic sensor 21.
  • the yoke 33 is provided for the effect of enhancing the magnetic force in the downward direction of the main magnets 31L and 31R and for adsorbing a plurality of magnets to stably fix each of them. Further, since the spacers 34 can not be disposed adjacent to each other because the repulsive forces of the respective magnets are too strong, they are used as spacing members for disposing the magnets at a predetermined distance apart.
  • the magnet units 3L and 3R have the same thickness dimensions of the magnetic field adjustment members 32L and 32R and the main magnets 31L and 31R in the Z direction, and a sufficient size between the main magnets 31L and 31R and the magnetic sensor 21.
  • the magnetic field adjusting members 32L and 32R are arranged in a space effective manner.
  • neodymium magnets are preferably adopted as the main magnets 31L, 31R, and Halbach magnets (32L, 32R) for adjusting the magnetic field of the strong main magnets are also neodymium magnets. It is preferable to adopt the same, but the same effect can be obtained with an inexpensive ferrite magnet.
  • FIG. 9 shows another configuration example of the nondestructive inspection device.
  • a slide mechanism is provided to move the magnetic sensors 21 of the sensor unit 2 in the width direction (X direction) as a one-dimensional array in the Y direction.
  • the slide mechanism is eliminated, and the magnetic sensor 21 is two-dimensionally arranged on the XY plane in the sensor unit 2.
  • Plane data indicating a two-dimensional magnetic field distribution on the measurement plane (XY plane) facing the sensor 21 can be obtained.
  • the nondestructive inspection device 1 shown in FIG. 2 or 9 replacement of the arrangement of the magnetic sensor 21 with one magnetic field application unit (3L) and the other magnetic field application unit (3R) is made possible. It is preferable to implement a configuration in which the pole direction of the magnetic circuit formed on the measurement object is reversible. As a result, without changing the relative arrangement of the object to be measured and the magnetic sensor 21, the pole directions of the magnetic circuit can be made opposite to each other, and two plane data can be acquired.
  • the sensor unit 2 is also inverted, so the relative arrangement between the object to be measured and the magnetic sensor 21 changes, and variations in the sensor characteristics of the elements of the magnetic sensor 21 occur.
  • the structure to make it reversible may simply remove the two magnet units 3L and 3R from the support mechanism 4 once, replace them, and reattach them to the support mechanism 4.
  • two magnet units 3L such as a mechanism in which a sub-frame supporting two magnet units 3L, 3R is provided independently, and the same sub-frame is rotatably connected to a main frame supporting the sensor unit 2 etc. You may comprise the mechanism which can be reversed without removing 3R from the support mechanism 4.
  • FIG. 9 shows an example in which the sensors are arranged in a square lattice
  • the method of two-dimensional arrangement of the sensors may be a checkerboard arrangement or the like, and is not limited to the square lattice arrangement.
  • FIG. 10 shows a block diagram of a circuit used to generate surface data provided in the sensor unit 2.
  • the one-line portion 2a of the circuit is provided with a plurality of magnetic sensors 21 arranged in the one-line portion 2a shown also in FIGS. 2 and 9, and each magnetic sensor 21 amplifies a signal.
  • how to arrange several magnetic sensor 21 is linear form, zigzag arrangement, etc. is arbitrary. In the device configuration shown in FIG.
  • FIG. 11 shows a basic inspection flow of the processing of the nondestructive inspection device of the present embodiment and the nondestructive inspection method. This is the case where the nondestructive inspection device 1 shown in FIG. 2 is used.
  • Step S1 The nondestructive inspection device 1 is installed so that the magnetic sensor 21 faces the surface of the measurement object 8 in proximity to the surface, and a magnetic field is applied from the magnet units 3L and 3R to make a magnetic circuit on the measurement object 8 Form
  • the magnetic sensor 21 detects the magnetic flux from the measurement object 8 in the magnetic circuit formation state in step S1.
  • Step S3 The sensor unit 2 is shifted in the width direction (X direction) without changing the position of the nondestructive inspection device 1.
  • Step S4 It is determined whether measurement at all shift positions is completed, and if it is not completed, the process returns to step S2. If it has been completed, the process proceeds to step S4.
  • Step S5 From the data sampled at all shift positions, the magnetic field distribution of the entire measurement surface is created. The data at this time is plane data of one axis in the case of a single-axis sensor, and plane data of three axes in the case of a three-axis sensor.
  • Step S6 The generated surface data is analyzed to determine whether or not the magnetic field is disturbed due to breakage or corrosion of the object to be measured, and if there is any disturbance in the magnetic field, it is estimated as an abnormal site such as breakage or corrosion. This completes the series of measurements.
  • the nondestructive inspection device 1 shown in FIG. 9 there is no circulation process of steps S2, S3 and S4, and surface data is acquired at one time.
  • the abnormality determination is performed by the processing of the cloud computer 9.
  • the processing of the cloud computer 9 When the measurement object is normal and continuity is maintained, no large local magnetic field change occurs. Conversely, when breakage or corrosion occurs in the object to be measured and the continuity is lost, a local rapid magnetic field change occurs in the site.
  • the abnormality determination there is a determination method based on the difference value between the magnetic field strength value at the coordinate of interest and the magnetic field strength value around it.
  • the presence or absence of abnormality is determined based on whether the absolute value of the slope exceeds a predetermined value.
  • the determination is performed on all the magnetic field strength values in the three axial directions in the case of the single axis sensor, and in the case of the three axial sensors, in the case of the three axis sensor.
  • the predetermined threshold be set in accordance with the detection pitch and the axial direction of the magnetic field component.
  • the information processing apparatus that determines the abnormality of the measurement object based on the surface data is not limited to the cloud computer 9, but may be a computer connected one-to-one to the nondestructive inspection apparatus or integrated with the nondestructive inspection apparatus There is no limitation on the hardware configuration, such as a computer mounted on a computer. Processing in one station of the cloud computer 9 is advantageous in terms of information accumulation, uniform processing, use, and the like.
  • the effect of blocking the magnetic force of the main magnet applied to the magnetic sensor is obtained by arranging the Halbach magnet with the side of the strong magnetic field facing the main magnet and the side of the weak magnetic field facing the magnetic sensor. Can be generated.
  • the detection accuracy of the magnetic sensor generated from the outside of the measurement object, that is, from the magnetic field application unit and passing through the measurement object is improved.
  • the inspection accuracy of nondestructive inspection can be improved.
  • each of the magnetic field application units only needs to reduce the magnetic field directed to the magnetic sensor with respect to the magnetic field applied to the measurement object, the low value represented by SS400 as a magnetic field adjustment member
  • the method of arranging a magnetic shield made of carbon steel and the method of arranging a small magnet for repelling magnetism also have certain effects.
  • the magnetic shielding method has the disadvantage that the shield absorbs even the components of the magnetic circuit, and the method of arranging the repelling magnet makes it difficult to optimize the strength setting and the arrangement of the repelling magnet.
  • positioning a Halbach magnet as an adjustment member is preferable.
  • each of the magnetic field application units may be arranged with only the Halbach magnet in the magnetic field application unit, as long as the magnetic field directed to the magnetic sensor is reduced with respect to the magnetic field applied to the measurement object. Also in this case, if the side of the weak magnetic field in FIG. 7B of the Halbach magnet is made to face the magnetic sensor side, the magnetic field directed to the magnetic sensor is reduced with respect to the magnetic field applied from the Halbach magnet to the measurement object. However, in order to make the magnetic field applied to the object to be measured stronger, it is preferable to arrange the main magnet in addition to the Halbach magnet as in the above embodiment.
  • the present invention can be used for a nondestructive inspection device such as a reinforcing bar embedded in concrete, a nondestructive inspection system, and a nondestructive inspection method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

The objective of the present invention is to improve the accuracy of detection, by means of a magnetic sensor, of a magnetic field which is generated externally to an object being measured and which has passed through the object being measured, in order to improve the inspection accuracy of nondestructive inspection. A nondestructive inspecting device 1 has a configuration in which one magnetic application unit (3L), a magnetic sensor 21, and another magnetic application unit (3R) are arrayed in this order, magnetic fields having mutually opposite polarities are applied from the magnetic application units to an object being measured which is adjacent to said array and which extends in the same direction as the array, to form a magnetic circuit, and in this state a magnetic field from the object being measured is detected using the magnetic sensor. Each of the magnetic application units has magnets in mainly a Halbach array on the magnetic sensor side thereof as magnetic field adjusting members, as a result of which the magnetic field applied to the magnetic sensor is reduced with respect to the magnetic field applied to the object being measured.

Description

非破壊検査装置、非破壊検査システム及び非破壊検査方法Nondestructive inspection device, nondestructive inspection system and nondestructive inspection method
 本発明は、磁気を利用した非破壊検査に関する。 The present invention relates to nondestructive inspection using magnetism.
 磁気を利用した非破壊検査の応用範囲としては、コンクリートやゴム等の非磁性体材料に内包された鉄筋や鋼棒、ワイヤー等の磁性材料の腐食や劣化による破断の診断、特には、道路や鉄道の橋桁や橋脚、床版内のPC鋼材や鉄筋の破断診断が挙げられる。
  従来の磁気を用いたコンクリート内部の鉄筋やPC鋼材の破断判定を非破壊で行う技術として、漏洩磁束法による検査装置が提案されている。
 従来の磁気非破壊検査システムでは、測定対象物に磁気回路を形成した状態での磁気測定は、磁気回路生成用磁石が作り出す大きな磁場に測定対象物の破断部位に生じる小さな磁場変化が埋もれてしまうために判定が困難であるとして、「着磁」と「測定」を分離した2ステップ工程による測定対象物の残留磁束を利用する方法が採用されている。
 例えば特許文献1には、「着磁」と「測定」の2ステップによる方法として、永久磁石よる着磁後、磁石を撤去し、長手方向に離間配置された一対のセンサを鉄筋長手方向に走査し、2センサの計測値の差分より微分値を求めて判定する技術が記載されている。
The application range of nondestructive inspection using magnetism is diagnosis of fracture due to corrosion or deterioration of magnetic materials such as steel bars and wires, etc. which are enclosed in nonmagnetic materials such as concrete and rubber, especially road and Failure diagnosis of steel bars and reinforcing bars in bridge girder and bridge piers of railways and floor slabs can be mentioned.
As a technique for nondestructively determining breakage of reinforcing bars inside concrete and steel using a conventional magnet, an inspection apparatus based on the leakage flux method has been proposed.
In the conventional magnetic nondestructive inspection system, in the magnetic measurement in the state where the magnetic circuit is formed on the measurement object, the small magnetic field change generated at the fracture site of the measurement object is buried in the large magnetic field produced by the magnet for magnetic circuit generation. Because of this, it is difficult to judge the method, which uses the residual magnetic flux of the object to be measured in a two-step process in which “magnetization” and “measurement” are separated.
For example, in Patent Document 1, as a method by two steps of “magnetization” and “measurement”, after magnetizing with a permanent magnet, the magnet is removed, and a pair of sensors disposed apart in the longitudinal direction are scanned in the longitudinal direction of rebar There is also described a technique for determining and determining a derivative value from the difference between measurement values of two sensors.
 この測定対象物の残留磁束を利用する方法では、測定対象物の破断面に生じる磁場変化が小さいため、測定対象物のかぶり(埋没深さ)が深い場合に破断部位に生じる磁場変化を捉え難いという課題があった。
 それに対して測定対象物である鉄筋やPC鋼材等に磁気回路を形成した状態であれば、従来の残留磁束を利用する従来の方法に比べて、測定対象物の破断部位に大きな磁場変化を発生させることができる為、測定対象物のかぶり(埋没深さ)が深い場合でも、破断部位に生じる磁場変化を捉え易いという効果がある。
 例えば特許文献2には、測定対象物に磁気回路を形成した状態での磁気測定方法として、極性の異なる1対の磁石を対向して配置し、対磁石の磁場が均衡によりゼロになる位置に磁気センサを設ける技術が記載されている。同技術では、被検出物(鉄筋)に磁気回路を形成した状態で、鉄筋長手方向に移動させながら検査を行って鉄筋破断判定をする。破断がある側の磁力が小さくなり均衡が崩れることを判定原理とする。特許文献2に記載の技術では、磁気センサを設ける位置が限定されてしまい、複数の磁気センサを配列した磁気センサレイを設置できない。
In this method of utilizing the residual magnetic flux of the object to be measured, the change in the magnetic field generated on the fracture surface of the object to be measured is small, so it is difficult to catch the change in the magnetic field generated on the fracture site when the fog (embedding depth) of the object to be measured is deep There was a problem called.
On the other hand, if the magnetic circuit is formed on the reinforcing bar which is the measurement object, PC steel material, etc., a large magnetic field change is generated at the fracture site of the measurement object as compared with the conventional method using the residual flux. Since it can be made to do, even if the fog (embedding depth) of the measuring object is deep, there is an effect that it is easy to catch the change of the magnetic field generated at the fracture site.
For example, in Patent Document 2, as a magnetic measurement method in a state where a magnetic circuit is formed on an object to be measured, a pair of magnets having different polarities is disposed to face each other, and the magnetic field of the pair of magnets is zeroed by balance. Techniques for providing a magnetic sensor are described. In the same technology, in a state where a magnetic circuit is formed on a detection target (rebar), inspection is performed while moving in the longitudinal direction of the rebar to determine rebar breakage determination. The judgment principle is that the magnetic force on the side with breakage becomes smaller and the balance collapses. In the technology described in Patent Document 2, the position where the magnetic sensor is provided is limited, and it is impossible to install the magnetic sensor array in which a plurality of magnetic sensors are arranged.
特許第3734822号公報Patent No. 3734822 特開2004-279372号公報JP 2004-279372 A
 しかしながら、「磁気回路形成」と「測定」を同時に行う構成の装置及び方法では、測定対象物に磁気回路を形成するための磁気回路生成用磁石が発生する磁力が磁気センサに与える磁場が大きく、それに対して測定対象物の破断部位で発生する磁場が磁気センサに与える磁場が小さいため、前述の磁気回路生成用磁石による磁場に測定対象物の破断部位で発生する磁場成分が埋もれてしまうため判定が困難になってしまうという課題がある。
 なお、上掲の特許文献2に記載の技術では、上記「ゼロになる位置」以外に配置した磁気センサによると、磁気回路生成用磁石による磁場に測定対象物の破断部位で発生する磁場成分が埋もれてしまうため判定が困難になってしまうという課題が依然として存在する。
However, in the apparatus and method configured to simultaneously perform "magnetic circuit formation" and "measurement", the magnetic field generated by the magnetic circuit generation magnet for forming the magnetic circuit on the measurement object gives a large magnetic field to the magnetic sensor, On the other hand, since the magnetic field generated from the broken part of the measurement object to the magnetic sensor is small, the magnetic field component generated at the broken part of the measurement object is buried in the magnetic field generated by the aforementioned magnetic circuit generation magnet. There is a problem that becomes difficult.
In the technique described in Patent Document 2 mentioned above, according to the magnetic sensor disposed at a position other than the above “position to be zero”, the magnetic field component generated at the broken part of the measurement object in the magnetic field by the magnet for generating the magnetic circuit There is still a problem that the determination becomes difficult because it is buried.
 本発明は以上の従来技術における問題に鑑みてなされたものであって、測定対象物の外部から発生し同測定対象物を経由した磁場の磁気センサによる検出精度を向上し、非破壊検査の検査精度を向上することを課題とする。 The present invention has been made in view of the above problems in the prior art, and improves the detection accuracy of the magnetic field generated from the outside of the measurement object via the measurement object by the magnetic sensor, and performs nondestructive inspection inspection. The task is to improve the accuracy.
 以上の課題を解決するための請求項1記載の発明は、非磁性体に内包される磁性材料を測定対象物とした非破壊検査装置であって、
一方の磁場印加ユニット、磁気センサ、他方の磁場印加ユニットの順でこれらが配列し、同配列に隣接し同配列と同方向に延在した測定対象物に対し、前記一方の磁場印加ユニット及び前記他方の磁場印加ユニットから互いに逆極性の磁場を印加して磁気回路を形成した状態の同測定対象物からの磁場を前記磁気センサで検知する構成を有し、
前記磁場印加ユニットのそれぞれは、前記測定対象物に印加する磁場に対して、前記磁気センサに向かう磁場が低減されている非破壊検査装置である。
The invention according to claim 1 for solving the above problems is a nondestructive inspection device in which a magnetic material contained in a nonmagnetic material is an object to be measured,
These are arranged in the order of one magnetic field application unit, magnetic sensor, and the other magnetic field application unit, and the one magnetic field application unit and the one magnetic field application unit for the measurement object adjacent to the array and extending in the same direction. The magnetic sensor is configured to detect a magnetic field from the same measurement object in a state where magnetic fields of opposite polarities are applied from the other magnetic field application unit to form a magnetic circuit,
Each of the magnetic field application units is a nondestructive inspection device in which the magnetic field directed to the magnetic sensor is reduced with respect to the magnetic field applied to the measurement object.
 請求項2記載の発明は、前記磁場印加ユニットのそれぞれは、前記測定対象物に印加する磁場を発生させるためのメイン磁石を有し、前記メイン磁石によって発生した磁場成分のうち、前記磁気センサに向かう磁場成分を低減する効果をもつ磁場調整部材を前記メイン磁石と前記磁気センサの間に配置した構成を有する請求項1に記載の非破壊検査装置である。 In the invention according to claim 2, each of the magnetic field application units has a main magnet for generating a magnetic field to be applied to the measurement object, and the magnetic sensor among the magnetic field components generated by the main magnet The nondestructive inspection device according to claim 1, further comprising a magnetic field adjusting member having an effect of reducing a magnetic field component to be directed between the main magnet and the magnetic sensor.
 請求項3記載の発明は、前記磁場調整部材は、磁気方向を異ならせた3個以上の磁石を組み合わせたハルバッハ配列の磁石であり、当該ハルバッハ配列の磁石は、ハルバッハ配列の効果による強磁場側面を前記メイン磁石側に対向させ、弱磁場側面を磁気センサ側に対向させて配置されている請求項2に記載の非破壊検査装置である。 The invention according to claim 3 is that the magnetic field adjustment member is a Halbach-arrayed magnet in which three or more magnets having different magnetic directions are combined, and the Halbach-arrayed magnet has a strong magnetic field side due to the effect of Halbach-array. 3. The nondestructive inspection device according to claim 2, wherein the magnetic sensor is disposed so that the side of the weak magnetic field faces the side of the magnetic sensor.
 請求項4記載の発明は、前記一方の磁場印加ユニットと前記他方の磁場印加ユニットとは、前記磁気センサに対する配置の入れ替わりが可能にされ、同入れ替わりにより前記測定対象物に形成する磁気回路の極向きが反転可能とされた請求項1から請求項3のうちいずれか一に記載の非破壊検査装置である。 In the invention according to claim 4, in the one magnetic field application unit and the other magnetic field application unit, replacement of the arrangement with respect to the magnetic sensor is enabled, and a pole of a magnetic circuit formed on the object to be measured by the replacement. The nondestructive inspection device according to any one of claims 1 to 3, wherein the direction is made reversible.
 請求項5記載の発明は、前記一方の磁場印加ユニット、前記磁気センサ、前記他方の磁場印加ユニットが直線上に配置されている請求項1から請求項4のうちいずれか一に記載の非破壊検査装置である。 The invention according to claim 5 is the non-destructive according to any one of claims 1 to 4, wherein the one magnetic field application unit, the magnetic sensor, and the other magnetic field application unit are arranged on a straight line. It is an inspection device.
 請求項6記載の発明は、前記配列の前記測定対象物に隣接する面に平行で、前記一方の磁場印加ユニットと前記他方の磁場印加ユニットとを結ぶ仮想線に直交する幅方向に前記磁気センサを、前記一方の磁場印加ユニットと前記他方の磁場印加ユニットとに対して相対的にスライドさせることが可能なスライド機構を有する請求項1から請求項5のうちいずれか一に記載の非破壊検査装置である。 In the invention according to claim 6, the magnetic sensor is parallel to a surface adjacent to the measurement object of the array and in the width direction orthogonal to an imaginary line connecting the one magnetic field application unit and the other magnetic field application unit. The nondestructive inspection according to any one of claims 1 to 5, further comprising a slide mechanism capable of sliding relative to the one magnetic field application unit and the other magnetic field application unit. It is an apparatus.
 請求項7記載の発明は、前記配列の前記測定対象物に隣接する面に垂直な方向の前記磁場調整部材及び前記メイン磁石の厚み寸法が互いに同じである請求項2又は請求項3に記載の非破壊検査装置である。 The thickness dimension of the magnetic field adjustment member and the main magnet in the direction perpendicular to the surface adjacent to the measurement object of the array according to the invention of claim 7 is the same as that of claim 2 or 3. It is a nondestructive inspection device.
 請求項8記載の発明は、前記磁気センサは、ライン状、千鳥配列を含む所定の配列に並べられた複数からなる請求項1から請求項7のうちいずれか一に記載の非破壊検査装置である。 The invention according to claim 8 is the nondestructive inspection device according to any one of claims 1 to 7, wherein the magnetic sensor is composed of a plurality of magnetic sensors arranged in a predetermined array including a linear array and a staggered array. is there.
 請求項9記載の発明は、前記磁気センサは、互いに直交する3軸方向の磁場成分を検知可能な3軸センサ又は同3軸方向にセンサ軸がそれぞれ配置された3つの1軸センサにより構成されている請求項1から請求項8のうちいずれか一に記載の非破壊検査装置である。 In the invention according to claim 9, the magnetic sensor is constituted by a three-axis sensor capable of detecting magnetic field components in three axial directions orthogonal to each other or three single-axis sensors in which sensor axes are respectively arranged in the three axial directions. It is the nondestructive inspection device according to any one of claims 1 to 8.
 請求項10記載の発明は、前記磁気センサは、トンネル型磁気抵抗センサ(TMRセンサ)である請求項1から請求項9のうちいずれか一に記載の非破壊検査装置である。 The invention according to claim 10 is the nondestructive inspection device according to any one of claims 1 to 9, wherein the magnetic sensor is a tunnel type magnetoresistive sensor (TMR sensor).
 請求項11記載の発明は、請求項1から請求項10のうちいずれか一に記載の非破壊検査装置と、情報処理装置とを備え、
前記情報処理装置は、前記非破壊検査装置から受けた測定情報に基づき前記測定対象物の異常を判定する非破壊検査システムである。
The invention according to claim 11 comprises the nondestructive inspection device according to any one of claims 1 to 10, and an information processing device,
The information processing apparatus is a nondestructive inspection system that determines an abnormality of the measurement object based on measurement information received from the nondestructive inspection apparatus.
 請求項12記載の発明は、前記非破壊検査装置は前記測定対象物の前記磁気センサに対向した測定面における2次元磁場分布を示す面データを前記情報処理装置に出力し、
前記情報処理装置は、前記面データに基づき前記測定対象物の異常を判定する請求項11に記載の非破壊検査システムである。
In the invention according to claim 12, the nondestructive inspection device outputs, to the information processing device, surface data indicating a two-dimensional magnetic field distribution on a measurement surface of the measurement object facing the magnetic sensor,
The non-destructive inspection system according to claim 11, wherein the information processing apparatus determines an abnormality of the measurement object based on the surface data.
 請求項13記載の発明は、請求項1から請求項10のうちいずれか一に記載の非破壊検査装置を用いて、前記測定対象物を前記磁気センサに対向させ、前記測定対象物の前記磁気センサに対向した測定面における2次元磁場分布を示す面データを得て、
前記面データに基づき前記測定対象物の異常を判定する非破壊検査方法である。
The invention according to claim 13 uses the nondestructive inspection device according to any one of claims 1 to 10 to make the object to be measured face the magnetic sensor, and the magnetism of the object to be measured Obtain surface data indicating a two-dimensional magnetic field distribution on the measurement surface facing the sensor,
It is a nondestructive inspection method which judges abnormalities of the measurement subject based on the surface data.
 本発明によれば、磁場印加ユニットから磁気センサに向かう磁場が低減されているので、測定対象物の外部、すなわち、磁場印加ユニットから発生し同測定対象物を経由した磁場の磁気センサによる検出精度を向上し、非破壊検査の検査精度を向上することができる。 According to the present invention, since the magnetic field from the magnetic field application unit toward the magnetic sensor is reduced, the detection accuracy of the magnetic sensor generated from the outside of the measurement object, that is, from the magnetic field application unit and passing through the measurement object Can improve the inspection accuracy of the nondestructive inspection.
本発明の一実施形態に係る非破壊検査システムの全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the nondestructive inspection system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る非破壊検査装置の全体外観図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole external view of the nondestructive inspection apparatus which concerns on one Embodiment of this invention. 残留磁束による磁界の強度を示した模式図である。It is a schematic diagram which showed the intensity | strength of the magnetic field by a residual magnetic flux. 磁気回路による発生磁界の強度を示した模式図である。It is a schematic diagram showing the intensity of the magnetic field generated by the magnetic circuit. 本発明の一実施形態に係る非破壊検査装置による測定状態の模式図である。It is a schematic diagram of the measurement state by the nondestructive inspection apparatus which concerns on one Embodiment of this invention. 比較例に係り、磁気センサへの磁石磁場の影響の様子を説明するための模式図である。It is a schematic diagram for demonstrating the mode of the influence of the magnet magnetic field to a magnetic sensor in a comparative example. 本発明の一実施形態に係る非破壊検査装置におけるセンサ領域への磁場低減効果を説明するための模式図である。It is a schematic diagram for demonstrating the magnetic field reduction effect to the sensor area | region in the nondestructive inspection apparatus which concerns on one Embodiment of this invention. 比較例に係る組合せ磁石とその磁力線を示す模式図である。It is a schematic diagram which shows the combination magnet which concerns on a comparative example, and its magnetic force line. ハルバッハ配列の磁石とその磁力線を示す模式図である。It is a schematic diagram which shows the magnet of Halbach array, and its magnetic force line. 本発明の一実施形態に係る左磁石ユニット(左磁場印加ユニット)の模式図である。It is a schematic diagram of the left magnet unit (left magnetic field application unit) which concerns on one Embodiment of this invention. 本発明の一実施形態に係る右磁石ユニット(右磁場印加ユニット)の模式図である。It is a schematic diagram of the right magnet unit (right magnetic field application unit) which concerns on one Embodiment of this invention. 別構成例の非破壊検査装置の全体外観図である。It is a whole external view of the nondestructive inspection device of another example of composition. 本発明の一実施形態に係るセンサユニットに備えられる面データ作成に使用する回路のブロック図である。It is a block diagram of a circuit used for surface data creation with which a sensor unit concerning one embodiment of the present invention is equipped. 本発明の一実施形態に係る非破壊検査装置の処理及び非破壊検査方法の基本検査フローである。It is a basic inspection flow of processing of a nondestructive inspection device concerning one embodiment of the present invention, and a nondestructive inspection method.
 以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。 An embodiment of the present invention will be described below with reference to the drawings. The following is one embodiment of the present invention and does not limit the present invention.
 図1に本発明の一実施形態に係る非破壊検査システムの全体構成図を示す。
 図1に示すように本実施形態の非破壊検査システム10は非破壊検査装置1とクラウドコンピュータ9からなり、本実施形態の非破壊検査装置1は主に4つのブロックから構成されている。中心を担うセンサユニット2は磁気測定するためのブロックで、複数の磁気センサ21を搭載している。磁気センサ21は測定対象物方向からの1軸方向の磁場成分を検知する1軸センサでもよいが、磁気センサ周囲の3次元磁場分布を得ることができる3軸センサであることがより好ましい。磁気センサ21には半導体センサであるホール素子や磁気抵抗センサであるMRセンサ、MIセンサ、TMRセンサ(トンネル型磁気抵抗センサ)などが知られているが、より高感度なTMRセンサ(トンネル型磁気抵抗センサ)を適用することが好ましい。TMRセンサ(トンネル型磁気抵抗センサ)は磁気によって抵抗値が変化する素子で、抵抗ブリッジ回路組むことで磁気を電圧に変換して出力することができる。
The whole block diagram of the nondestructive inspection system concerning one embodiment of the present invention is shown in FIG.
As shown in FIG. 1, the nondestructive inspection system 10 according to the present embodiment comprises a nondestructive inspection device 1 and a cloud computer 9, and the nondestructive inspection device 1 according to the present embodiment mainly comprises four blocks. The sensor unit 2 which bears the center is a block for measuring the magnetism, and has a plurality of magnetic sensors 21 mounted thereon. The magnetic sensor 21 may be a single-axis sensor that detects a magnetic field component in one axial direction from the measurement object direction, but is more preferably a three-axis sensor that can obtain a three-dimensional magnetic field distribution around the magnetic sensor. The magnetic sensor 21 is known to be a Hall sensor as a semiconductor sensor, an MR sensor as a magnetoresistive sensor, an MI sensor, a TMR sensor (tunnel type magnetoresistive sensor), etc. However, a more sensitive TMR sensor (tunnel type magnetic sensor) It is preferable to apply a resistance sensor). A TMR sensor (tunnel type magnetoresistive sensor) is an element whose resistance value changes due to magnetism, and by combining a resistance bridge circuit, magnetism can be converted into voltage and output.
 磁気センサ21で生じた電圧をA/D部22でデジタル値に変換し、モバイル通信ユニット部23を介して、測定データを外部に送信する。センサユニット2には全体制御するCPU24の他、表示部25や操作部26も備わっている。送信されたデータは、本システムの情報処理装置の一例であるクラウドコンピュータ9で判定アルゴリズムにかけられ、測定対象物の状態判定がなされる。 The voltage generated by the magnetic sensor 21 is converted into a digital value by the A / D unit 22, and measurement data is transmitted to the outside through the mobile communication unit unit 23. The sensor unit 2 is provided with a display unit 25 and an operation unit 26 in addition to the CPU 24 for overall control. The transmitted data is subjected to a determination algorithm by the cloud computer 9 which is an example of the information processing apparatus of the present system, and the state determination of the measurement object is performed.
 本実施形態においては、一方の磁場印加ユニットと他方の磁場印加ユニットは、左磁石ユニット3Lと右磁石ユニット3Rに相当する。特段左右の区別は無く、名称は図面上の左右による。
 左磁石ユニット3Lと右磁石ユニット3Rは基本的に左右対称の構造で、それぞれメイン磁石31L,31Rと磁場調整部材32L,32Rで構成されている。
 左右のメイン磁石31L,31Rの極性は逆で、測定対象物の対向面であるメイン磁石31L,31Rの下面は、左右のうち一方がN極で他方がS極である。磁場調整部材32L,32Rはハルバッハ配列に磁石を組み合せたものが採用される。
In the present embodiment, one magnetic field application unit and the other magnetic field application unit correspond to the left magnet unit 3L and the right magnet unit 3R. There is no special distinction between left and right, and the names are based on the left and right on the drawing.
The left magnet unit 3L and the right magnet unit 3R are basically symmetrical in the left-right direction, and are composed of the main magnets 31L, 31R and the magnetic field adjustment members 32L, 32R, respectively.
The polarities of the left and right main magnets 31L, 31R are opposite to each other, and the lower surface of the main magnets 31L, 31R, which is the opposing surface of the object to be measured, has N poles on one side and S poles on the other. As the magnetic field adjustment members 32L and 32R, a combination of a Halbach arrangement and a magnet is employed.
 センサユニット2と左右の磁石ユニット3L,3Rは支持機構4で連結され保持される。
 支持機構4は単にセンサユニット2と左右の磁石ユニット3L,3Rを保持するだけでなく、センサユニット2と左右の磁石ユニット3L,3Rを相対的にスライドさせる機構を有し、異なった相対位置での磁気測定を可能にする。
The sensor unit 2 and the left and right magnet units 3L and 3R are connected by the support mechanism 4 and held.
The support mechanism 4 not only holds the sensor unit 2 and the left and right magnet units 3L and 3R, but also has a mechanism for causing the sensor unit 2 and the left and right magnet units 3L and 3R to slide relative to each other. Enable magnetic measurement of
 図2に本実形態の非破壊検査装置1の全体外観図を示す。
 図2に示すように支持機構4の中央部にセンサユニット2が配置され、幅方向Xにセンサユニット2がスライド可能な構成になっている。左右の磁石ユニット3L,3Rは支持機構4の中央部のY方向の両端に配置される。また支持機構4にはグリップ41が設けられ、非破壊検査装置1全体を運んだり、測定対象物にあてがったりする際に非破壊検査装置1全体を安定に保持できるようになっている。
The whole external view of the nondestructive inspection apparatus 1 of this embodiment is shown in FIG.
As shown in FIG. 2, the sensor unit 2 is disposed at the center of the support mechanism 4, and the sensor unit 2 can slide in the width direction X. The left and right magnet units 3 </ b> L and 3 </ b> R are disposed at both ends of the central portion of the support mechanism 4 in the Y direction. Further, the support mechanism 4 is provided with a grip 41 so that the whole nondestructive inspection apparatus 1 can be stably held when carrying the whole of the nondestructive inspection apparatus 1 or when it is applied to an object to be measured.
 図3A,Bに残留磁束による磁界と磁気回路による発生磁界の強度を比較した模式図を示す。
 図3Aは従来の着磁と計測を別に行う2ステップ手順の着磁後の状態を模したものである。測定対象物8は、磁性材料である鉄筋鋼棒またはPC鋼材を想定し、中央部にギャップ1cm程度の破断が生じている状態を想定する(周りの非磁性体(コンクリート)を不図示とする。以下同じ)。
 測定対象物8は着磁によって磁気を帯びた弱い棒磁石状態となる。図3A,Bでは左端部がN極、右端部側がS極に着磁され、破断部位のギャプ部ではN極端部からS極端部への左向きの磁気ループ状の漏洩磁場が発生する。しかしながら図3Aの従来の着磁と計測を別に行う方法では、測定対象物8の残留磁気特性に委ねられ、磁石材料ではない一般的な鉄材の場合は非常に弱い磁気しか放てず、生成される漏洩磁場の磁束密度も小さいものとなる。
The schematic diagram which compared the intensity | strength of the magnetic field by a residual magnetic flux and the magnetic field generate | occur | produced by a magnetic circuit to FIG. 3A and B is shown.
FIG. 3A simulates the state after magnetization in a two-step procedure in which the conventional magnetization and measurement are performed separately. The measurement object 8 assumes a reinforcing steel bar or PC steel material which is a magnetic material, and assumes a state in which a break of about 1 cm in gap is generated at the central portion (not shown non-magnetic material (concrete)) .same as below).
The object to be measured 8 is in the state of a weak bar magnet which is magnetized by magnetization. In FIGS. 3A and 3B, the left end portion is magnetized to the N pole and the right end portion side to the S pole, and a leftward magnetic loop leakage magnetic field from the N extreme portion to the S extreme portion is generated in the gap portion of the fracture portion. However, in the method of separately performing the conventional magnetization and measurement in FIG. 3A, it is left to the residual magnetic characteristics of the object to be measured 8, and in the case of a general iron material which is not a magnet material, it emits only a very weak magnetism, The magnetic flux density of the leaked magnetic field is also small.
 図3Bは本発明の測定原理に係る磁気回路を形成している状態を模したものである。
 測定対象物8は同じく、鉄筋鋼棒またはPC鋼材を想定し、中央部にギャップ1cm程度の破断が生じている状態を想定する。測定対象物8は左右端の上方に配置された磁石ユニット3L,3Rの磁気により、測定対象物8の内部に磁気回路が形成された状態となっている。右磁石ユニット3RのN極から放たれた磁気は、磁性体である測定対象物8に集まってその内部を通過したのち、左磁石ユニット3LのS極に流れてゆく。図3Aと同様、途中の破断部位のギャプ部ではN極端部からS極端部への左向きの磁気ループ状の漏洩磁場が発生する。但し、磁気回路によって測定対象物8内に流れる磁束量は、残留磁束による磁束量に比べて大きい為、破断ギャップ部の磁束密度も大きくなり、結果として破断ギャップ部の生じる磁気ループ状の漏洩磁場も強いものとなる。
FIG. 3B simulates the formation of a magnetic circuit according to the measurement principle of the present invention.
Similarly, assuming that the measurement object 8 is a reinforcing steel bar or PC steel, it is assumed that a break of about 1 cm in gap is generated at the central portion. The measurement object 8 is in a state in which a magnetic circuit is formed inside the measurement object 8 by the magnetism of the magnet units 3L and 3R arranged above the left and right ends. The magnetism emitted from the N pole of the right magnet unit 3R gathers at the measurement object 8 which is a magnetic body and passes through the inside, and then flows to the S pole of the left magnet unit 3L. As in FIG. 3A, a leftward magnetic loop-like leaked magnetic field is generated from the N extreme part to the S extreme part at the gap part in the middle of the broken part. However, since the amount of magnetic flux flowing into the measuring object 8 by the magnetic circuit is larger than the amount of magnetic flux due to the residual magnetic flux, the magnetic flux density of the break gap also increases, resulting in a magnetic loop leakage magnetic field resulting in the break gap. Will also be strong.
 例えば、測定対象物8として長さ1m直径16mmの2本の鉄筋異形鋼棒を、破断部位を想定してギャップ1mm程度離して長手方向に対向させ、かぶり300mm位置を想定して磁石ユニット3L,3Rを配置する。各磁石ユニット3L,3Rとしては、52mm×52mm×25mmのネオジム磁石の1面にヨーク材として52mm×52mm×25mmの低炭素鋼を接触一体化させたものを適用し、磁石ユニット3L,3Rを異形鋼棒の破断部位から長手方向(Y方向)にそれぞれ左右25cmの位置の300mm上方に配置して磁気回路を形成する。この場合、その磁気回路が形成された図3Bに示すような状態での破断部位のギャップ部断面に中央部には、およそ16mTの磁束密度が生じる。この状態から磁石ユニット3L,3Rを撤去して図3Aに示すような状態とすると、異形鋼棒の破断部位のギャップ部断面に中央部には、異形鋼棒の残留磁気特性により一定の磁束密度の生成が残るが、その値はおよそ2mTの磁束密度が生じるに過ぎない。 For example, two reinforcing bar deformed steel rods with a length of 1 m and a diameter of 16 mm as the measurement object 8 are separated by about 1 mm with a gap of about 10 mm assuming the fracture site and facing each other in the longitudinal direction. Arrange 3R. As each magnet unit 3L, 3R, one in which a low carbon steel of 52 mm × 52 mm × 25 mm as a yoke material is brought into contact with one surface of a 52 mm × 52 mm × 25 mm neodymium magnet is applied, and magnet units 3L, 3 R A magnetic circuit is formed by disposing 300 mm above the position of 25 cm on each side in the longitudinal direction (Y direction) from the fracture site of the deformed steel bar. In this case, a magnetic flux density of about 16 mT is generated at the central part of the gap cross section of the fractured part in the state shown in FIG. 3B in which the magnetic circuit is formed. When the magnet units 3L and 3R are removed from this state and the state as shown in FIG. 3A is obtained, a constant magnetic flux density is obtained at the center of the gap section of the broken portion of the deformed steel bar due to the residual magnetic characteristics of the deformed steel bar. Remains, but the value only produces a flux density of around 2 mT.
 このように磁気回路を形成する方法は残留磁束を利用する方法に比べて、破断部位に大きな漏洩磁束を発生させることができる。
 よって本発明では、測定対象物8に磁気回路を形成する方法を用いることで深かぶりの測定対象物8の非破壊検査を可能とする。例えば従来の着磁と測定を2ステップで行う漏洩磁束法を利用した装置では、漏洩磁束が微弱なため、測定対象物8の破断判定が可能なかぶり深さは200mm程度が限界であった。それに対して、本発明の磁気回路を形成する方法では、漏洩磁束が強い為、200mmを超えるかぶりにおいても破断検知が可能となる。
 また、一般的には鉄筋鋼棒の様な粗鉄材に比べ、高い緊張力が求められるPC鋼材は残留磁気特性が小さいことも分かっており、深かぶり位置に配置されることの多いPC鋼材の破断判定には、本発明の磁気回路を形成させながら破断判定を行う方法が好ましい。
Thus, the method of forming the magnetic circuit can generate a large leakage flux at the fracture site as compared with the method of utilizing the residual magnetic flux.
Therefore, in the present invention, the nondestructive inspection of the deep fog measurement object 8 is enabled by using the method of forming the magnetic circuit on the measurement object 8. For example, in a device utilizing the conventional magnetic flux leakage flux method which performs magnetization and measurement in two steps, since the leaked magnetic flux is weak, the cover depth at which breakage of the object to be measured 8 can be determined is about 200 mm. On the other hand, in the method of forming the magnetic circuit of the present invention, since the leakage magnetic flux is strong, breakage can be detected even when the fog exceeds 200 mm.
It is also known that PC steels that require high tension generally have smaller residual magnetic properties than crude irons such as rebar steel rods, and PC steels that are often placed in deep-cover positions For the determination of breakage, a method of determining the breakage while forming the magnetic circuit of the present invention is preferable.
 図4に本実施形態の非破壊検査装置1の測定状態の模式図を示す。
 図4は、中央にセンサユニット2、左右に磁石ユニット3L、3Rを配置した模式図となっており、それらが測定対象物8の近傍に隣接設置され、磁気回路を形成している様子を示す。すなわち、磁石ユニット3L、磁気センサ21、磁石ユニット3Rの順でこれらが配列し、同配列に隣接し同配列と同方向(Y方向)に延在した測定対象物8に対し、磁石ユニット3L、3Rから互いに逆極性の磁場を印加して磁気回路を形成した状態であり、この状態で測定対象物8からの磁場を磁気センサ21で検知する構成である。なお、測定対象物のY方向に延在する方向は、その物の長手方向である場合に限らず、帯状物などの幅方向をY方向とする場合でも左右の磁石ユニット3L,3Rに対向する程度に長ければ測定可能である。
 図4に示す例では、測定対象物8である棒状の磁性材料として主鉄筋(PC鋼材)がセンサユニット2、磁石ユニット3L,3Rの下方に配置され、一方の磁石ユニット(3R)が発生する磁気が主鉄筋の中を通ってもう一方の磁石ユニット(3L)に流れ込む磁気回路が形成されている。
The schematic diagram of the measurement state of the nondestructive inspection apparatus 1 of this embodiment is shown in FIG.
FIG. 4 is a schematic view in which the sensor unit 2 is disposed at the center, and the magnet units 3L and 3R are disposed at the left and right, and shows that they are disposed adjacent to the measurement object 8 to form a magnetic circuit. . That is, these are arranged in the order of the magnet unit 3L, the magnetic sensor 21, and the magnet unit 3R, and the magnet unit 3L is placed on the measurement object 8 adjacent to the array and extending in the same direction (Y direction). A magnetic circuit is formed by applying magnetic fields of opposite polarities to each other from 3R, and in this state, the magnetic sensor 21 detects the magnetic field from the object to be measured 8. The direction in which the object to be measured extends in the Y direction is not limited to the longitudinal direction of the object, and the magnet units 3L and 3R oppose the left and right magnet units even when the width direction of the strip is Y direction. It is measurable if it is long.
In the example shown in FIG. 4, a main rebar (PC steel) is disposed below the sensor unit 2 and the magnet units 3L and 3R as rod-like magnetic materials which are the measurement object 8, and one magnet unit (3R) is generated A magnetic circuit is formed in which the magnetism flows into the other magnet unit (3L) through the main rebar.
 測定対象物8の主鉄筋はセンサユニット2の下方に破断部位があれば、破断部位にS極とN極の端面が発生し、破断部位の周囲にループ状の磁場が発生する。
 センサユニット2の磁気センサ21は、この主鉄筋の破断部位に生じる磁気ループの乱れを1軸センサなら上下方向(Z方向)、3軸センサなら上下、左右、前後方向(X・Y・Z方向)の磁場成分を検出する。図示しないが、主鉄筋に破断がない場合、破断部位に生じる磁気ループの乱れも生じない為、磁気センサ21は乱れを検出しない。なお、磁気センサ21として3軸センサを適用する場合、互いに直交する3軸方向の磁場成分を検知可能な3軸センサが好ましいが、同3軸方向にセンサ軸がそれぞれ配置された3つの1軸センサの複合により構成されていてもよい。
 図4では主鉄筋(8)と並行して交差鉄筋(スターラップ)7が配置されているが、磁気回路に平行に配置されている為、測定に支障となるほどの大きな磁場の乱れが生じることはない。
If the main rebar of the measuring object 8 has a broken part below the sensor unit 2, the end faces of the S pole and the N pole are generated at the broken part, and a looped magnetic field is generated around the broken part.
If the magnetic sensor 21 of the sensor unit 2 is a disturbance of the magnetic loop generated at the broken portion of the main rebar, it is vertical direction (Z direction) in the case of a single axis sensor, vertical direction in the case of a three axis sensor, left and right, front and back direction (XYZ direction The magnetic field component of) is detected. Although not shown, when the main rebar is not broken, the magnetic sensor 21 does not detect the disturbance because the disturbance of the magnetic loop occurring at the broken part does not occur. When a three-axis sensor is applied as the magnetic sensor 21, a three-axis sensor capable of detecting magnetic field components in three axis directions orthogonal to each other is preferable, but three single axes in which sensor axes are respectively arranged in the three axis directions It may be configured by a combination of sensors.
In FIG. 4, the crossing rebar (starlap) 7 is arranged in parallel with the main rebar (8), but since it is arranged in parallel with the magnetic circuit, a large disturbance of the magnetic field occurs to the extent that it interferes with the measurement. There is no.
 図5と図6に、本発明の測定原理を説明するための磁気センサ21への磁石磁場の影響の様子を説明するための模式図を示す。
 図5は比較例の構成を示したもので、磁気センサ21の左右に通常のメイン磁石31L,31Rが配置されている。左メイン磁石31Lは底面側がS極、上面側がN極となっており、磁石内部では底面側から上面側方向に向かって磁束が発生する。磁石の外側ではN極の上面から放出された磁気がループを描くように底面のS極に戻る。磁石の底面では上向きの磁場が発生する。右メイン磁石31Rはその逆で底面側がN極、上面側がS極となっており、磁石内部では上面側から底面側方向に向かって磁束が発生する。磁石の外側ではN極の底面から放出された磁気がループを描くように上面のS極に戻る。磁石の底面では下向きの磁場が発生する。
FIGS. 5 and 6 show schematic diagrams for explaining the influence of the magnetic field of the magnet on the magnetic sensor 21 for explaining the measurement principle of the present invention.
FIG. 5 shows the configuration of the comparative example, and normal main magnets 31L and 31R are disposed on the left and right of the magnetic sensor 21. As shown in FIG. The bottom main surface side of the left main magnet 31L is an S pole, and the top surface side is an N pole. Inside the magnet, a magnetic flux is generated from the bottom surface side toward the top surface side. At the outside of the magnet, the magnetism emitted from the top surface of the N pole returns to the S pole of the bottom surface in a loop. An upward magnetic field is generated at the bottom of the magnet. The right main magnet 31R is reverse to the above, and the bottom side is N pole and the top side is S pole, and inside the magnet, magnetic flux is generated from the top side toward the bottom side. Outside the magnet, the magnetism emitted from the bottom of the north pole returns to the top south pole so as to form a loop. A downward magnetic field is generated at the bottom of the magnet.
 図5に示した比較例の場合、左右のメイン磁石31L,31Rの周囲に発生する外部磁場は磁気センサ21にも、左メイン磁石31Lに近い位置では下向き方向の強い磁場に曝され、右メイン磁石31Rに近い位置では上向き方向の強い磁場に曝される。本実施形態の非破壊検査装置1では、測定対象物の破断部位で発生する微小な磁場変化を捉える必要がある為、このように磁気センサ21が磁石の直接磁場に曝されることは好ましくないため、図6のように構成する。 In the case of the comparative example shown in FIG. 5, the external magnetic field generated around the left and right main magnets 31L, 31R is also exposed to the strong magnetic field in the downward direction at the position near the left main magnet 31L. At a position near the magnet 31R, it is exposed to a strong magnetic field in the upward direction. In the nondestructive inspection device 1 of the present embodiment, it is not preferable that the magnetic sensor 21 be directly exposed to the magnetic field of the magnet as described above because it is necessary to capture minute changes in the magnetic field generated at the fracture site of the measurement object. Therefore, they are configured as shown in FIG.
 図6に本実施形態の非破壊検査装置1におけるセンサ領域への磁場低減効果を説明するための模式図を示す。図5の比較例と同様、磁気センサ21の左右に通常のメイン磁石31L,31Rが配置されており、左右各々のメイン磁石31L,31Rと磁気センサ21の間に磁場調整部材32L,32Rが配置されている。左メイン磁石31Lの外側ではN極の上面から放出された磁気がループを描くように底面のS極に戻るが、磁場調整部材32Lが配置されている側では磁場調整部材32Lが壁になり、磁気センサ21が強い磁気に曝されることを防いでいる。同様に右メイン磁石31Rの外側ではN極の底面から放出された磁気がループを描くように上面のS極に戻るが、磁場調整部材32Rが配置されている側では磁場調整部材32Rが壁になり、磁気センサ21が強い磁気に曝されることを防いでいる。 The schematic diagram for demonstrating the magnetic field reduction effect to the sensor area | region in FIG. 6 in the nondestructive inspection apparatus 1 of this embodiment is shown. Similar to the comparative example of FIG. 5, the normal main magnets 31L and 31R are disposed on the left and right of the magnetic sensor 21, and the magnetic field adjustment members 32L and 32R are disposed between the left and right main magnets 31L and 31R and the magnetic sensor 21. It is done. On the outside of the left main magnet 31L, the magnetism emitted from the upper surface of the N pole returns to the S pole of the bottom so as to draw a loop, but on the side where the magnetic field adjusting member 32L is disposed, the magnetic field adjusting member 32L becomes a wall, The magnetic sensor 21 is prevented from being exposed to strong magnetism. Similarly, outside the right main magnet 31R, the magnetism emitted from the bottom of the N pole returns to the S pole of the upper surface so as to draw a loop, but on the side where the magnetic field adjusting member 32R is disposed, the magnetic field adjusting member 32R is on the wall Thus, the magnetic sensor 21 is prevented from being exposed to strong magnetism.
 このように磁場調整部材32L,32Rの効果により、磁気センサ21が磁石の直接磁場に曝されることが解消され、測定対象物の破断部位で発生する微小な磁場変化を磁気センサ21により精度よく捉えることが可能となる。 As described above, the magnetic sensor 21 is prevented from being directly exposed to the magnetic field of the magnet by the effects of the magnetic field adjustment members 32L and 32R, and the minute change in the magnetic field generated at the fracture site of the measurement object is accurately performed by the magnetic sensor 21. It becomes possible to capture.
 図7A,Bにハルバッハ配列磁石の効果を説明するための模式図を示す。
 よく知られるように通常磁石はN極とS極の面が対向しており、磁石の両極面で発生する磁束量は磁気の向きが異なるだけで同じである。図7Aは比較例を示し、単純に上下の極性交互に入れ替えながら磁石を並べて配置した構成であり、上面側と下面側生じる磁界の強さは同じである。
 図7Bはハルバッハ配列で磁石を並べた場合の模式図である。図7Bに示すように5つの磁石が、左から上下、左右、下上、右左、上下と磁化の方向を90度ごと転回しながら並べて配置されている。その結果、ハルバッハ配列の組磁石の下面側は磁石内部に磁気回路が形成されるため、磁石の外部には僅かしか磁力が発生しない。これに対してハルバッハ配列の組磁石の上面側はS極、N極の大きな部位が構成されるため、磁石の外部に強い磁界ループが発生する。このように磁石をハルバッハ配列に構成すると、片面側に磁界が集中して大きな磁力を取り出すことができる。一般的にハルバッハ配列磁石の効果的な活用はこの大きい側の磁力を活用することであるが、本実施形態では小さい磁界側の面をセンサ側に向けることで磁気シールド効果として活用する。
FIGS. 7A and 7B show schematic diagrams for explaining the effect of the Halbach array magnet.
As is well known, in general, the faces of the N pole and the S pole of the magnet face each other, and the amount of magnetic flux generated at the pole face of the magnet is the same except for the direction of the magnetism. FIG. 7A shows a comparative example, in which the magnets are arranged side by side simply by alternately switching the upper and lower polarities alternately, and the strengths of the magnetic fields generated on the upper surface side and the lower surface side are the same.
FIG. 7B is a schematic view of the case where the magnets are arranged in the Halbach arrangement. As shown in FIG. 7B, five magnets are arranged side by side while turning the direction of magnetization at 90 degrees from top to bottom, left to right, bottom to top, right to left, top to bottom, and magnetization from the left. As a result, since a magnetic circuit is formed inside the magnet on the lower surface side of the Halbach array of assembled magnets, only a slight magnetic force is generated outside the magnet. On the other hand, since a large portion of the S pole and the N pole is formed on the upper surface side of the Halbach array magnet, a strong magnetic field loop is generated outside the magnet. When the magnets are arranged in the Halbach arrangement as described above, the magnetic field is concentrated on one side, and a large magnetic force can be extracted. Generally, the effective use of the Halbach array magnet is to utilize the magnetic force on this large side, but in the present embodiment, the surface on the small magnetic field side is directed to the sensor side to utilize it as the magnetic shield effect.
 図8A,Bにメイン磁石とハルバッハ磁石との効果的な組み合わせ配置の例を示す。
 本実施形態で使用する磁石ユニット3L,3Rは左右1対で、左右対称の構成をとる。磁石ユニット3L,3Rは、大きく分けて、メイン磁石31L,31R、ハルバッハ磁石(32L,32R)、ヨーク33、スペーサー34で構成される。メイン磁石31L,31Rは、測定対象物に磁気回路を形成するためのもので、そのためおよそ例えば50mm角で厚さ25mmのネオジム磁石4枚を用いて実現する。ハルバッハ磁石(32L,32R)は3個のネオジム磁石を組み合せて構成され、強磁場側面をメイン磁石側に対向させ、弱磁場側面を磁気センサ21に対向する外側に向くように配置されている。詳しくは、左磁石ユニット3L(図8A)の場合、メイン磁石31LはN極側が底面になるように配置されている。ハルバッハ磁石(32L)の中段の磁石はN極をメイン磁石側に向け、ハルバッハ磁石(32L)の上段及び下段の磁石はN極側がハルバッハ磁石(32L)の中段の磁石側を向くように配置される。これに対して右磁石ユニット3R(図8A)の場合は、N極とS極を入れ替えた配置である。
 ハルバッハ磁石(32L,32R)をこのように配置することで、メイン磁石31L,31Rの磁場をハルバッハ磁石(32L,32R)の磁場で抑え込んで、磁気センサ21の方向へ向かう磁力を低減する。すなわち、測定対象物8に印加する磁場を強くしたまま、磁気センサ21に向かう磁場を低減する。したがって、非破壊検査装置1においては、測定対象物8に印加する磁場に対して、磁気センサ21に向かう磁場が低減されている。そのため、測定対象物8からの磁場成分を、磁石ユニット3L,3Rから磁気センサ21に向かう磁場に埋もれさすことなく、精度よく磁気センサ21により検知可能である。
FIGS. 8A and 8B show examples of effective combination arrangements of the main magnet and the Halbach magnet.
The magnet units 3L and 3R used in the present embodiment have a left-right symmetric configuration with a left-right pair. The magnet units 3L and 3R are roughly divided into main magnets 31L and 31R, Halbach magnets (32L and 32R), a yoke 33, and a spacer 34. The main magnets 31L and 31R are for forming a magnetic circuit on an object to be measured, and thus are realized using four neodymium magnets of approximately 50 mm square and 25 mm thickness, for example. The Halbach magnet (32L, 32R) is configured by combining three neodymium magnets, and is disposed so that the side of the strong magnetic field faces the main magnet and the side of the weak magnetic field faces outward facing the magnetic sensor 21. Specifically, in the case of the left magnet unit 3L (FIG. 8A), the main magnet 31L is disposed such that the N pole side is the bottom surface. The middle magnet of Halbach magnet (32L) has the N pole facing the main magnet, and the upper and lower magnets of Halbach magnet (32L) are arranged with the N pole side facing the middle magnet of Halbach magnet (32L) Ru. On the other hand, in the case of the right magnet unit 3R (FIG. 8A), the N pole and the S pole are replaced.
By arranging the Halbach magnets (32L, 32R) in this manner, the magnetic fields of the main magnets 31L, 31R are suppressed by the magnetic fields of the Halbach magnets (32L, 32R), and the magnetic force directed to the magnetic sensor 21 is reduced. That is, the magnetic field directed to the magnetic sensor 21 is reduced while the magnetic field applied to the measurement object 8 is intensified. Therefore, in the nondestructive inspection device 1, the magnetic field directed to the magnetic sensor 21 is reduced with respect to the magnetic field applied to the measurement object 8. Therefore, the magnetic sensor 21 can accurately detect the magnetic field component from the measurement object 8 without embedding it in the magnetic field directed from the magnet units 3L and 3R to the magnetic sensor 21.
 ヨーク33はメイン磁石31L,31Rの下方向への磁力を増強する効果と複数の磁石を吸着させて、それぞれを安定して固定するために設けられている。また、スペーサー34はそれぞれの磁石の反発力が強すぎる為隣接して配置することができないために磁石を一定距離離して配置するための間隔保持部材として使用している。磁石ユニット3L,3Rは、Z方向の磁場調整部材32L,32R及びメイン磁石31L,31Rの厚み寸法が互いに同じとなっており、メイン磁石31L,31Rと磁気センサ21との間に十分な大きさの磁場調整部材32L,32Rを配置しつつ、空間有効良く構成されている。
 なお、出来るだけ強力な磁気回路を形成するために、メイン磁石31L,31Rとしてネオジム磁石を採用することが好ましく、強力なメイン磁石の磁場を調整するためのハルバッハ磁石(32L,32R)もネオジム磁石を採用することが好ましいが、安価なフェライト磁石でも同様の効果は得られる。
The yoke 33 is provided for the effect of enhancing the magnetic force in the downward direction of the main magnets 31L and 31R and for adsorbing a plurality of magnets to stably fix each of them. Further, since the spacers 34 can not be disposed adjacent to each other because the repulsive forces of the respective magnets are too strong, they are used as spacing members for disposing the magnets at a predetermined distance apart. The magnet units 3L and 3R have the same thickness dimensions of the magnetic field adjustment members 32L and 32R and the main magnets 31L and 31R in the Z direction, and a sufficient size between the main magnets 31L and 31R and the magnetic sensor 21. The magnetic field adjusting members 32L and 32R are arranged in a space effective manner.
In order to form a magnetic circuit as strong as possible, neodymium magnets are preferably adopted as the main magnets 31L, 31R, and Halbach magnets (32L, 32R) for adjusting the magnetic field of the strong main magnets are also neodymium magnets. It is preferable to adopt the same, but the same effect can be obtained with an inexpensive ferrite magnet.
 図9に非破壊検査装置の別構成例を示す。
 図2に示した構成例ではセンサユニット2の磁気センサ21をY方向に一次元配列として幅方向(X方向)に移動させるスライド機構を設けた構造とした。図9に示す構成例ではスライド機構を廃止して、センサユニット2において磁気センサ21をXY面上に二次元配置している。磁気センサ21を2次元配置することで、スライド機構を用いて幅方向(X方向)のセンサ位置を適宜変えながら複数回の測定を行う必要がなく、一度の測定で、測定対象物8の磁気センサ21に対向した測定面(XY面)における2次元磁場分布を示す面データを得ることができる。
FIG. 9 shows another configuration example of the nondestructive inspection device.
In the configuration example shown in FIG. 2, a slide mechanism is provided to move the magnetic sensors 21 of the sensor unit 2 in the width direction (X direction) as a one-dimensional array in the Y direction. In the configuration example shown in FIG. 9, the slide mechanism is eliminated, and the magnetic sensor 21 is two-dimensionally arranged on the XY plane in the sensor unit 2. By arranging the magnetic sensors 21 in a two-dimensional manner, it is not necessary to perform measurement a plurality of times while changing the sensor position in the width direction (X direction) appropriately using a slide mechanism. Plane data indicating a two-dimensional magnetic field distribution on the measurement plane (XY plane) facing the sensor 21 can be obtained.
 図2又は図9に示した非破壊検査装置1において、一方の磁場印加ユニット(3L)と他方の磁場印加ユニット(3R)とは、磁気センサ21に対する配置の入れ替わりが可能にされ、同入れ替わりにより測定対象物に形成する磁気回路の極向きが反転可能とされた構成を実施することが好ましい。これにより、測定対象物と磁気センサ21との相対的配置を変えずに、磁気回路の極向きが互いに反対にされ2つの面データを取得することができる。非破壊検査装置1を全体で反転すると、センサユニット2も反転してしまうため、測定対象物と磁気センサ21との相対的配置が変わってしまい、磁気センサ21の各素子のセンサ特性のバラつきによる変化量が面データに重畳されてしまうからである。
 反転可能にする構造は、単に、2つの磁石ユニット3L,3Rを支持機構4から一旦取り外し、入れ替えて支持機構4に取り付け直すものでもよい。また、2つの磁石ユニット3L,3Rを支持するサブフレームを独立に設け、同サブフレームをセンサユニット2等が支持されたメインフレームに対して回転可能に連結した機構など、2つの磁石ユニット3L,3Rを支持機構4から取り外さずに反転できる機構を構成してもよい。
 なお、図9ではセンサを正方格子状に配置した例で示したが、センサの二次元配置の方法は市松模様状配置等でもよく、正方格子状配置には限定しない。
In the nondestructive inspection device 1 shown in FIG. 2 or 9, replacement of the arrangement of the magnetic sensor 21 with one magnetic field application unit (3L) and the other magnetic field application unit (3R) is made possible. It is preferable to implement a configuration in which the pole direction of the magnetic circuit formed on the measurement object is reversible. As a result, without changing the relative arrangement of the object to be measured and the magnetic sensor 21, the pole directions of the magnetic circuit can be made opposite to each other, and two plane data can be acquired. When the nondestructive inspection device 1 is inverted as a whole, the sensor unit 2 is also inverted, so the relative arrangement between the object to be measured and the magnetic sensor 21 changes, and variations in the sensor characteristics of the elements of the magnetic sensor 21 occur. This is because the amount of change is superimposed on the surface data.
The structure to make it reversible may simply remove the two magnet units 3L and 3R from the support mechanism 4 once, replace them, and reattach them to the support mechanism 4. In addition, two magnet units 3L, such as a mechanism in which a sub-frame supporting two magnet units 3L, 3R is provided independently, and the same sub-frame is rotatably connected to a main frame supporting the sensor unit 2 etc. You may comprise the mechanism which can be reversed without removing 3R from the support mechanism 4. FIG.
Although FIG. 9 shows an example in which the sensors are arranged in a square lattice, the method of two-dimensional arrangement of the sensors may be a checkerboard arrangement or the like, and is not limited to the square lattice arrangement.
 図10にセンサユニット2に備えられる面データ作成に使用する回路のブロック図を示す。
 図10に示すように本回路の1ライン部分2aには、図2及び図9にも示した1ライン部分2aに並ぶ複数の磁気センサ21が備わり、それぞれの磁気センサ21には信号を増幅するアンプ21a、信号をデジタルデータ化するA/D部22、一列分の磁気センサ21のデータをライン状に並び替えるラインデータ部2bがある。なお、複数の磁気センサ21の並べ方はライン状、千鳥配列その他任意である。
 図2に示した装置構成では1ライン部分2aが単数であるとともに、センサユニット2をX方向に移動させるスライド機構があり、スライド機構により1ライン部分2aによるセンシング位置を変更した場所で別のラインデータを取得する。順次複数個所のセンシング位置でのラインデータを収集し、面データ部2cで面データ化する。また図9で示した装置構成では1ライン部分2aは移動なし一度に取得できる必要数あり、一度に面データを採取することができる。面データ部2cで生成した面データは、上述したようにクラウドコンピュータ9に送信され、クラウドコンピュータ9で処理され測定対象物8の破断の有無等の状態判定がなされる。
FIG. 10 shows a block diagram of a circuit used to generate surface data provided in the sensor unit 2.
As shown in FIG. 10, the one-line portion 2a of the circuit is provided with a plurality of magnetic sensors 21 arranged in the one-line portion 2a shown also in FIGS. 2 and 9, and each magnetic sensor 21 amplifies a signal. There is an amplifier 21a, an A / D unit 22 that digitizes a signal, and a line data unit 2b that rearranges data of one row of magnetic sensors 21 into a line. In addition, how to arrange several magnetic sensor 21 is linear form, zigzag arrangement, etc. is arbitrary.
In the device configuration shown in FIG. 2, there is a single line portion 2a and a slide mechanism for moving the sensor unit 2 in the X direction, and another line at a place where the sensing position by the one line portion 2a is changed by the slide mechanism. Get data Line data at multiple sensing positions are collected sequentially and converted to surface data in the surface data unit 2c. Further, in the apparatus configuration shown in FIG. 9, there is a required number of one-line portions 2a that can be acquired at one time without movement, and surface data can be acquired at one time. The surface data generated by the surface data unit 2 c is transmitted to the cloud computer 9 as described above, processed by the cloud computer 9, and state determination such as presence or absence of breakage of the measurement object 8 is performed.
 図11に本実施形態の非破壊検査装置の処理及び非破壊検査方法の基本検査フローを示す。図2にし示した非破壊検査装置1を用いる場合である。
(ステップS1)非破壊検査装置1を磁気センサ21が測定対象物8の表面に対向して近接するように設置して、磁石ユニット3L,3Rから磁場を印加して測定対象物8に磁気回路を形成する。
(ステップS2) ステップS1による磁気回路形成状態で測定対象物8からの磁束を磁気センサ21で検知する。
(ステップS3)非破壊検査装置1の位置は変えずにセンサユニット2を幅方向(X方向)にシフトする。
(ステップS4)全シフト位置での測定が完了しているか否かを判断し、完了していなければステップS2に戻る。完了していればステップS4に進む。
(ステップS5)全シフト位置で採取したデータより測定面全体の磁場分布を作成する。このときのデータは、1軸センサであれば1軸の面データとなり、3軸センサであれば3軸方向の面データとなる。
(ステップS6)作成した面データに測定対象物の破断や腐食が原因とみられる磁場の乱れがないかを分析し、磁場の乱れがある場合は破断、腐食等の異常部位と推定する。以上で一連の測定を終了する。
 なお、図9に示した非破壊検査装置1を用いる場合は、ステップS2,S3,S4の循環処理はなく、一度に面データを取得する。
FIG. 11 shows a basic inspection flow of the processing of the nondestructive inspection device of the present embodiment and the nondestructive inspection method. This is the case where the nondestructive inspection device 1 shown in FIG. 2 is used.
(Step S1) The nondestructive inspection device 1 is installed so that the magnetic sensor 21 faces the surface of the measurement object 8 in proximity to the surface, and a magnetic field is applied from the magnet units 3L and 3R to make a magnetic circuit on the measurement object 8 Form
(Step S2) The magnetic sensor 21 detects the magnetic flux from the measurement object 8 in the magnetic circuit formation state in step S1.
(Step S3) The sensor unit 2 is shifted in the width direction (X direction) without changing the position of the nondestructive inspection device 1.
(Step S4) It is determined whether measurement at all shift positions is completed, and if it is not completed, the process returns to step S2. If it has been completed, the process proceeds to step S4.
(Step S5) From the data sampled at all shift positions, the magnetic field distribution of the entire measurement surface is created. The data at this time is plane data of one axis in the case of a single-axis sensor, and plane data of three axes in the case of a three-axis sensor.
(Step S6) The generated surface data is analyzed to determine whether or not the magnetic field is disturbed due to breakage or corrosion of the object to be measured, and if there is any disturbance in the magnetic field, it is estimated as an abnormal site such as breakage or corrosion. This completes the series of measurements.
When the nondestructive inspection device 1 shown in FIG. 9 is used, there is no circulation process of steps S2, S3 and S4, and surface data is acquired at one time.
 作成された面データに基づき、クラウドコンピュータ9の処理によって異常判定を行う。
 測定対象物が正常で連続性が保たれている場合、大きな局所磁場変化は生じない。逆に、測定対象物に破断や腐食等が生じてその連続性が損なわれると、その部位に局所的な急激な磁場変化が生じる。異常判定の一例としては、注目座標の磁場強度値とその周囲の磁場強度値との差分値による判定法が挙げられる。例えば、面データ上の全てまたは任意の座標の磁場強度値とその前後左右の4つの座標の磁場強度値とのそれぞれの差分をとり、これを注目座標の磁場強度値で除した傾きを算出し、その傾きの絶対値が一定値を超えるか否かで異常の有無を判定する。すなわち、
前方傾き=|(注目座標の値 - 前座標の値)/ 注目座標の値)|
後方傾き=|(注目座標の値 - 後座標の値)/ 注目座標の値)|
左方傾き=|(注目座標の値 - 左座標の値)/ 注目座標の値)|
右方傾き=|(注目座標の値 - 右座標の値)/ 注目座標の値)|
として、この4つの値のうちひとつでも、所定の閾値(例えば0.3)を超えた場合、注目座標付近に異常があると判定とする。判定は1軸センサでは1軸方向の磁場強度値のみ、3軸センサであれば3軸方向の全ての磁場強度値において判定を行うことが好ましい。このとき、所定の閾値は、検出ピッチや磁場成分の軸方向によりそれぞれ設定することが好ましい。
 なお、面データに基づき測定対象物の異常を判定する情報処理装置は、クラウドコンピュータ9に限らず、非破壊検査装置に対して一対一に接続されるコンピュータであったり、非破壊検査装置に一体に搭載されるコンピュータであったりなどハードウエア構成は問わない。クラウドコンピュータ9の一局で処理する場合は、情報の集積、均一な処理、利用等の点で有利である。
Based on the created surface data, the abnormality determination is performed by the processing of the cloud computer 9.
When the measurement object is normal and continuity is maintained, no large local magnetic field change occurs. Conversely, when breakage or corrosion occurs in the object to be measured and the continuity is lost, a local rapid magnetic field change occurs in the site. As an example of the abnormality determination, there is a determination method based on the difference value between the magnetic field strength value at the coordinate of interest and the magnetic field strength value around it. For example, the difference between the magnetic field strength values of all or arbitrary coordinates on the surface data and the magnetic field strength values of the four coordinates before and after it is calculated, and the inclination obtained by dividing this by the magnetic field strength value of the coordinates of interest is calculated The presence or absence of abnormality is determined based on whether the absolute value of the slope exceeds a predetermined value. That is,
Forward inclination = | (value of target coordinates-value of previous coordinates) / value of target coordinates) |
Backward tilt = | (value of target coordinates-value of back coordinates) / value of target coordinates) |
Left tilt = | (value of the target coordinate-value of the left coordinate) / value of the target coordinate) |
Right inclination = | (value of target coordinates-value of right coordinates) / value of target coordinates) |
As one of the four values, if it exceeds a predetermined threshold (for example, 0.3), it is determined that there is an abnormality near the coordinate of interest. It is preferable that the determination is performed on all the magnetic field strength values in the three axial directions in the case of the single axis sensor, and in the case of the three axial sensors, in the case of the three axis sensor. At this time, it is preferable that the predetermined threshold be set in accordance with the detection pitch and the axial direction of the magnetic field component.
Note that the information processing apparatus that determines the abnormality of the measurement object based on the surface data is not limited to the cloud computer 9, but may be a computer connected one-to-one to the nondestructive inspection apparatus or integrated with the nondestructive inspection apparatus There is no limitation on the hardware configuration, such as a computer mounted on a computer. Processing in one station of the cloud computer 9 is advantageous in terms of information accumulation, uniform processing, use, and the like.
 以上説明したように、ハルバッハ磁石をその強磁場側面をメイン磁石側に対向させ、弱磁場側面を磁気センサ側に対向させて配置することで、磁気センサに加わるメイン磁石の磁力をブロックする効果を生じさせることができる。これにより、磁場印加ユニットから磁気センサに向かう磁場が低減されているので、測定対象物の外部、すなわち、磁場印加ユニットから発生し同測定対象物を経由した磁場の磁気センサによる検出精度を向上し、非破壊検査の検査精度を向上することができる。 As described above, the effect of blocking the magnetic force of the main magnet applied to the magnetic sensor is obtained by arranging the Halbach magnet with the side of the strong magnetic field facing the main magnet and the side of the weak magnetic field facing the magnetic sensor. Can be generated. As a result, since the magnetic field from the magnetic field application unit toward the magnetic sensor is reduced, the detection accuracy of the magnetic sensor generated from the outside of the measurement object, that is, from the magnetic field application unit and passing through the measurement object is improved. The inspection accuracy of nondestructive inspection can be improved.
 以上の実施形態に拘わらず、磁場印加ユニットのそれぞれは、測定対象物に印加する磁場に対して、磁気センサに向かう磁場が低減されればよいから、磁場調整部材として、SS400に代表される低炭素鋼による磁気シールドを配置する方法や磁気を反発させる小型磁石を配置する方法も一定の効果はある。しかし、磁気シールド方法は磁気回路の成分までシールドが吸収してしまうという弊害もあり、また反発磁石を配置する方法は反発磁石の強さ設定や配置の最適化が困難ため、上記実施形態の磁場調整部材としてハルバッハ磁石を配置する方法が好ましい。
 また、磁場印加ユニットのそれぞれは、測定対象物に印加する磁場に対して、磁気センサに向かう磁場が低減されればよいから、磁場印加ユニットにハルバッハ磁石のみを配置してもよい。この場合もハルバッハ磁石の図7Bの弱磁場側面を磁気センサ側に対向させれば、同ハルバッハ磁石から測定対象物に印加する磁場に対して、磁気センサに向かう磁場が低減されるからである。しかし、測定対象物に印加する磁場をより強くするために上記実施形態のように、ハルバッハ磁石のほかにメイン磁石を配置することが好ましい。
Regardless of the above embodiments, each of the magnetic field application units only needs to reduce the magnetic field directed to the magnetic sensor with respect to the magnetic field applied to the measurement object, the low value represented by SS400 as a magnetic field adjustment member The method of arranging a magnetic shield made of carbon steel and the method of arranging a small magnet for repelling magnetism also have certain effects. However, the magnetic shielding method has the disadvantage that the shield absorbs even the components of the magnetic circuit, and the method of arranging the repelling magnet makes it difficult to optimize the strength setting and the arrangement of the repelling magnet. The method of arrange | positioning a Halbach magnet as an adjustment member is preferable.
In addition, each of the magnetic field application units may be arranged with only the Halbach magnet in the magnetic field application unit, as long as the magnetic field directed to the magnetic sensor is reduced with respect to the magnetic field applied to the measurement object. Also in this case, if the side of the weak magnetic field in FIG. 7B of the Halbach magnet is made to face the magnetic sensor side, the magnetic field directed to the magnetic sensor is reduced with respect to the magnetic field applied from the Halbach magnet to the measurement object. However, in order to make the magnetic field applied to the object to be measured stronger, it is preferable to arrange the main magnet in addition to the Halbach magnet as in the above embodiment.
 本発明は、コンクリートに埋設される鉄筋等の非破壊検査装置、非破壊検査システム及び非破壊検査方法に利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used for a nondestructive inspection device such as a reinforcing bar embedded in concrete, a nondestructive inspection system, and a nondestructive inspection method.
1 非破壊検査装置
2 センサユニット
3L,3R 磁石ユニット
4 支持機構
8 測定対象物
9 クラウドコンピュータ(情報処理装置)
10 非破壊検査システム
21 磁気センサ
31L,31R  メイン磁石
32L,32R  磁場調整部材
33 ヨーク
34 スペーサー
41 グリップ
DESCRIPTION OF SYMBOLS 1 Nondestructive inspection device 2 Sensor unit 3L, 3R Magnet unit 4 Support mechanism 8 Measurement object 9 Cloud computer (information processing device)
DESCRIPTION OF SYMBOLS 10 Nondestructive inspection system 21 Magnetic sensor 31L, 31R Main magnet 32L, 32R Magnetic field adjustment member 33 Yoke 34 Spacer 41 Grip

Claims (13)

  1. 非磁性体に内包される磁性材料を測定対象物とした非破壊検査装置であって、
    一方の磁場印加ユニット、磁気センサ、他方の磁場印加ユニットの順でこれらが配列し、同配列に隣接し同配列と同方向に延在した測定対象物に対し、前記一方の磁場印加ユニット及び前記他方の磁場印加ユニットから互いに逆極性の磁場を印加して磁気回路を形成した状態の同測定対象物からの磁場を前記磁気センサで検知する構成を有し、
    前記磁場印加ユニットのそれぞれは、前記測定対象物に印加する磁場に対して、前記磁気センサに向かう磁場が低減されている非破壊検査装置。
    A nondestructive inspection apparatus in which a magnetic material contained in a nonmagnetic material is an object to be measured,
    These are arranged in the order of one magnetic field application unit, magnetic sensor, and the other magnetic field application unit, and the one magnetic field application unit and the one magnetic field application unit for the measurement object adjacent to the array and extending in the same direction. The magnetic sensor is configured to detect a magnetic field from the same measurement object in a state where magnetic fields of opposite polarities are applied from the other magnetic field application unit to form a magnetic circuit,
    Each of the said magnetic field application units is a nondestructive inspection apparatus with which the magnetic field which goes to the said magnetic sensor is reduced with respect to the magnetic field applied to the said measuring object.
  2. 前記磁場印加ユニットのそれぞれは、前記測定対象物に印加する磁場を発生させるためのメイン磁石を有し、前記メイン磁石によって発生した磁場成分のうち、前記磁気センサに向かう磁場成分を低減する効果をもつ磁場調整部材を前記メイン磁石と前記磁気センサの間に配置した構成を有する請求項1に記載の非破壊検査装置。 Each of the magnetic field application units has a main magnet for generating a magnetic field to be applied to the measurement object, and among the magnetic field components generated by the main magnet, the effect of reducing the magnetic field component toward the magnetic sensor is obtained. The nondestructive inspection device according to claim 1, having a configuration in which a magnetic field adjustment member is disposed between the main magnet and the magnetic sensor.
  3. 前記磁場調整部材は、磁気方向を異ならせた3個以上の磁石を組み合わせたハルバッハ配列の磁石であり、当該ハルバッハ配列の磁石は、ハルバッハ配列の効果による強磁場側面を前記メイン磁石側に対向させ、弱磁場側面を磁気センサ側に対向させて配置されている請求項2に記載の非破壊検査装置。 The magnetic field adjustment member is a Halbach-arrayed magnet in which three or more magnets having different magnetic directions are combined, and the Halbach-arrayed magnet causes the side of the strong magnetic field due to the Halbach-array effect to face the main magnet The nondestructive inspection device according to claim 2, wherein the weak magnetic field side is disposed to face the magnetic sensor side.
  4. 前記一方の磁場印加ユニットと前記他方の磁場印加ユニットとは、前記磁気センサに対する配置の入れ替わりが可能にされ、同入れ替わりにより前記測定対象物に形成する磁気回路の極向きが反転可能とされた請求項1から請求項3のうちいずれか一に記載の非破壊検査装置。 The one magnetic field application unit and the other magnetic field application unit can be interchanged in arrangement with respect to the magnetic sensor, and the pole direction of the magnetic circuit formed on the object to be measured can be reversed by the interchange. The nondestructive inspection device according to any one of claims 1 to 3.
  5. 前記一方の磁場印加ユニット、前記磁気センサ、前記他方の磁場印加ユニットが直線上に配置されている請求項1から請求項4のうちいずれか一に記載の非破壊検査装置。 The nondestructive inspection device according to any one of claims 1 to 4, wherein the one magnetic field application unit, the magnetic sensor, and the other magnetic field application unit are disposed on a straight line.
  6. 前記配列の前記測定対象物に隣接する面に平行で、前記一方の磁場印加ユニットと前記他方の磁場印加ユニットとを結ぶ仮想線に直交する幅方向に、前記磁気センサと前記一方の磁場印加ユニット及び前記他方の磁場印加ユニットとを、相対的にスライドさせることが可能なスライド機構を有する請求項1から請求項5のうちいずれか一に記載の非破壊検査装置。 The magnetic sensor and the one magnetic field application unit in a width direction perpendicular to a virtual line connecting the one magnetic field application unit and the other magnetic field application unit in parallel with a surface adjacent to the measurement object of the array. The nondestructive inspection device according to any one of claims 1 to 5, further comprising: a slide mechanism capable of sliding relative to the other magnetic field application unit.
  7. 前記配列の前記測定対象物に隣接する面に垂直な方向の前記磁場調整部材及び前記メイン磁石の厚み寸法が互いに同じである請求項2又は請求項3に記載の非破壊検査装置。 The nondestructive inspection apparatus according to claim 2 or 3, wherein the thickness dimensions of the magnetic field adjustment member and the main magnet in the direction perpendicular to the surface adjacent to the measurement object of the array are the same.
  8. 前記磁気センサは、ライン状、千鳥配列を含む所定の配列に並べられた複数からなる請求項1から請求項7のうちいずれか一に記載の非破壊検査装置。 The nondestructive inspection device according to any one of claims 1 to 7, wherein the magnetic sensor comprises a plurality of magnetic sensors arranged in a predetermined array including a linear array and a staggered array.
  9. 前記磁気センサは、互いに直交する3軸方向の磁場成分を検知可能な3軸センサ又は同3軸方向にセンサ軸がそれぞれ配置された3つの1軸センサにより構成されている請求項1から請求項8のうちいずれか一に記載の非破壊検査装置。 The magnetic sensor is constituted by a three-axis sensor capable of detecting magnetic field components in three axial directions orthogonal to each other or three one-axis sensors in which sensor axes are arranged in the respective three axial directions. The nondestructive inspection device according to any one of 8.
  10. 前記磁気センサは、トンネル型磁気抵抗センサ(TMRセンサ)である請求項1から請求項9のうちいずれか一に記載の非破壊検査装置。 The nondestructive inspection device according to any one of claims 1 to 9, wherein the magnetic sensor is a tunnel type magnetoresistive sensor (TMR sensor).
  11. 請求項1から請求項10のうちいずれか一に記載の非破壊検査装置と、情報処理装置とを備え、
    前記情報処理装置は、前記非破壊検査装置から受けた測定情報に基づき前記測定対象物の異常を判定する非破壊検査システム。
    A nondestructive inspection device according to any one of claims 1 to 10, and an information processing device,
    The nondestructive inspection system, wherein the information processing device determines an abnormality of the measurement object based on measurement information received from the nondestructive inspection device.
  12. 前記非破壊検査装置は前記測定対象物の前記磁気センサに対向した測定面における2次元磁場分布を示す面データを前記情報処理装置に出力し、
    前記情報処理装置は、前記面データに基づき前記測定対象物の異常を判定する請求項11に記載の非破壊検査システム。
    The nondestructive inspection device outputs, to the information processing device, surface data indicating a two-dimensional magnetic field distribution on a measurement surface of the measurement object facing the magnetic sensor,
    The non-destructive inspection system according to claim 11, wherein the information processing apparatus determines an abnormality of the measurement object based on the surface data.
  13. 請求項1から請求項10のうちいずれか一に記載の非破壊検査装置を用いて、前記測定対象物を前記磁気センサに対向させ、前記測定対象物の前記磁気センサに対向した測定面における2次元磁場分布を示す面データを得て、
    前記面データに基づき前記測定対象物の異常を判定する非破壊検査方法。
    The nondestructive inspection device according to any one of claims 1 to 10, the measurement object is made to face the magnetic sensor, and 2 on the measurement surface of the measurement object facing the magnetic sensor Get surface data showing the dimensional magnetic field distribution,
    The nondestructive inspection method which determines abnormality of the said measurement object based on the said surface data.
PCT/JP2018/031295 2017-09-13 2018-08-24 Nondestructive inspecting device, nondestructive inspecting system, and nondestructive inspecting method WO2019054158A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019541973A JPWO2019054158A1 (en) 2017-09-13 2018-08-24 Non-destructive inspection equipment, non-destructive inspection system and non-destructive inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-175388 2017-09-13
JP2017175388 2017-09-13

Publications (1)

Publication Number Publication Date
WO2019054158A1 true WO2019054158A1 (en) 2019-03-21

Family

ID=65723674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031295 WO2019054158A1 (en) 2017-09-13 2018-08-24 Nondestructive inspecting device, nondestructive inspecting system, and nondestructive inspecting method

Country Status (2)

Country Link
JP (1) JPWO2019054158A1 (en)
WO (1) WO2019054158A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021039880A1 (en) * 2019-08-28 2021-03-04
CN112880543A (en) * 2021-04-12 2021-06-01 浙江捷安工程有限公司 Halbach array-based method for measuring diameter of steel bar in cement pole
KR20210086383A (en) * 2019-12-31 2021-07-08 주식회사 포스코아이씨티 System for Inspecting Defect of Steel Plate Using Tunnel Magneto Resistance Sensor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928650A (en) * 1982-08-11 1984-02-15 Nippon Steel Corp Method and device for magnetic flaw detection
JPS626161A (en) * 1985-07-03 1987-01-13 Nippon Kokan Kk <Nkk> Flaw detecting method by leakage magnetic flux measurement
JPS62112052A (en) * 1985-11-11 1987-05-23 Nippon Kokan Kk <Nkk> Surface defect detecting device for ferromagnetic body
JPH0772122A (en) * 1993-09-06 1995-03-17 Babcock Hitachi Kk Leak flux flaw detection method and apparatus for internal defect of magnetic material
JP2007192803A (en) * 2005-12-19 2007-08-02 Ishikawajima Harima Heavy Ind Co Ltd Device and method for evaluating corrosion
JP2014106165A (en) * 2012-11-29 2014-06-09 Hitachi Ltd Magnetic field visualization sensor and probe for magnetic flaw detection
JP2017026354A (en) * 2015-07-16 2017-02-02 住友化学株式会社 Defect measurement method, defect measurement device and inspection probe
US20170108469A1 (en) * 2015-06-29 2017-04-20 The Charles Stark Draper Laboratory, Inc. System and method for characterizing ferromagnetic material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928650A (en) * 1982-08-11 1984-02-15 Nippon Steel Corp Method and device for magnetic flaw detection
JPS626161A (en) * 1985-07-03 1987-01-13 Nippon Kokan Kk <Nkk> Flaw detecting method by leakage magnetic flux measurement
JPS62112052A (en) * 1985-11-11 1987-05-23 Nippon Kokan Kk <Nkk> Surface defect detecting device for ferromagnetic body
JPH0772122A (en) * 1993-09-06 1995-03-17 Babcock Hitachi Kk Leak flux flaw detection method and apparatus for internal defect of magnetic material
JP2007192803A (en) * 2005-12-19 2007-08-02 Ishikawajima Harima Heavy Ind Co Ltd Device and method for evaluating corrosion
JP2014106165A (en) * 2012-11-29 2014-06-09 Hitachi Ltd Magnetic field visualization sensor and probe for magnetic flaw detection
US20170108469A1 (en) * 2015-06-29 2017-04-20 The Charles Stark Draper Laboratory, Inc. System and method for characterizing ferromagnetic material
JP2017026354A (en) * 2015-07-16 2017-02-02 住友化学株式会社 Defect measurement method, defect measurement device and inspection probe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUEK ET AL.: "Modeling Studies on the Development of a System for Real-Time Magnetic-Field Imaging of Steel Reinforcing Bars Embedded Within Reinforced Concrete", IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, vol. 57, no. 3, 2008, pages 571 - 576, XP011199437, DOI: doi:10.1109/TIM.2007.911620 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021039880A1 (en) * 2019-08-28 2021-03-04
EP4024044A4 (en) * 2019-08-28 2022-09-21 Konica Minolta, Inc. Information processing system for nondestructive inspection and nondestructive inspection method
JP7351341B2 (en) 2019-08-28 2023-09-27 コニカミノルタ株式会社 Non-destructive testing information processing system and non-destructive testing method
KR20210086383A (en) * 2019-12-31 2021-07-08 주식회사 포스코아이씨티 System for Inspecting Defect of Steel Plate Using Tunnel Magneto Resistance Sensor
KR102357786B1 (en) 2019-12-31 2022-02-03 주식회사 포스코아이씨티 System for Inspecting Defect of Steel Plate Using Tunnel Magneto Resistance Sensor
CN112880543A (en) * 2021-04-12 2021-06-01 浙江捷安工程有限公司 Halbach array-based method for measuring diameter of steel bar in cement pole

Also Published As

Publication number Publication date
JPWO2019054158A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
ES2712069T3 (en) Procedures and apparatus for the inspection of plates and walls of pipes
WO2019054158A1 (en) Nondestructive inspecting device, nondestructive inspecting system, and nondestructive inspecting method
KR102198678B1 (en) Magnetic substance inspection device and magnetic substance inspection method
JP7160098B2 (en) Nondestructive inspection method, nondestructive inspection system and nondestructive inspection program
US7944203B2 (en) Corrosion evaluation device and corrosion evaluation method
US11016060B2 (en) Method and apparatus for evaluating damage to magnetic linear body
JP6305860B2 (en) Nondestructive inspection method and nondestructive inspection device
JP4860987B2 (en) Nondestructive inspection method
JP5946638B2 (en) Nondestructive inspection method
JP3734822B1 (en) Nondestructive inspection method
Tang et al. A novel magnetic flux leakage method based on the ferromagnetic lift-off layer with through groove
JP6305847B2 (en) Nondestructive inspection method and nondestructive inspection device
EP3081932B1 (en) Apparatus and method of inspecting defect of steel plate
JP7196921B2 (en) Non-Destructive Inspection Device, Non-Destructive Inspection System and Non-Destructive Inspection Method
US9726639B1 (en) Apparatus for detecting magnetic flux leakage and methods of making and using same
JP7351341B2 (en) Non-destructive testing information processing system and non-destructive testing method
JP6305859B2 (en) Nondestructive inspection method
WO2024057869A1 (en) Non-destructive testing method, program, and non-destructive testing system
JP2010151626A (en) Nondestructive inspection method and nondestructive inspection device
JP2024054885A (en) Nondestructive inspection method
JP6211311B2 (en) Nondestructive inspection method
JP5531124B2 (en) Nondestructive inspection method
WO2021251129A1 (en) Magnetic body inspection device and magnetic body inspection method
WO2020217278A1 (en) Flaw detection device for magnetic substance
JP2007108164A (en) Magnetic substance sensor and magnetic substance sensor unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541973

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855773

Country of ref document: EP

Kind code of ref document: A1