JP2014106165A - Magnetic field visualization sensor and probe for magnetic flaw detection - Google Patents

Magnetic field visualization sensor and probe for magnetic flaw detection Download PDF

Info

Publication number
JP2014106165A
JP2014106165A JP2012260460A JP2012260460A JP2014106165A JP 2014106165 A JP2014106165 A JP 2014106165A JP 2012260460 A JP2012260460 A JP 2012260460A JP 2012260460 A JP2012260460 A JP 2012260460A JP 2014106165 A JP2014106165 A JP 2014106165A
Authority
JP
Japan
Prior art keywords
magnetic
signal
sensor
probe
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012260460A
Other languages
Japanese (ja)
Inventor
Isato Mori
勇人 森
Akira Nishimizu
亮 西水
Masahiro Fujima
正博 藤間
Yasukichi Harashima
康吉 原島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012260460A priority Critical patent/JP2014106165A/en
Publication of JP2014106165A publication Critical patent/JP2014106165A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic field visualization sensor having a function capable of discriminating a magnetic flux leaking from a magnetizer to a magnetic sensor from a magnetic flux leaking to the outside of a specimen due to a defect in the specimen, and visualizing the defect on the spot and a probe for magnetic flaw detection including the magnetic field visualization sensor.SOLUTION: A probe for magnetic flaw detection includes: a magnetizer for magnetizing a specimen; a magnetic detection part for detecting a magnetic field generated due to a defect; and a light emitting element corresponding to the magnetic detection part. The probe for magnetic flaw detection includes a function for determining the lighting of the light emitting element in accordance with the arithmetic result of an output signal from the magnetic detection part.

Description

本発明は、磁場可視化センサ及び磁気探傷用プローブに関する。   The present invention relates to a magnetic field visualization sensor and a magnetic flaw detection probe.

従来、磁性体では、内部や表面に欠陥があると強度などその品質に問題が生じる可能性があるため、品質管理上あるいは品質保証上、X線透過法や超音波探傷法などさまざまな非破壊検査が行われている。特に、表面近傍の欠陥検出や薄鋼板の表面及び内部の欠陥検出には電磁気的な手法である磁粉探傷法や漏洩磁束探傷法が用いられることが多い。   Conventionally, with magnetic materials, if there is a defect inside or on the surface, there may be a problem in quality such as strength. Therefore, various non-destructive methods such as X-ray transmission method and ultrasonic flaw detection method are used for quality control or quality assurance. Inspection is being conducted. In particular, an electromagnetic technique such as a magnetic particle inspection method or a leakage magnetic flux inspection method is often used for detecting defects near the surface or detecting defects on the surface and inside of a thin steel plate.

磁粉探傷法は、強磁性体のコアにコイルを巻いた磁化器等で試験体を磁化し、試験体表面の傷部に生じた磁極に、蛍光物質を塗布した磁粉を付着させ、その磁粉を紫外線照射灯で照射し、発光させて、傷部を検出するという探傷法である。この探傷法は、表面欠陥の検出に優れ、その場で欠陥を視認できるという利点があるが、表面下の内在欠陥の検出性が低い。次に、漏洩磁束探傷法は、表面下の内在欠陥の検出性において磁粉探傷法に比べて優れている。但し、漏洩磁束探傷法は、磁気センサとしてホール素子や磁気抵抗素子等のような磁場を検出して電気信号を出力する方式のセンサを使用しており、その場で欠陥の視認はできない。   In the magnetic particle flaw detection method, the test body is magnetized with a magnetizer or the like in which a coil is wound around a ferromagnetic core, and the magnetic powder coated with a fluorescent material is attached to the magnetic pole generated on the scratched surface of the test body surface. This is a flaw detection method in which a wound is detected by irradiating with an ultraviolet irradiation lamp and causing it to emit light. This flaw detection method is excellent in detecting surface defects and has an advantage that the defects can be visually recognized on the spot, but has low detectability of the internal defects below the surface. Next, the leakage magnetic flux flaw detection method is superior to the magnetic particle flaw detection method in terms of detectability of subsurface intrinsic defects. However, the leakage magnetic flux flaw detection method uses a sensor of a system that outputs a magnetic signal by detecting a magnetic field such as a Hall element or a magnetoresistive element as a magnetic sensor, and the defect cannot be visually recognized on the spot.

そこで、磁性材の表面下の内在欠陥の検査において、漏洩磁束探傷法に用いる磁場検出用のセンサに、その場で欠陥を視認できる機能を付加することにより、磁粉探傷法の利点も備え、より簡便な検査を行うことができる。このような機能を有する磁気センサとして、例えば特許第4316974号(特許文献1)がある。特許文献1に開示するセンサは、電極間にホール輸送層と発光層を形成し、直接磁場強度による発光強度の変化を検知し、磁場を検出するセンサである。   Therefore, in the inspection of the internal defects under the surface of the magnetic material, by adding a function for visually detecting the defects on the spot to the magnetic field detection sensor used for the leakage magnetic flux flaw detection method, the magnetic particle flaw detection method is also provided. A simple test can be performed. As a magnetic sensor having such a function, there is, for example, Japanese Patent No. 4316974 (Patent Document 1). The sensor disclosed in Patent Document 1 is a sensor that forms a hole transport layer and a light emitting layer between electrodes, detects a change in light emission intensity due to a direct magnetic field intensity, and detects a magnetic field.

特許第4316974号公報Japanese Patent No. 4316974

一方、図2(a)に示すように、漏洩磁束探傷法で使用する強磁性体のコア5にコイル(図示しない)を巻いた磁化器30の磁極13a、b 側面からは、漏洩磁束14が常時発生している。そのため、特許第4316974号に示されているような、磁場強度による発光強度の変化を直接見る方式のセンサだと、この磁極13a、b 側面からの漏洩磁束14と試験体8内部の欠陥に起因して、試験体8の外に漏れ出た磁束を区別することができないという問題があった。   On the other hand, as shown in FIG. 2A, the leakage magnetic flux 14 is generated from the side surfaces of the magnetic poles 13a and b of the magnetizer 30 in which a coil (not shown) is wound around the ferromagnetic core 5 used in the leakage magnetic flux flaw detection method. It always occurs. For this reason, in the case of a sensor that directly observes the change in the light emission intensity due to the magnetic field intensity as shown in Japanese Patent No. 4316974, this is caused by the leakage magnetic flux 14 from the side surfaces of the magnetic poles 13a and b and the defects inside the specimen 8. As a result, the magnetic flux leaking out of the test body 8 cannot be distinguished.

また、図2(b)に示すように、磁化器30の磁極13a、b 間に磁気シールド15を設けて、磁極13a、b 側面からの漏洩磁束14を遮断する方法も考えられる。しかし、磁気シールド15を設けたことにより、試験体8内の磁束12が漏洩磁束16として、磁気シールド15に漏洩するために、試験体8の磁場強度が弱くなり、欠陥の検出性が低下してしまう問題が生じていた。   Further, as shown in FIG. 2B, a method in which a magnetic shield 15 is provided between the magnetic poles 13a and b of the magnetizer 30 to block the leakage magnetic flux 14 from the side surfaces of the magnetic poles 13a and b can be considered. However, since the magnetic shield 15 is provided, the magnetic flux 12 in the test body 8 leaks to the magnetic shield 15 as the leakage magnetic flux 16, so that the magnetic field strength of the test body 8 is weakened and the detectability of defects is lowered. There was a problem.

本発明は、この問題点を解決するためになされたもので、磁化器から磁気センサに漏洩する磁束と試験体内の欠陥に起因して試験体外に漏洩する磁束を識別して、さらに欠陥をその場で視認できる機能を有する磁場可視化センサ及び磁場可視化センサを備えた磁気探傷用プローブを提供することを目的とする。   The present invention has been made to solve this problem. The magnetic flux leaking from the magnetizer to the magnetic sensor and the magnetic flux leaking outside the test body due to the defect in the test object are identified, and the defect is further detected. An object of the present invention is to provide a magnetic field visualizing sensor having a function of being visually recognized in the field and a magnetic flaw detection probe including the magnetic field visualizing sensor.

本発明は、試験体を磁化する磁化器と、欠陥に起因して発生した磁場を検出する磁気検出部と、前記磁気検出部に対応した発光素子を備えた磁気探傷用プローブであって、前記磁気検出部からの出力信号の演算結果により、前記発光素子の点灯を判定する機能を備えることを特徴とする。   The present invention is a magnetic flaw detection probe comprising a magnetizer for magnetizing a specimen, a magnetic detection unit for detecting a magnetic field generated due to a defect, and a light emitting element corresponding to the magnetic detection unit, A function of determining lighting of the light emitting element based on a calculation result of an output signal from the magnetic detection unit is provided.

本発明によれば、磁化器から磁気センサに漏洩する磁束と試験体内の欠陥に起因して試験体外に漏洩する磁束を識別して、さらに欠陥をその場で視認できる機能を有する磁場可視化センサ及び磁場可視化センサを備えた磁気探傷用プローブを提供することが可能となる。   According to the present invention, a magnetic field visualization sensor having a function of discriminating a magnetic flux leaking from a magnetizer to a magnetic sensor and a magnetic flux leaking outside the test body due to a defect in the test body, and further allowing the defect to be visually recognized on the spot, and It is possible to provide a magnetic flaw detection probe including a magnetic field visualization sensor.

本発明の磁場可視化センサを示す図である。It is a figure which shows the magnetic field visualization sensor of this invention. 試験体と磁化器間の磁束の流れを示す図である。It is a figure which shows the flow of the magnetic flux between a test body and a magnetizer. 本発明の磁気探傷用プローブを示す図である。It is a figure which shows the probe for magnetic testing of this invention. (a)図3のA-A断面図である。 (b)試験体の表面下に横穴を付与した図3のA-A断面図である。(A) It is AA sectional drawing of FIG. (B) It is AA sectional drawing of FIG. 3 which provided the horizontal hole under the surface of the test body. 信号処理部のブロック図である。It is a block diagram of a signal processing part. (a)図4(a)において試験体を磁化した際のホール素子のセンサ信号とLEDの点灯状況を示す図である。 (b)図4(b)において試験体を磁化した際のホール素子のセンサ信号とLEDの点灯状況を示す図である。(A) It is a figure which shows the sensor signal of a Hall element at the time of magnetizing a test body in FIG. 4 (a), and the lighting condition of LED. (B) It is a figure which shows the sensor signal of a Hall element at the time of magnetizing a test body in FIG.4 (b), and the lighting condition of LED. (a)図6(b)から図6(a)のセンサ信号を減算したセンサ信号とLEDの点灯状況を示す図である。 (b)図7(a)のセンサ信号を位置差分処理したセンサ信号とLEDの点灯状況を示す図である。(A) It is a figure which shows the sensor signal which subtracted the sensor signal of FIG. 6 (a) from FIG.6 (b), and the lighting condition of LED. (B) It is a figure which shows the lighting condition of the sensor signal and LED which processed the position difference process of the sensor signal of Fig.7 (a). 信号処理部のブロック図の一形態を示す図である。It is a figure which shows one form of the block diagram of a signal processing part. (a)図7(a)のセンサ信号に方向識別部の処理を施したLEDの点灯状況を示す図である。 (b)図7(b)のセンサ信号に方向識別部の処理を施したLEDの点灯状況を示す図である。(A) It is a figure which shows the lighting condition of LED which performed the process of the direction identification part to the sensor signal of Fig.7 (a). (B) It is a figure which shows the lighting condition of LED which performed the process of the direction identification part to the sensor signal of FIG.7 (b). 磁場可視化センサのホール素子とLEDを1個にした磁気探傷用プローブのA-A断面図である。It is AA sectional drawing of the probe for magnetic flaw detection which combined the Hall element and LED of the magnetic field visualization sensor into one. エンコーダ信号に同期してセンサ信号を収録する機能を追加した信号処理部のブロック図の一形態を示す図である。It is a figure which shows one form of the block diagram of the signal processing part which added the function which records a sensor signal synchronizing with an encoder signal.

本発明は、磁性材の検査に関係し、磁場を検出した位置で発光素子を点灯させ、磁場発生位置を明示するセンサ及びそのセンサを有する磁気探傷用プローブに関するものである。以下、本発明の各実施例について説明する。   The present invention relates to inspection of a magnetic material, and relates to a sensor for turning on a light emitting element at a position where a magnetic field is detected and clearly indicating a magnetic field generation position, and a probe for magnetic flaw detection having the sensor. Examples of the present invention will be described below.

本発明の好適な一実施例である磁場可視化センサ及び磁気探傷用プローブを図1、図3〜図7を用いて以下に説明する。   A magnetic field visualization sensor and a magnetic flaw detection probe, which are a preferred embodiment of the present invention, will be described below with reference to FIGS.

図1に磁場可視化センサを示す。磁気センサとして、磁気検出部がコの字型基板の一方の外表面に2次元アレイ状に配置され、反対の外表面に各磁気検出部に対応した位置に発光素子が配列されている。図1において、磁気検出部はホール素子1であり、発光素子はLED2によって構成される。ホール素子1とLED2のケーブルが信号処理部4に接続され、磁場可視化センサ10を構成している。もちろん、磁場可視化センサ10に使用する磁気センサとして、AMRセンサやTMRセンサのような磁気抵抗素子を使用してもよいし、発光素子として有機ELや液晶を使用してもよい。また、磁気センサ、発光素子の配列は1次元アレイであってもよいし、コの字型基板3は独立した2枚の基板を組み合わせる構成でもよい。   FIG. 1 shows a magnetic field visualization sensor. As a magnetic sensor, a magnetic detection unit is arranged in a two-dimensional array on one outer surface of a U-shaped substrate, and light emitting elements are arranged on the opposite outer surface at positions corresponding to the magnetic detection units. In FIG. 1, the magnetic detection unit is a Hall element 1, and the light emitting element is constituted by an LED 2. A cable of the hall element 1 and the LED 2 is connected to the signal processing unit 4 to constitute a magnetic field visualization sensor 10. Of course, a magnetoresistive element such as an AMR sensor or a TMR sensor may be used as the magnetic sensor used in the magnetic field visualization sensor 10, and an organic EL or liquid crystal may be used as the light emitting element. Further, the arrangement of the magnetic sensors and the light emitting elements may be a one-dimensional array, and the U-shaped substrate 3 may be configured by combining two independent substrates.

図3に磁場可視化センサ10を用いた磁気探傷用プローブ20を示す。磁性材の試験体8上に磁化器30があり、磁化器30の磁極間に磁場可視化センサ10を配置している。磁化器30は、強磁性体のコア5にコイル6を巻いた構造である。磁化器30に接続された電源7により、試験体8を磁化する。図4(a)に、磁気探傷用プローブ20の奥行き方向の中心断面(A-A断面図)を示す。図4(b)は試験体8の表面下に横穴9を付与した図を示す。磁場可視化センサ10により、欠陥に起因する磁場を検出し、LED2を点灯させて、欠陥を視認するまでの処理について、図4(a)、(b)に示す1列のホール素子1とLED2を用いて説明する。   FIG. 3 shows a magnetic flaw detection probe 20 using the magnetic field visualization sensor 10. A magnetizer 30 is provided on the magnetic material test body 8, and the magnetic field visualization sensor 10 is disposed between the magnetic poles of the magnetizer 30. The magnetizer 30 has a structure in which a coil 6 is wound around a ferromagnetic core 5. The test body 8 is magnetized by the power supply 7 connected to the magnetizer 30. FIG. 4A shows a central cross section (AA cross-sectional view) of the magnetic flaw detection probe 20 in the depth direction. FIG. 4B shows a view in which a horizontal hole 9 is provided below the surface of the test body 8. The magnetic field visualization sensor 10 detects the magnetic field caused by the defect, turns on the LED 2, and processes the process until the defect is visually recognized. The one row of Hall elements 1 and LED 2 shown in FIGS. It explains using.

図6(a)、(b)は、図4(a)、(b)において、磁化器30により試験体8を磁化し、ホール素子1が磁場を検出した時のセンサ信号400、500とホール素子1に対応したLED2の点灯状況を示す。磁化の向きは図2と同じであり、ホール素子1は、Z 軸方向の磁束に対してプラスの信号を出力し、Z軸に対して逆向きの磁束に対してマイナスの信号を出力する。図6(a)に示すように、試験体に欠陥が存在しない健全部においても、磁化器30の磁極側面から試験体8表面に磁束が漏洩しているため、センサ信号を検出している。   6 (a) and 6 (b) show the sensor signals 400 and 500 and the holes when the specimen 8 is magnetized by the magnetizer 30 and the Hall element 1 detects the magnetic field in FIGS. 4 (a) and 4 (b). The lighting state of the LED 2 corresponding to the element 1 is shown. The direction of magnetization is the same as in FIG. 2, and the Hall element 1 outputs a positive signal with respect to the magnetic flux in the Z-axis direction, and outputs a negative signal with respect to the magnetic flux in the reverse direction with respect to the Z-axis. As shown in FIG. 6 (a), even in a healthy part where there is no defect in the test body, the magnetic flux leaks from the magnetic pole side surface of the magnetizer 30 to the surface of the test body 8, and thus the sensor signal is detected.

図5は、LED2の点灯を判断する信号処理部4のブロック図を示す。センサ信号収録部110で収録したセンサ信号100をそのまま閾値処理部160において、図6(a)に示す閾値で処理を行うと、LED2は中心の2f 以外全て点灯してしまう。同様の処理を図6(b)の横穴を付与した条件において行っても、LED2は中心の2f 以外全て点灯してしまう。よって、以下に説明する手順により、横穴のみLED2が点灯する磁場可視化センサ10を実現した。   FIG. 5 is a block diagram of the signal processing unit 4 that determines whether the LED 2 is turned on. When the sensor signal 100 recorded by the sensor signal recording unit 110 is directly processed by the threshold processing unit 160 with the threshold shown in FIG. 6A, the LEDs 2 are all turned on except for the center 2f. Even if the same processing is performed under the conditions given the horizontal holes in FIG. 6B, the LEDs 2 are all turned on except for the center 2f. Therefore, the magnetic field visualization sensor 10 in which the LED 2 is lit only in the lateral hole is realized by the procedure described below.

まず、図6(a)に示す試験体8の健全部を磁化した際の、ホール素子1のセンサ信号400を図5に示すセンサ信号収録部110に収録し、記憶信号200の発生により、センサ信号400(初期信号)は初期信号記憶部120に保存される。以後、欠陥の有無を試験する試験体から収録されるセンサ信号500は、全て初期信号減算部130において、初期信号記憶部120に保存されている初期信号を減算する。図7(a)は、図6(b)のセンサ信号500から初期信号として保存された図6(a)のセンサ信号400を減算した結果である。このセンサ信号600は処理信号記憶部150に保存される。ここで、閾値処理部160は、センサ信号600を図7(a)に示す閾値で処理し、閾値を超えたセンサ信号を出力した磁気検出部に対応する発光素子(2d、2e、2g、2h)を点灯させる。このように、中心に消灯したLED2f が1個あり、そのLED2f を対称に同数のLED2d、2e、2g、2hが点灯し、その外側のLED2c、2i が消灯していれば、点灯しているLED2の間に欠陥が存在し、欠陥がLED2f 近傍にあることが分かる。   First, the sensor signal 400 of the Hall element 1 when the healthy part of the specimen 8 shown in FIG. 6A is magnetized is recorded in the sensor signal recording unit 110 shown in FIG. The signal 400 (initial signal) is stored in the initial signal storage unit 120. Thereafter, all of the sensor signals 500 recorded from the specimen to be tested for defects are subtracted from the initial signal stored in the initial signal storage unit 120 in the initial signal subtracting unit 130. FIG. 7A shows the result of subtracting the sensor signal 400 of FIG. 6A stored as the initial signal from the sensor signal 500 of FIG. 6B. This sensor signal 600 is stored in the processing signal storage unit 150. Here, the threshold value processing unit 160 processes the sensor signal 600 with the threshold value shown in FIG. 7A, and outputs the sensor signal exceeding the threshold value (2d, 2e, 2g, 2h) corresponding to the magnetic detection unit. ) Is lit. In this way, there is one LED 2f that is extinguished at the center, and if the same number of LEDs 2d, 2e, 2g, and 2h are lit, and the outer LEDs 2c and 2i are off, the LED 2 that is lit It can be seen that there is a defect between and the defect is in the vicinity of the LED 2f.

また、図7(b)に示すように、図7(a)に示すセンサ信号600を図5に示す位置差分処理部140において、予め設定されたホール素子1間のセンサ信号の差分をとることにより、微分情報が得られ、欠陥の検出性が向上する。センサ信号700を閾値処理部160において、図7(b)に示す閾値で処理すると、2e、2f、2g が点灯する。差分処理したセンサ信号は、センサ信号700のように中心にピークを持つので、点灯したLED2の中心、図7(b)の場合はLED2f が欠陥に最も近い位置だと分かる。   Further, as shown in FIG. 7 (b), the sensor signal 600 shown in FIG. 7 (a) is taken by the position difference processing unit 140 shown in FIG. As a result, differential information is obtained, and defect detectability is improved. When the sensor signal 700 is processed by the threshold processing unit 160 with the threshold shown in FIG. 7B, 2e, 2f, and 2g are turned on. Since the sensor signal subjected to the difference processing has a peak at the center like the sensor signal 700, it can be understood that the center of the lit LED 2, in the case of FIG. 7B, is the position closest to the defect.

このように、本実施例によれば、磁性材の試験体の表面及び表面下の傷をその場で視認することができる磁気センサに対応した発光素子を備え、磁気センサの出力信号を演算処理することにより、磁化器からの漏洩磁束のノイズ信号と欠陥に起因した磁場信号を識別し、欠陥に起因した磁場信号を検出した磁気センサのみ点灯させる信号処理機能を有する磁場可視化センサ及び磁場可視化センサを備えた磁気探傷用プローブを提供することができる。   As described above, according to this embodiment, the light-emitting element corresponding to the magnetic sensor that can visually recognize the surface of the test piece of the magnetic material and the scratch under the surface is provided on the spot, and the output signal of the magnetic sensor is processed. The magnetic field visualization sensor and the magnetic field visualization sensor have a signal processing function for discriminating between the noise signal of the magnetic flux leaked from the magnetizer and the magnetic field signal caused by the defect and lighting only the magnetic sensor that detected the magnetic field signal caused by the defect. It is possible to provide a probe for magnetic testing provided with

磁場可視化センサ10の信号処理部4の実施例2を図8、図9に示す。初期信号減算部130の後に方向識別部170を設け、ホール素子を貫く磁束の方向を識別する。図9(a)は、図7(a)のセンサ信号600に方向識別部170の処理を追加し、閾値処理部160で処理した結果を示す。図9(a)では、検出した磁場の向きをLED2d、2e とLED2g、2hが点灯する際の濃淡によって表しているが、別の表現方法としては、LED2d、2eを点灯させ、LED2g と2h を点滅させる方法でも実現できる。また、ホール素子1に対して色の異なる2色のLED2を配置して、検出した磁場の方向により点灯するLED2の色を変更する方法も考えられる。図9(a)に示すように、横穴9のような欠陥の前後では、磁束の方向が変化するので、LED2の点灯状態により、磁束の方向が識別できると欠陥の検出性が向上する。   Example 2 of the signal processing unit 4 of the magnetic field visualization sensor 10 is shown in FIGS. A direction identifying unit 170 is provided after the initial signal subtracting unit 130 to identify the direction of the magnetic flux passing through the Hall element. FIG. 9A shows the result of adding the processing of the direction identification unit 170 to the sensor signal 600 of FIG. In FIG. 9 (a), the direction of the detected magnetic field is represented by shading when the LEDs 2d, 2e and the LEDs 2g, 2h are turned on. As another expression method, the LEDs 2d, 2e are turned on, and the LEDs 2g and 2h are turned on. It can also be realized by flashing. Another possible method is to arrange LEDs 2 of different colors with respect to the Hall element 1 and change the color of the LEDs 2 that are lit depending on the direction of the detected magnetic field. As shown in FIG. 9 (a), the direction of the magnetic flux changes before and after the defect such as the horizontal hole 9. Therefore, if the direction of the magnetic flux can be identified by the lighting state of the LED 2, the detectability of the defect is improved.

同様に、図9(b)は、図7(b)のセンサ信号700に方向識別部170の処理を追加し、閾値処理部160で処理した結果を示す。この場合もLED2f の前後でセンサ信号の符号が反転するので、図9(b)に示すようにLED2e、2g は、LED2f と異なる点灯状態になる。よって、図9(a)の場合と同様に欠陥の検出性が向上する。さらに欠陥の検出性を向上させる方法として、図8に示すように閾値処理部160の後に信号強度識別部180を追加する方法もある。信号強度識別部180では、磁場の方向を識別した後に、信号強度に応じて、LEDの濃淡や色を変化させて、より詳細な磁場分布を表現する。また、より小型のホール素子1を用い、ホール素子1の間隔を狭めることにより、磁場検出の分解能を向上させ、欠陥の検出性も同様に向上する。   Similarly, FIG. 9B shows the result of adding the process of the direction identifying unit 170 to the sensor signal 700 of FIG. Also in this case, since the sign of the sensor signal is inverted before and after the LED 2f, the LEDs 2e and 2g are turned on differently from the LED 2f as shown in FIG. 9B. Therefore, the detectability of defects improves as in the case of FIG. Further, as a method for improving the detectability of defects, there is a method in which a signal strength identifying unit 180 is added after the threshold processing unit 160 as shown in FIG. After identifying the direction of the magnetic field, the signal strength identifying unit 180 changes the shade and color of the LED according to the signal strength to represent a more detailed magnetic field distribution. Further, by using a smaller Hall element 1 and narrowing the interval between the Hall elements 1, the resolution of magnetic field detection is improved, and the defect detectability is also improved.

図10、図11に実施例3を示す。それぞれ1個ずつのホール素子1とLED2をコの字型基板3に設置し、コの字型基板3を同一線上で往復走査させ、往路走査時にエンコーダ(図示しない)の信号800に同期して、ホール素子1のセンサ信号100を信号処理部4のセンサ信号収録部110に収録する。その後の初期信号減算部130から閾値処理部160までの処理は、実施例1及び2と同様に行い、点灯判定を各エンコーダ信号800の位置のセンサ信号100に対して行う。そして、各位置の点灯判定終了後の復路走査時に、コの字型基板3がLED2を点灯させる位置に到達した際に(エンコーダ信号の位置に同期して)、LED2を点灯させる。このような方法により、エンコーダの分解能を向上することで、検出する磁場の分解能が向上し、更に欠陥の検出性を向上できる。   A third embodiment is shown in FIGS. One Hall element 1 and one LED 2 are installed on the U-shaped substrate 3, and the U-shaped substrate 3 is reciprocally scanned on the same line, and synchronized with a signal 800 of an encoder (not shown) during forward scanning. The sensor signal 100 of the Hall element 1 is recorded in the sensor signal recording unit 110 of the signal processing unit 4. Subsequent processing from the initial signal subtracting unit 130 to the threshold processing unit 160 is performed in the same manner as in the first and second embodiments, and the lighting determination is performed on the sensor signal 100 at the position of each encoder signal 800. When the U-shaped substrate 3 reaches the position where the LED 2 is lit (in synchronization with the position of the encoder signal) during the backward scan after completion of the lighting determination at each position, the LED 2 is lit. By improving the resolution of the encoder by such a method, the resolution of the magnetic field to be detected is improved, and the defect detectability can be further improved.

本発明は、上記実施例に限定されること無く、特許請求の範囲に記載した発明の範囲内で種種の変形が可能であり、それらも本発明に含まれることはいうまでもない。具体的には、ホール素子1、LED2、コの字型基板3、信号処理部4は、測定対象となる鋼材の磁気特性、検出対象となる欠陥の大きさと漏洩磁束分布に応じて本発明の趣旨を逸脱しない範囲で適宜調整することが可能である。
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the invention described in the claims, and it goes without saying that these are also included in the present invention. Specifically, the Hall element 1, the LED 2, the U-shaped substrate 3, and the signal processing unit 4 are configured according to the present invention in accordance with the magnetic characteristics of the steel material to be measured, the size of the defect to be detected and the leakage magnetic flux distribution. Adjustments can be made as appropriate without departing from the spirit of the invention.

1…ホール素子、2…LED、3…コの字型基板、4…信号処理部、5…コア、6…コイル、7…電源、8…試験体、9…横穴、10…磁場可視化センサ、13a、b…磁極、15…磁気シールド、20…磁気探傷用プローブ、30…磁化器   DESCRIPTION OF SYMBOLS 1 ... Hall element, 2 ... LED, 3 ... U-shaped board | substrate, 4 ... Signal processing part, 5 ... Core, 6 ... Coil, 7 ... Power supply, 8 ... Test body, 9 ... Side hole, 10 ... Magnetic field visualization sensor, 13a, b ... magnetic pole, 15 ... magnetic shield, 20 ... probe for flaw detection, 30 ... magnetizer

Claims (6)

試験体を磁化する磁化器と、欠陥に起因して発生した磁場を検出する磁気検出部と、前記磁気検出部に対応した発光素子を備えた磁気探傷用プローブであって、前記磁気検出部からの出力信号の演算結果により、前記発光素子の点灯を判定する機能を備えることを特徴とする磁気探傷用プローブ。   A magnetometer for magnetizing a test body, a magnetic detection unit for detecting a magnetic field generated due to a defect, and a probe for magnetic testing including a light emitting element corresponding to the magnetic detection unit, from the magnetic detection unit A probe for magnetic flaw detection, comprising a function of determining whether the light emitting element is turned on or off based on the calculation result of the output signal. 請求項1において、前記試験体の健全部を磁化した際に前記磁気検出部が検出した検出信号を予め記憶する初期信号記憶部と、欠陥の有無を試験する試験体から得られた検出信号から前記初期信号を減算する初期信号減算部と、前記初期信号減算部から出力されたセンサ信号と閾値で処理する閾値処理部を備えることを特徴とする磁気探傷用プローブ。   In Claim 1, From the detection signal obtained from the initial signal memory | storage part which memorize | stores beforehand the detection signal which the said magnetic detection part detected when the healthy part of the said test body was magnetized, and the test body which tests the presence or absence of a defect A probe for magnetic testing, comprising: an initial signal subtracting unit that subtracts the initial signal; and a threshold processing unit that processes the sensor signal output from the initial signal subtracting unit and a threshold value. 請求項1及び2において、前記閾値処理部により、閾値を超えたセンサ信号を出力した前記磁気検出部に対応した前記発光素子を点灯する機能を備えた磁気探傷用プローブ。   3. The probe for magnetic flaw detection according to claim 1, wherein the threshold value processing unit has a function of lighting the light emitting element corresponding to the magnetic detection unit that outputs a sensor signal exceeding a threshold value. 請求項3において、前記初期信号減算部が出力するセンサ信号に基づき、前記磁気検出部を貫く磁束の方向を識別する方向識別部を備えることを特徴とする磁気探傷用プローブ。   4. The probe for magnetic flaw detection according to claim 3, further comprising a direction identification unit that identifies a direction of a magnetic flux penetrating the magnetic detection unit based on a sensor signal output from the initial signal subtraction unit. 請求項1において、前記磁気検出部と前記発光素子を前記磁化器の磁極間で往復走査させ、往路走査時にエンコーダ信号に同期して前記磁気検出部からのセンサ信号を収録し、前記発光素子の点灯を判定し、復路走査時に前記エンコーダ信号の位置に同期して前記発光素子を点灯させる機能を備えることを特徴とする磁気探傷用プローブ。   In Claim 1, the said magnetic detection part and the said light emitting element are reciprocated scanned between the magnetic poles of the said magnetizer, the sensor signal from the said magnetic detection part is recorded synchronizing with an encoder signal at the time of an outward scan, A probe for magnetic flaw detection, comprising a function of determining lighting and lighting the light emitting element in synchronization with the position of the encoder signal during backward scanning. 試験体を磁化する磁化器を用いた磁気探傷用プローブに使用する磁場可視化センサであって、
欠陥に起因して発生した磁場を検出する磁気検出部と、前記磁気検出部に対応した発光素子を備えた磁場可視化センサであって、前記磁気検出部からの出力信号の演算結果により、前記発光素子の点灯を判定する機能を備えた磁場可視化センサ。
A magnetic field visualization sensor used for a magnetic flaw detection probe using a magnetizer for magnetizing a specimen,
A magnetic field visualization sensor comprising a magnetic detection unit for detecting a magnetic field generated due to a defect and a light emitting element corresponding to the magnetic detection unit, wherein the light emission is performed according to a calculation result of an output signal from the magnetic detection unit. Magnetic field visualization sensor with a function to determine lighting of the element.
JP2012260460A 2012-11-29 2012-11-29 Magnetic field visualization sensor and probe for magnetic flaw detection Pending JP2014106165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012260460A JP2014106165A (en) 2012-11-29 2012-11-29 Magnetic field visualization sensor and probe for magnetic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012260460A JP2014106165A (en) 2012-11-29 2012-11-29 Magnetic field visualization sensor and probe for magnetic flaw detection

Publications (1)

Publication Number Publication Date
JP2014106165A true JP2014106165A (en) 2014-06-09

Family

ID=51027772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012260460A Pending JP2014106165A (en) 2012-11-29 2012-11-29 Magnetic field visualization sensor and probe for magnetic flaw detection

Country Status (1)

Country Link
JP (1) JP2014106165A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108469514A (en) * 2018-06-07 2018-08-31 青岛理工大学 A kind of monitoring device and its method of steel rust in concrete behavior
WO2019054158A1 (en) * 2017-09-13 2019-03-21 コニカミノルタ株式会社 Nondestructive inspecting device, nondestructive inspecting system, and nondestructive inspecting method
WO2020217278A1 (en) * 2019-04-22 2020-10-29 三菱電機株式会社 Flaw detection device for magnetic substance
CN112378994A (en) * 2020-11-09 2021-02-19 华东理工大学 Electromagnetic detection probe for deep defects of metal component based on TMR magnetoresistive sensor array

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054158A1 (en) * 2017-09-13 2019-03-21 コニカミノルタ株式会社 Nondestructive inspecting device, nondestructive inspecting system, and nondestructive inspecting method
CN108469514A (en) * 2018-06-07 2018-08-31 青岛理工大学 A kind of monitoring device and its method of steel rust in concrete behavior
WO2020217278A1 (en) * 2019-04-22 2020-10-29 三菱電機株式会社 Flaw detection device for magnetic substance
JPWO2020217278A1 (en) * 2019-04-22 2021-05-20 三菱電機株式会社 Magnetic flaw detector
CN112378994A (en) * 2020-11-09 2021-02-19 华东理工大学 Electromagnetic detection probe for deep defects of metal component based on TMR magnetoresistive sensor array
CN112378994B (en) * 2020-11-09 2024-04-30 华东理工大学 Electromagnetic detection probe for deep defects of metal component based on TMR (total magnetic resistance) magnetoresistive sensor array

Similar Documents

Publication Publication Date Title
CN104903718B (en) For detecting the device and method of the internal flaw of steel plate
US6975108B2 (en) Methods and devices for eddy current PCB inspection
BR102017026255A2 (en) method of inspecting a steel strip
KR101165237B1 (en) Nondestructive flaw test apparatus by measuring magnetic flux leakage
CN106814131B (en) Ferromagnetic planar member shallow layer damage magnetic emission detection method and magnetic emission detection system
WO2023035435A1 (en) Non-destructive metal flaw detection device and method, and storage medium
JP2014106165A (en) Magnetic field visualization sensor and probe for magnetic flaw detection
JP2014044087A (en) Nondestructive inspection device using pulse magnetic field, and nondestructive inspection method thereof
JP2011027592A (en) Piping wall surface inspection method and inspection apparatus
EA201171250A2 (en) DEVICE FOR DETECTION OF DEFECTS DURING ROTATING METAL BODIES BY A MAGNETIC GUN METHOD OF CONTROL
JP2011047736A (en) Method of inspecting austenite-based stainless steel welding section
JP2013160739A (en) Method and apparatus for detecting flaws in magnetic materials
CN107290424A (en) Steel wire nondestructive detection device and method side by side
CN105874329B (en) Detect the device and method of the defect of steel plate
JP2011117890A (en) Eddy current flaw detection probe
CN107576720B (en) Ferromagnetic slender component shallow layer damage magnetic emission detection method and magnetic emission detection system
JP2006208224A (en) Device for inspecting butt-welded part of steel sheet, and inspection method using it
JP2004354282A (en) Magnetic flux leakage flaw detection apparatus
JP2016197085A (en) Magnetic flaw detection method
Pelkner et al. Size adapted GMR arrays for the automated inspection of surface breaking cracks in roller bearings
JPH10318987A (en) Eddy current flaw detector
Nakamura et al. Optimization of magnetic-field component detection for unsaturated AC magnetic-flux-leakage testing to detect cracks in steel
JP2006010665A (en) Eddy current flaw detecting method and eddy current flaw detecting probe for realizing deep penetration of eddy current
CN203616286U (en) Lossless flaw detection device
JP2019020272A (en) Front surface scratch inspection device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140828