JPS62109955A - Manufacture of titanium-base alloy material excellent in corrosion resistance - Google Patents

Manufacture of titanium-base alloy material excellent in corrosion resistance

Info

Publication number
JPS62109955A
JPS62109955A JP24871785A JP24871785A JPS62109955A JP S62109955 A JPS62109955 A JP S62109955A JP 24871785 A JP24871785 A JP 24871785A JP 24871785 A JP24871785 A JP 24871785A JP S62109955 A JPS62109955 A JP S62109955A
Authority
JP
Japan
Prior art keywords
titanium
corrosion resistance
alloy
region
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24871785A
Other languages
Japanese (ja)
Other versions
JPH0121871B2 (en
Inventor
Chihiro Taki
千博 滝
Hideo Sakuyama
秀夫 作山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP24871785A priority Critical patent/JPS62109955A/en
Publication of JPS62109955A publication Critical patent/JPS62109955A/en
Publication of JPH0121871B2 publication Critical patent/JPH0121871B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To improve wear resistance by subjecting a Ti-Ni alloy to heating to a specific temp. and then to rapid cooling. CONSTITUTION:A Ti-Ni alloy consisting of, by weight, 0.1-7% Ni and the balance Ti or a Ti-Ni alloy further containing, besides 0.1-7% Ni, 1 or >=2 kinds among 0.005-2.0% Ru, 0.005-2.0% Pd, 0.01-1.0% Mo, and 0.005-0.5% W is heated to the (alpha+beta) or (beta) range in the constitutional diagram of Ti-Ni alloy and then cooled rapidly at >=50 deg.C/min cooling rate to allow large amounts of Ni to enter into solid solution in alpha-Ti, so that corrosion resistance of Ti-Ni alloy can further be improved to a greater extent.

Description

【発明の詳細な説明】 」■ この発明は、ニッケルを含有するチタン基合金を熱処理
により耐食性を向上させるチタン基合金材の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a titanium-based alloy material in which the corrosion resistance of a titanium-based alloy containing nickel is improved by heat treatment.

従来技術 純チタンは、耐食性が優れているので従来から種々の化
学プラントや、電極、熱交換器等に広く使用されている
が、昨今のよりきびしい腐食環境下での使用のためには
、純チタンの耐食性だけでは充分でなく、より一層の耐
食性に富む材料の開発が望まれている。
Conventional technology Pure titanium has excellent corrosion resistance and has been widely used in various chemical plants, electrodes, heat exchangers, etc., but in recent years pure titanium has been used in more severe corrosive environments. The corrosion resistance of titanium alone is not sufficient, and the development of materials with even higher corrosion resistance is desired.

このような中で、純チタンにニッケルを添加した耐食性
チタン合金Ti−Ni合金(特公昭46−21086)
やTi−Ni−Mo合金(特願昭5O−37435)の
開発がなされた。
Under these circumstances, corrosion-resistant titanium alloy Ti-Ni alloy (Japanese Patent Publication No. 46-21086), which is made by adding nickel to pure titanium, was developed.
and Ti-Ni-Mo alloy (Japanese Patent Application No. 5O-37435) were developed.

しかしながら、このようなニッケルを含有したチタン基
合金においても比較的強い腐食環境下ではしばしば腐食
の問題が発生し、さらに、耐食性を向上させる必要が生
じてきた。
However, even in such titanium-based alloys containing nickel, corrosion problems often occur in relatively strong corrosive environments, and furthermore, it has become necessary to improve the corrosion resistance.

l胛例榎双 本発明者は、上記実情に鑑み鋭意研究を行った結果、本
発明を見い出すに到った。すなわち本発明は。
The inventors of the present invention have conducted extensive research in view of the above circumstances, and as a result have discovered the present invention. That is, the present invention.

(1)重量%でニッケル0.1%〜7%残部チタン及び
不可避的不純物からなるチタン基合金を、α+β領域又
はβ領域に加熱し、しかるのち50℃/分以上の速さで
冷却することを特徴とする耐食性に優れたチタン基合金
材の製造方法。
(1) A titanium-based alloy consisting of 0.1% to 7% nickel by weight, the balance titanium, and inevitable impurities is heated to the α+β region or β region, and then cooled at a rate of 50°C/min or more. A method for producing a titanium-based alloy material with excellent corrosion resistance.

(2)重量%でニッケル0.1%〜7%及び、ルテニウ
ム0.005%〜2.0%、パラジウム0゜005%〜
2.0%、モリブデン0.01%〜1゜0%、タングス
テン0.005%〜0.5%の合金元素の群から選択し
た1種又は2種以上を含有し、残部チタン及び不可避的
不純物からなるチタン基合金を、α+β領域又はβ領域
に加熱し、しかる後50”C/分分出上速さで冷却する
ことを特徴とする耐食性に優れたチタン基合金材の製造
方法に関するものである。
(2) Nickel 0.1% to 7%, Ruthenium 0.005% to 2.0%, Palladium 0°005% to
2.0%, molybdenum 0.01% to 1°0%, and tungsten 0.005% to 0.5%. This invention relates to a method for producing a titanium-based alloy material with excellent corrosion resistance, which comprises heating a titanium-based alloy consisting of be.

通常、チタンにニッケルを添加した場合、第1図のTi
−Ni状態図に示すように、室温付近においては、ニッ
ケルはほとんどチタンに固?容せずTi、Niの形でα
−チタンの粒界に析出する。
Normally, when nickel is added to titanium, the Ti
-Ni As shown in the phase diagram, near room temperature, nickel almost solidifies into titanium? α in the form of Ti and Ni
- Precipitates at grain boundaries of titanium.

従来のニッケルを含有したチタン基合金は、このような
状態にて耐食性を向上させるものであった。しかるに、
本発明方法にしたがい、チタン−ニッケル合金をα+β
又はβ領域に加熱し、その後急冷を行い、ニッケルをα
−チタン中に多く固溶させることによって、チタン−ニ
ッケル系合金の耐食性が著しく向上することを見い出し
たのである。
Conventional titanium-based alloys containing nickel have improved corrosion resistance under such conditions. However,
According to the method of the present invention, titanium-nickel alloy is
Alternatively, heat the nickel to the β region, then rapidly cool it, and convert the nickel into the α region.
- It has been discovered that the corrosion resistance of titanium-nickel alloys can be significantly improved by incorporating a large amount of solid solution into titanium.

前記ニッケル含有量の下限を0.1重量%とじたのは、
これより少ないとニッケル含有の効果がなく、又、上限
を7重量%とじたのは、これよりニッケル含有量が多い
と加工性が悪くなり実質的に製造がむずかしくなるため
である。
The lower limit of the nickel content was set at 0.1% by weight because
If the nickel content is less than this, there is no effect of the nickel content, and the reason why the upper limit is set at 7% by weight is because if the nickel content is more than this, the workability deteriorates and production becomes substantially difficult.

また、副成分であるルテニウム、パラジウム、モリブデ
ン、タングステンについても、その下限より少ない含有
量では、耐食性にほとんど効果がないためである。上限
については、ルテニウム、パラジウムは、それより多く
添加しても耐食性を向」ニさせる効果があまり上昇しな
くなり、ニス1−高となるためであり、又、特にモリブ
デン、タングステンを上限より多く添加することは、著
しく製造が困難となるためである。
This is also because the subcomponents ruthenium, palladium, molybdenum, and tungsten have almost no effect on corrosion resistance if their contents are less than their lower limits. Regarding the upper limit, this is because even if ruthenium and palladium are added in a larger amount, the effect of improving corrosion resistance will not increase much, resulting in a varnish that is 1-higher.Also, especially if molybdenum and tungsten are added above the upper limit, the effect of improving corrosion resistance will not increase much. This is because manufacturing becomes extremely difficult.

次に、本発明を具体的な実施例に基づいて説明する。Next, the present invention will be explained based on specific examples.

実施例 チタンに、ニッケル0.1重量%〜7重量%を含有する
Ti−Ni合金、T1Ni−Mo合金、’I” i −
N i −Ru合金、Ti−Ni−Pd合金、T]〜N
1−W合金、について、本発明の実施例と比較例を第1
表〜第5表に示す。加熱温度は700’c (α領域)
、800℃(α+β領域)、1000’C(β領域)の
3種類とし、冷却速度及び腐食試験は第1表〜第5表に
示す条件下にて行った。
Examples Ti-Ni alloy containing 0.1% to 7% by weight of nickel in titanium, T1Ni-Mo alloy, 'I'' i -
Ni-Ru alloy, Ti-Ni-Pd alloy, T]~N
1-W alloy, Examples of the present invention and Comparative examples are shown in the first example.
Shown in Tables 5 to 5. Heating temperature is 700'c (α region)
, 800° C. (α+β region), and 1000° C. (β region), and the cooling rate and corrosion tests were conducted under the conditions shown in Tables 1 to 5.

第1表に、Ti−Ni合金の腐食試験結果を示す。※印
が本発明方法による例であり、他は比較例を示す。
Table 1 shows the corrosion test results for Ti-Ni alloys. The * mark indicates an example according to the method of the present invention, and the others indicate comparative examples.

加熱温度は700℃(α領域)においては、冷却速度を
変化させても腐食速度はほとんどかわらず、又、本発明
方法により熱処理を行ったものに比べ著しく腐食速度が
大きい。
At a heating temperature of 700° C. (α region), the corrosion rate hardly changes even if the cooling rate is changed, and the corrosion rate is significantly higher than that of those heat-treated by the method of the present invention.

加熱温度800℃(α+β領域)、及び1000℃(β
領域)とした場合、冷却速度が10℃/分の場合と、本
発明方法である50°C/分、200℃/分、1000
℃/分では、明らかに腐食速度が異なっており、本発明
方法が耐食性の向上に寄与していることがわかる。
Heating temperature 800℃ (α + β region) and 1000℃ (β
When the cooling rate is 10°C/min, and the method of the present invention is 50°C/min, 200°C/min, 1000°C
The corrosion rates are clearly different in terms of °C/min, and it can be seen that the method of the present invention contributes to improving corrosion resistance.

このように、加熱温度がα+β領域もしくはβ領域であ
り、しかも、冷却速度が50℃/分以上の2条件が整っ
て初めて耐食性が向上することがわかる。
Thus, it can be seen that corrosion resistance is improved only when two conditions are met: the heating temperature is in the α+β region or the β region, and the cooling rate is 50° C./min or more.

第2表に、T i −N i −M o合金の腐食試験
結果を示す。※印が本発明方法による例であり、他は比
較例を示す。
Table 2 shows the corrosion test results for the Ti-Ni-Mo alloy. The * mark indicates an example according to the method of the present invention, and the others indicate comparative examples.

加熱温度700℃(α領域)においては、冷却速度を変
化させても腐食速度はほとんどかわらず、又、本発明方
法により熱処理を行ったものに比べ著しく腐食速度が大
きい。
At a heating temperature of 700° C. (α region), the corrosion rate hardly changes even if the cooling rate is changed, and the corrosion rate is significantly higher than that of those heat-treated by the method of the present invention.

加熱温度800℃(α+β領域)、及び1000℃(β
領域)とした場合、冷却速度が10℃/分の場合と、本
発明方法である50℃/分、200℃/分、1000℃
/分では、明らかに腐食速度が異なっており、本発明方
法が耐食性の向上に寄与していることがわかる。
Heating temperature 800℃ (α + β region) and 1000℃ (β
range), the cooling rate is 10°C/min, and the method of the present invention is 50°C/min, 200°C/min, and 1000°C.
/min, the corrosion rate clearly differs, and it can be seen that the method of the present invention contributes to improving corrosion resistance.

このように、加熱温度がα+β領域もしくはβ領域であ
り、しかも、冷却速度が50℃/分以上の2条件が整っ
て初めて耐食性が向上することがわかる。
Thus, it can be seen that corrosion resistance is improved only when two conditions are met: the heating temperature is in the α+β region or the β region, and the cooling rate is 50° C./min or more.

第3表に、Ti−Ni−Ru合金の腐食試験結果を示す
。※印が本発明方法による例であり、他は比較例を示す
Table 3 shows the corrosion test results for Ti-Ni-Ru alloys. The * mark indicates an example according to the method of the present invention, and the others indicate comparative examples.

加熱温度700℃(α領域)においては、冷却速度を変
化させても腐食速度はほとんどかわらず。
At a heating temperature of 700°C (α region), the corrosion rate remains almost unchanged even if the cooling rate is changed.

又、本発明方法により熱処理を行ったものに比べ著しく
腐食速度が大きい。
Furthermore, the corrosion rate is significantly higher than that of those heat-treated by the method of the present invention.

加熱温度800℃(α+β領域)、及び1000℃(β
領域)とした場合、冷却速度が10℃/分の場合と、本
発明方法である50℃/分、200℃/分、1000℃
/分では、明らかに腐食速度が異なっており、本発明方
法が耐食性の向上に寄与していることがわかる。
Heating temperature 800℃ (α + β region) and 1000℃ (β
range), the cooling rate is 10°C/min, and the method of the present invention is 50°C/min, 200°C/min, and 1000°C.
/min, the corrosion rate clearly differs, and it can be seen that the method of the present invention contributes to improving corrosion resistance.

このように、加熱温度がα+β領域もしくはβ領域であ
り、しかも、冷却速度が50℃/分以上の2条件が整っ
て初めて耐食性が向上することがわかる。
Thus, it can be seen that corrosion resistance is improved only when two conditions are met: the heating temperature is in the α+β region or the β region, and the cooling rate is 50° C./min or more.

第4表に、Ti−Ni−Pd合金の腐食試験結果を示す
。X印が本発明方法による例であり、他は比較例を示す
Table 4 shows the corrosion test results for Ti-Ni-Pd alloys. The X mark indicates an example according to the method of the present invention, and the others indicate comparative examples.

加熱温度700℃(α領域)においては、冷却速度を変
化させても腐食速度はほとんどかわらず。
At a heating temperature of 700°C (α region), the corrosion rate remains almost unchanged even if the cooling rate is changed.

又、本発明方法により熱処理を行ったものに比べ著しく
腐食速度が大きい。
Furthermore, the corrosion rate is significantly higher than that of those heat-treated by the method of the present invention.

加熱温度800℃(α+β領域)、及び1000℃(β
領域)とした場合、冷却速度が10℃/分の場合と、本
発明方法である50℃/分、200℃/分、1000℃
/分では、明らかに腐食速度が異なっており、本発明方
法が耐食性の向上に寄与していることがわかる。
Heating temperature 800℃ (α + β region) and 1000℃ (β
range), the cooling rate is 10°C/min, and the method of the present invention is 50°C/min, 200°C/min, and 1000°C.
/min, the corrosion rate clearly differs, and it can be seen that the method of the present invention contributes to improving corrosion resistance.

このように、加熱温度がα+β領域もしくはβ領域であ
り、しかも、冷却速度が50℃/分以上の2条件が整っ
て初めて耐食性が向上することがわかる。
Thus, it can be seen that corrosion resistance is improved only when two conditions are met: the heating temperature is in the α+β region or the β region, and the cooling rate is 50° C./min or more.

第5表に、Ti−N1−W合金の腐食試験結果を示す。Table 5 shows the corrosion test results for the Ti-N1-W alloy.

×印が本発明方法による例であり、他は比較例を示す。The x mark indicates an example according to the method of the present invention, and the others indicate comparative examples.

加熱温度700℃(α領域)においては、冷却速度を変
化させても腐食速度はほとんどかわらず、又、本発明方
法により熱処理を行ったものに比べ著しく腐食速度が大
きい。
At a heating temperature of 700° C. (α region), the corrosion rate hardly changes even if the cooling rate is changed, and the corrosion rate is significantly higher than that of those heat-treated by the method of the present invention.

加熱温度800℃(α+β領域)、及び1000℃(β
領域)とした場合、冷却速度が10℃/分の場合と、本
発明方法である50°C/分、200℃/分、1000
℃/分では、明らかに腐食速度が異なっており、本発明
方法が耐食性の向上に寄与していることがわかる。
Heating temperature 800℃ (α + β region) and 1000℃ (β
When the cooling rate is 10°C/min, and the method of the present invention is 50°C/min, 200°C/min, 1000°C
The corrosion rates are clearly different in terms of °C/min, and it can be seen that the method of the present invention contributes to improving corrosion resistance.

このように、加熱温度がα+β領域もしくはβ領域であ
り、しかも、冷却速度が50℃/分以上の2条件が整っ
て初めて耐食性が向上することがわかる。
Thus, it can be seen that corrosion resistance is improved only when two conditions are met: the heating temperature is in the α+β region or the β region, and the cooling rate is 50° C./min or more.

以上の実施例より、本発明の熱処理を行なうことにより
、耐食性が著しく向上することがわかる。
From the above examples, it can be seen that corrosion resistance is significantly improved by performing the heat treatment of the present invention.

以下余白 第3表 各種熱処理による腐食速度への影響(Ti−N
i−Ru合金) 腐食条件:  H,SC21%水水溶 液上う 24時間テスト 第4表 各種熱処理による腐食速度への影響(Ti−N
i−Pd合金) 腐食条件:  H,30,1%水水溶 液上う 24時間テスト 第5表 各種熱処理による腐食速度への影響(Ti−N
i  W合金) 腐食条件:  H,5o41%水溶液 沸とう 24時間テスト
Table 3 below: Effects of various heat treatments on corrosion rate (Ti-N
i-Ru alloy) Corrosion conditions: H, SC 21% aqueous solution 24-hour test Table 4 Effects of various heat treatments on corrosion rate (Ti-N
(i-Pd alloy) Corrosion conditions: H, 30, 1% aqueous solution 24-hour test
i W alloy) Corrosion conditions: H, 5o 41% aqueous solution boiling 24 hour test

【図面の簡単な説明】[Brief explanation of drawings]

第1図はチタン−ニッケル合金の状態図である。 FIG. 1 is a phase diagram of a titanium-nickel alloy.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%でニッケル0.1%〜7%残部チタン及び
不可避的不純物からなるチタン基合金を、α+β領域又
はβ領域に加熱し、しかるのち50℃/分以上の速さで
冷却することを特徴とする耐食性に優れたチタン基合金
材の製造方法。
(1) A titanium-based alloy consisting of 0.1% to 7% nickel by weight, the balance titanium, and inevitable impurities is heated to the α+β region or β region, and then cooled at a rate of 50°C/min or more. A method for producing a titanium-based alloy material with excellent corrosion resistance.
(2)重量%でニッケル0.1%〜7%、及びルテニウ
ム0.005%〜2.0%、パラジウム0.005%〜
2.0%、モリブデン0.01%〜1.0%、タングス
テン0.005%〜0.5%の合金元素の群から選択し
た1種又は2種以上を含有し、残部チタン及び不可避的
不純物からなるチタン基合金を、α+β領域又はβ領域
に加熱し、しかる後50℃/分以上の速さで冷却するこ
とを特徴とする耐食性に優れたチタン基合金材の製造方
法。
(2) Nickel 0.1% to 7%, Ruthenium 0.005% to 2.0%, Palladium 0.005% to 7% by weight
2.0%, molybdenum 0.01% to 1.0%, and tungsten 0.005% to 0.5%. A method for producing a titanium-based alloy material with excellent corrosion resistance, which comprises heating a titanium-based alloy consisting of
JP24871785A 1985-11-08 1985-11-08 Manufacture of titanium-base alloy material excellent in corrosion resistance Granted JPS62109955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24871785A JPS62109955A (en) 1985-11-08 1985-11-08 Manufacture of titanium-base alloy material excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24871785A JPS62109955A (en) 1985-11-08 1985-11-08 Manufacture of titanium-base alloy material excellent in corrosion resistance

Publications (2)

Publication Number Publication Date
JPS62109955A true JPS62109955A (en) 1987-05-21
JPH0121871B2 JPH0121871B2 (en) 1989-04-24

Family

ID=17182291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24871785A Granted JPS62109955A (en) 1985-11-08 1985-11-08 Manufacture of titanium-base alloy material excellent in corrosion resistance

Country Status (1)

Country Link
JP (1) JPS62109955A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219557A (en) * 1987-03-09 1988-09-13 Nippon Mining Co Ltd Production of titanium based alloy material having excellent corrosion resistance and press moldability
JPH0267322A (en) * 1988-09-02 1990-03-07 Tosoh Corp Equipment for manufacturing polyarylene sulfide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219557A (en) * 1987-03-09 1988-09-13 Nippon Mining Co Ltd Production of titanium based alloy material having excellent corrosion resistance and press moldability
JPH0366388B2 (en) * 1987-03-09 1991-10-17 Nippon Mining Co
JPH0267322A (en) * 1988-09-02 1990-03-07 Tosoh Corp Equipment for manufacturing polyarylene sulfide

Also Published As

Publication number Publication date
JPH0121871B2 (en) 1989-04-24

Similar Documents

Publication Publication Date Title
US7083687B2 (en) Super-elastic titanium alloy for medical uses
JP3395443B2 (en) High creep strength titanium alloy and its manufacturing method
JPH0127138B2 (en)
JPS5937340B2 (en) Copper/nickel/silicon/chromium alloy with improved conductivity
JP2006070362A (en) Titanium alloy and method for making the same
JPH0372046A (en) Shape memory alloy
US4738822A (en) Titanium alloy for elevated temperature applications
EP0593824A1 (en) Nickel aluminide base single crystal alloys and method
JPS62109955A (en) Manufacture of titanium-base alloy material excellent in corrosion resistance
JPS58120758A (en) High strength nickel base superalloy product
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
JPS649391B2 (en)
JPH04501440A (en) Improved nickel aluminide alloy for high temperature structural materials
JPH04308051A (en) Corrosion resistant ti-based alloy
JPS62228459A (en) Manufacture of titanium alloy material having superior corrosion resistance and workability
JPS62199744A (en) Titanium alloy having superior crevice corrosion resistance
JPS61127844A (en) Titanium alloy having superior corrosion resistance
JPH05163543A (en) Heat-resistant titanium alloy
JPS6053100B2 (en) Nickel based super alloy
JPS60187652A (en) High-elasticity alloy
JPS62109936A (en) Titanium alloy having superior corrosion resistance
JPS61194142A (en) Titanium alloy having superior corrosion resistance
JP4035617B2 (en) Iridium-based alloy and manufacturing method thereof
JP2004027254A (en) Titanium alloy having excellent corrosion resistance and method of producing the same
JPH0441642A (en) Isothermal forging die made of ni-base alloy excellent in high temperature strength and high temperature oxidation resistance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term