JPH0267322A - Equipment for manufacturing polyarylene sulfide - Google Patents

Equipment for manufacturing polyarylene sulfide

Info

Publication number
JPH0267322A
JPH0267322A JP63218391A JP21839188A JPH0267322A JP H0267322 A JPH0267322 A JP H0267322A JP 63218391 A JP63218391 A JP 63218391A JP 21839188 A JP21839188 A JP 21839188A JP H0267322 A JPH0267322 A JP H0267322A
Authority
JP
Japan
Prior art keywords
equipment
sulfide
pas
polyarylene sulfide
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63218391A
Other languages
Japanese (ja)
Inventor
Takashi Sakaki
孝 榊
Shigeo Nakamura
重男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP63218391A priority Critical patent/JPH0267322A/en
Publication of JPH0267322A publication Critical patent/JPH0267322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

PURPOSE:To improve the corrosion resistance and durability and to improve the purity of a polyarylene sulfide by using a specified titanium/palladium alloy as a raw material for the equipment for manufacturing polyarylene sulfide. CONSTITUTION:The title equipment is manufacture by using a titanium/ palladium alloy with a palladium content of 0.05-0.5wt.% as a raw material. A polyarylene sulfide is obtd. by performing dehalogenation and sulfide formation of an alkali metal sulfide and a dihalo arom. compd. in this equipment.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はポリアリーレンスルフィド(以下PASと略す
)を製造するための機器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to equipment for producing polyarylene sulfide (hereinafter abbreviated as PAS).

更に詳しくは、アルカリ金属硫化物とジハロ芳香族化合
物との脱ハロゲン/硫化反応によるポリアリーレンスル
フィド製造用機器に関する。
More specifically, the present invention relates to equipment for producing polyarylene sulfide through a dehalogenation/sulfurization reaction between an alkali metal sulfide and a dihaloaromatic compound.

[従来の技術] 近時、PASはその耐熱性などの優れた特性により、広
い分野に利用されてきており、これらの利用分野によっ
ては極めて高い純度のPASが求められている。
[Prior Art] Recently, PAS has been used in a wide range of fields due to its excellent properties such as heat resistance, and PAS of extremely high purity is required depending on these fields of use.

PASの代表的な製造方法として、アルカリ金属硫化物
と芳香族ハロゲン化物との反応による方法例えば、汎用
オーステナイト系ステンレスM(例えば5US304,
5US31G )製の機器を用いて、非プロトン性極性
有機溶媒中で含水アルカリ金属硫化物とジハロ芳香族化
合物とを反応させて製造する方法がある。この際、PA
Sと共に生成するアルカリ金属ハロゲン化塩は、水等の
溶媒に可溶なため、PASを水等の溶媒を用いて相分離
、抽出、洗浄等を行なう処理の際に除去することは可能
である。
A typical method for producing PAS is a method based on a reaction between an alkali metal sulfide and an aromatic halide.
There is a method for producing it by reacting a hydrous alkali metal sulfide and a dihaloaromatic compound in an aprotic polar organic solvent using equipment manufactured by 5US31G). At this time, P.A.
Since the alkali metal halide salts produced with S are soluble in solvents such as water, it is possible to remove PAS during processes such as phase separation, extraction, and washing using solvents such as water. .

しかし、上記した従来のPAS製造方法に於いては、そ
の反応の過程で、反応原料の一部に用いる硫化物が反応
器材質と反応し、金属硫化物(硫化鉄、硫化ニッケル等
)を生成する。この副生金属硫化物は溶媒に不溶であり
、従ってその後の処理工程によって殆ど除去されず、生
成PAS中への残留が不可避となる。この様な金属硫化
物を含んだPASは、高度な機能を要求される、例えば
磁気記録材料の基材などへの利用が制限されることにな
る。
However, in the conventional PAS production method described above, during the reaction process, the sulfide used as a part of the reaction raw material reacts with the reactor material, producing metal sulfides (iron sulfide, nickel sulfide, etc.). do. This by-product metal sulfide is insoluble in the solvent, so it is hardly removed by subsequent processing steps, and inevitably remains in the produced PAS. PAS containing such metal sulfides is limited in its use in applications that require advanced functionality, such as base materials for magnetic recording materials.

また、重金属硫化物が混入すると生成物の色調に変化を
きたすばかりでなく、そのような環境下で製造されたP
ASは熱安定性が劣るという問題があった。
In addition, when heavy metal sulfides are mixed in, not only does the color tone of the product change, but P produced under such an environment
AS has a problem of poor thermal stability.

この様な問題点の解決方法として、チタン(TI)から
なる機器を用いるPASの製造方法が提案されている(
特開昭6l−23G27号公報)。
As a solution to these problems, a method for manufacturing PAS using equipment made of titanium (TI) has been proposed (
(Japanese Unexamined Patent Publication No. 1983-23G27).

しかしながら、TI製機器を使用した場合においても、
従来のステンレス鋼製の機器を用いた際と同様な、製品
PAS中に鉄、クロムおよびニッケル等の成分の混入は
ないものの、TI酸成分混入し、このものが製品の色調
に変化をきたす原因となる。
However, even when using TI equipment,
Although there is no contamination of components such as iron, chromium, and nickel into the product PAS, which is the same as when using conventional stainless steel equipment, TI acid components are mixed in, and this causes a change in the color tone of the product. becomes.

また、従来の機器では、PAS処理工程でPASの付着
し品い所、例えば、脱水槽、精製槽ならびに輸送配管等
においても腐蝕が発生し、長期間安定な操業が不可能な
状況であった。
In addition, with conventional equipment, corrosion occurred in areas where PAS adhered during the PAS treatment process, such as dehydration tanks, purification tanks, and transportation piping, making stable operation over a long period of time impossible. .

[発明が解決しようとする問題点〕 本発明はこのような背景と状況において、脱ハロゲン/
硫化反応、例えば、非プロトン性極性有機溶媒中で含水
アルカリ金属硫化物とシフ1口芳香族化合物とを脱ハロ
ゲン/硫化反応によるPASの製造方法に於いて耐食性
および耐久性に優れ、熱影響部においても腐蝕割れを生
じることなく、従って製品PASの汚染を発生させるこ
とのないPAS製造用機器を提供することを目的とする
ものである。
[Problems to be solved by the invention] In this background and situation, the present invention solves the problem of dehalogenation/
In a method for producing PAS by a sulfurization reaction, for example, a dehalogenation/sulfurization reaction of a hydrous alkali metal sulfide and a Schiff's aromatic compound in an aprotic polar organic solvent, it has excellent corrosion resistance and durability, and has a heat-affected zone. It is an object of the present invention to provide equipment for manufacturing PAS that does not cause corrosion cracking and therefore does not cause contamination of the PAS product.

[問題点を解決するための手段] 本発明者等は、前記した問題点の少ないPAS製造用機
器を提供すべく、機2′:、の素材として用いられる各
種材質について鋭意検討を行った結果、TIにパラジウ
ム(Pd)を添加したチタンパラジウム合金を素材とす
る機器を用いることにより、脱ハロゲン/硫化反応に於
いて耐食性が顕著に改溌され、従って不純物の混入のな
いPASの製造が可能であることを見出し本発明を完成
した。
[Means for Solving the Problems] The inventors of the present invention, in order to provide a PAS manufacturing equipment with fewer problems as described above, have conducted intensive studies on various materials used as materials for the machine 2'. By using equipment made from a titanium palladium alloy made by adding palladium (Pd) to TI, corrosion resistance is significantly improved in the dehalogenation/sulfurization reaction, and therefore it is possible to manufacture PAS without contamination with impurities. They discovered that this is the case and completed the present invention.

即ち本発明は、パラジウム含有Wh 0 、05〜0.
5重量%のチタンパラジウム合金を素材に用いた脱ハロ
ゲン/硫化反応によるポリアリーレンスルフィド製造用
機器に関するものである。
That is, the present invention provides palladium-containing Wh 0 , 05-0.
This invention relates to equipment for producing polyarylene sulfide through a dehalogenation/sulfurization reaction using a 5% by weight titanium palladium alloy as a material.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明を構成する材質は、Pdを0.05〜0.5市量
%含むことが必須である。本発明においては、TI中の
Pd含量が0.05重量より少量では期待する耐食性の
改善が認められず、耐食性を良好にするには、それ以−
りのPdが必要である。しかしながら、材質のPc1e
有量を必要以上に多くしてもそれに見合った効果は必ず
しも得られず、又、経済性の面からも制約が大きくなる
ためPd含有量の上限は0.5型口%程度が好ましい。
It is essential that the material constituting the present invention contains 0.05 to 0.5% by market weight of Pd. In the present invention, when the Pd content in TI is less than 0.05 weight, the expected improvement in corrosion resistance is not observed, and in order to improve the corrosion resistance, it is necessary to
A large amount of Pd is required. However, the material Pc1e
Even if the amount of Pd is increased more than necessary, a commensurate effect cannot necessarily be obtained, and there are also restrictions from an economic point of view, so the upper limit of the Pd content is preferably about 0.5% by weight.

なお、本発明の素材に用いる合金には上記した量の限定
成分の他に材質の主原料や副原料その他から不可避的に
混入されて来るか、あるいは他の目的のために添加され
る少量のNi、 No、 Mn、 V 、 St。
In addition to the above-mentioned amounts of limiting ingredients, the alloy used for the material of the present invention may contain small amounts of ingredients that are unavoidably mixed in from the main raw materials, auxiliary raw materials, etc., or added for other purposes. Ni, No, Mn, V, St.

S、P等を含有していても差支えなく、これらの元素が
加わっても目的とする脱ハロゲン/硫化反応の環境下に
おける耐食性を低下させることはなく、従って高純度の
PASを得ることができる。
There is no problem even if it contains S, P, etc., and even if these elements are added, the corrosion resistance in the target dehalogenation/sulfurization reaction environment will not be reduced, and therefore high purity PAS can be obtained. .

次に上記した素材からなる機器を用いたPAS製造工程
の概要について説明する。
Next, an outline of the PAS manufacturing process using equipment made of the above-mentioned materials will be explained.

本説明で対象とするPAS製造方法、製造工程は公知で
ある。
The PAS manufacturing method and manufacturing process that are the subject of this description are well known.

即ち、先に述べたとうり、通常は、非プロトン性極性有
機溶媒中で含水アルカリ金属硫化物とジノ10芳香族化
合物とを脱ハロゲン/硫化反応により製造されている。
That is, as mentioned above, it is usually produced by dehalogenation/sulfurization reaction of a hydrous alkali metal sulfide and a dino-10 aromatic compound in an aprotic polar organic solvent.

ここで使用される非プロトン性極性有機溶媒としてはN
、 N−ジメチルアセトアミド、N、 N−ジメチルホ
ルムアミド、ジメチルスルホキシド、ヘキサメチルホス
ホルアミド、N−メチル−ε−カプロラクタム、N−メ
チル−2−ピロリドン、 l、 3−ジメチルイミダゾ
リジノン等およびその混合液が挙げられるが、中でもN
−メチル−2−ピロリドン(以下NMPと略す)が最も
化学安定性が高くて特に好ましい。
The aprotic polar organic solvent used here is N
, N-dimethylacetamide, N,N-dimethylformamide, dimethylsulfoxide, hexamethylphosphoramide, N-methyl-ε-caprolactam, N-methyl-2-pyrrolidone, l,3-dimethylimidazolidinone, etc., and mixtures thereof. Among them, N
-Methyl-2-pyrrolidone (hereinafter abbreviated as NMP) has the highest chemical stability and is particularly preferred.

又、アルカリ金属硫化物としては、硫化リチウム、硫化
ナトリウム、硫化カリウム等の水和物が用いられるが、
硫化ナトリウムの各種水和物が特に好ましい。ジハロ芳
香族化合物としては、例えば、p−ジクロルベンゼン、
m−ジクロルベンゼン、0−ジクロルベンゼン、p−ジ
ブロムベンゼン、ジクロルナフタレン、ジブロムナフタ
レン、ジクロルジフェニルスルホン、ジクロルベンゾフ
ェノン、ジクロルジフェニルエーテル、ジクロルジフエ
ニルスルフィド、ジクロルジフェニル、ジブロムジフェ
ニル、ジクロルジフェニルスルホキシド等が挙げられる
が、p−ジハロベンゼンが好ましく、特にp−ジクロル
ベンゼンが好適である。
In addition, hydrates of lithium sulfide, sodium sulfide, potassium sulfide, etc. are used as alkali metal sulfides, but
Particularly preferred are various hydrates of sodium sulfide. Examples of dihaloaromatic compounds include p-dichlorobenzene,
m-Dichlorobenzene, 0-dichlorobenzene, p-dibromobenzene, dichlornaphthalene, dibromnaphthalene, dichlordiphenyl sulfone, dichlorobenzophenone, dichlordiphenyl ether, dichlordiphenyl sulfide, dichlordiphenyl, Bromodiphenyl, dichlorodiphenyl sulfoxide, etc. are mentioned, but p-dihalobenzene is preferred, and p-dichlorobenzene is particularly preferred.

このような非プロトン性極性有機溶媒中で含水アルカリ
金属硫化物をジハロ芳香族化合物と反応させRASを製
造する方法については既に多くの方法が知られており、
本願発明は、パラジウム含有量 O、05〜o、5L1
1w%のチタンパラジウム合金を水利とする機器を用い
ることを除いてこれらの方法を利用することかでき、特
に制限されることはない。これらの製造法は、一般に、
含水アルカリ金属硫化物の脱水工程および縮合重合反応
工程の2工程からなる。
Many methods are already known for producing RAS by reacting a hydrous alkali metal sulfide with a dihaloaromatic compound in such an aprotic polar organic solvent.
The present invention has a palladium content of O, 05 to o, 5L1
These methods can be used without any particular limitation, except for using equipment that uses 1w% titanium palladium alloy as water source. These manufacturing methods are generally
It consists of two steps: a dehydration step of a hydrous alkali metal sulfide and a condensation polymerization reaction step.

脱水工程は非プロトン性極性を機溶媒中で含水アルカリ
金属硫化物(例えば、硫化ナトリウム水和物)を200
℃前後まで加熱し、過剰の水分を留出させる工程である
。この工程は比較的水分が多い系を対象とするものであ
って、常圧下もしくはやや減圧下で行われるのが普通で
ある。
The dehydration step is to remove an aprotic polar hydrated alkali metal sulfide (e.g. sodium sulfide hydrate) in an organic solvent at 200%
This is a process in which excess water is distilled off by heating to around ℃. This step is intended for systems with relatively high water content, and is usually carried out under normal pressure or slightly reduced pressure.

縮合重合反応工程は脱水工程で水分を減少させた系にジ
ハロ芳香族化合物を装入して200〜300℃程度まで
加熱して縮合重合反応を行う工程である。この工程は、
水分は少ないが高温で行うために、残留水分や溶媒の蒸
気圧により5〜30気圧の高圧になる。
The condensation polymerization reaction step is a step in which a dihaloaromatic compound is charged into a system whose water content has been reduced in the dehydration step, and the system is heated to about 200 to 300° C. to perform a condensation polymerization reaction. This process is
Although the moisture content is small, since the process is carried out at a high temperature, the residual moisture and the vapor pressure of the solvent result in a high pressure of 5 to 30 atmospheres.

本発明で言うPAS製造用機器は、PASの製造工程で
使用される反応器、蒸発缶、脱水槽、精製塔、輸送配管
および貯槽等を意味するものである。
The PAS production equipment used in the present invention refers to reactors, evaporators, dehydration tanks, purification towers, transportation piping, storage tanks, etc. used in the PAS production process.

[作用] 脱ハロゲン/硫化反応させる特定の腐蝕環境下での、本
発明を構成する素材の耐食性は特異的であって通常の耐
食材料に関する知見からは予ΔP1できなかったことで
ある。
[Function] The corrosion resistance of the material constituting the present invention under the specific corrosive environment in which the dehalogenation/sulfurization reaction is carried out is specific and cannot be predicted based on the knowledge regarding ordinary corrosion-resistant materials.

即ち、本発明者等は本発明の目的に沿う金属材料を見出
すべく多くの材料について鋭意検討した結果、本発明者
等が試験した多くの、<(+4のほとんどすべての材料
は表面に局部11イ蝕が認められ、使用困難であったの
に対し、本発明に用いる素材は、例え腐蝕されたとして
も、腐蝕量が小さく、また、局部腐蝕を生じることなく
、製品の汚染をもたらさない極めて優れた耐食性を示す
ことが見出されたのである。
That is, as a result of intensive study of many materials in order to find a metal material that meets the purpose of the present invention, the present inventors found that almost all of the materials with <(+4) that the present inventors tested had localized 11 In contrast, the material used in the present invention, even if corroded, has a small amount of corrosion, does not cause local corrosion, and is extremely difficult to use without causing product contamination. It was discovered that it exhibits excellent corrosion resistance.

[発明の効果] 以上の説明から明らかなように本発明は脱ハロゲン/硫
化反応での環境下においても局部腐蝕を生ずることなく
、耐食性、耐久性が高く、従ってこれを用いて製造した
製品は金属成分による汚染がなく、純度の高いものであ
る。
[Effects of the Invention] As is clear from the above explanation, the present invention does not cause local corrosion even in the environment of dehalogenation/sulfurization reaction, and has high corrosion resistance and durability. It is highly pure, with no contamination from metal components.

[実施例] 以下、本発明を実施例によって具体的に説明するが、本
発明はこれらの実施例のみに限定されるものではない。
[Examples] Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited only to these Examples.

実施例1 第1表に示すような組成を有する合金および比較月を、
浸漬試験用の試料(30X40X4111111 )に
切出し、これをポリフェニレンスルフィドを生成する反
応缶(21¥g器の5U331B製オートクレーブ)に
取付け、浸漬試験を行った。
Example 1 Alloys having the compositions shown in Table 1 and comparative months were
A sample (30 x 40 x 4111111) for the immersion test was cut out, and this was attached to a reaction vessel for producing polyphenylene sulfide (5U331B autoclave of 21 yen container), and the immersion test was conducted.

反応条件は次のとうりである。The reaction conditions are as follows.

まず、反応缶に硫化ソーダ(Na2S ” 2.711
20 )0、G12 ’モル、NMP 150ffll
を入れ、窒素気流下撹拌して220℃まで昇温し、22
.7mlの主に水から成る流出液を留去した。ついで系
を170℃まで冷却した後、p−ジクロルベンゼン0.
6モルをNMP 50m1とともに添加し、窒素気流下
に系を封入、昇温して230℃で2時間市合を行った。
First, add sodium sulfide (Na2S" 2.711
20) 0, G12'mol, NMP 150ffll
and heated to 220°C with stirring under a nitrogen stream.
.. 7 ml of effluent consisting mainly of water was distilled off. Then, after cooling the system to 170°C, 0.0% of p-dichlorobenzene was added.
6 mol was added together with 50 ml of NMP, the system was sealed under a nitrogen stream, the temperature was raised, and the mixture was marketed at 230° C. for 2 hours.

m合終了後、系を冷却し、反応生成物を取出した。After the completion of the reaction, the system was cooled and the reaction product was taken out.

同様の操作を10回繰返した後、系内から試料を取出し
て、その表面状態を観察した。その結果を第2表に示す
After repeating the same operation 10 times, a sample was taken out from the system and its surface condition was observed. The results are shown in Table 2.

第2表から明らかなように、本発明の組成を有する機器
用材料(試料No l〜No 3)は腐蝕は検出限界以
下であり、顕著な耐食性、耐久性を示した。
As is clear from Table 2, the equipment materials (Samples No. 1 to No. 3) having the compositions of the present invention had corrosion below the detection limit and exhibited remarkable corrosion resistance and durability.

しかし、比較材料(試料No 4〜N06)には局部腐
蝕が見られ、機器材料としては不適当であることが判っ
た。
However, the comparative materials (Samples No. 4 to No. 06) showed localized corrosion and were found to be unsuitable as equipment materials.

実施例2 ポリフェニレンスルフィド重合体を生成する反応缶を実
施例1で挙げた試料No 1−No 3の合金を用いて
製作した。また、比較材料である5US304製の反応
缶も製作し、ポリフェニレンスルフィド重合体製造運転
を行った。1年間運転後、この反応11″tを解体し、
接ガス部および接液部、ならびに溶接部の表面状態を観
察した。その結果を第3表に示す。
Example 2 A reaction vessel for producing polyphenylene sulfide polymer was manufactured using the alloys of samples No. 1 to No. 3 mentioned in Example 1. In addition, a reaction vessel made of 5US304, which is a comparative material, was also manufactured, and a polyphenylene sulfide polymer production operation was conducted. After one year of operation, this reaction 11″t was disassembled,
The surface conditions of gas-contacted parts, liquid-contacted parts, and welded parts were observed. The results are shown in Table 3.

第3表から明らかなように本発明による合金を用いた反
応缶には極めて軽微な全面腐蝕が観察されたにすぎず、
腐蝕速度も0.01重量m/year以下で、検出限界
以下であり優れた耐食性、耐久性を示した。
As is clear from Table 3, only very slight corrosion was observed on the entire surface of the reactor using the alloy according to the present invention.
The corrosion rate was also 0.01 weight m/year or less, which was below the detection limit, indicating excellent corrosion resistance and durability.

また製品への着色問題も生じなかった。これに対し、8
18304製の反応缶では接ガス部および接液部におい
て孔食が認められ、さらには溶出したイオンによってポ
リフェニレンスルフィド重合体への着色汚染が生じ、反
応缶材料としては不適当であることが判った。
Further, there was no problem of coloring the product. On the other hand, 8
In the reactor made from 18304, pitting corrosion was observed in the gas-contacted parts and liquid-contacted parts, and the eluted ions caused colored contamination of the polyphenylene sulfide polymer, making it unsuitable as a reactor material. .

試料 No、 C02 1O1旧0.06 2 0.010.0(i a  o、ot o、oe 4 0.020.04 5 0.081.5 0 0.031.27 第1表 主要化学成分(重量%) Mo  NI  Cr  Pd  l’10.00 1
3al。
Sample No., C02 1O1 old 0.06 2 0.010.0 (ia o, ot o, oe 4 0.020.04 5 0.081.5 0 0.031.27 Table 1 Main chemical components (weight) %) Mo NI Cr Pd l'10.00 1
3al.

0.13  Bal。0.13 Bal.

0.25  Bat。0.25 Bat.

0.01 8al。0.01 8al.

0.05 8.2 18.5 1.48 20.8 25.8 Bal。0.05 8.2 18.5 1.48 20.8 25.8 Bal.

Bal。Bal.

第2表 試料No、腐蝕速度   表面状態 (I1m/year) (0,01初期の金属光沢を保持 (0,01〃 (0,01〃 0.08   局部腐蝕 0.51   激しい全面腐蝕Table 2 Sample No., corrosion rate, surface condition (I1m/year) (0.01 retains initial metallic luster) (0,01〃 (0,01〃 0.08 Local corrosion 0.51 Severe general corrosion

Claims (1)

【特許請求の範囲】[Claims] パラジウム含有量0.05〜0.5重量%のチタンパラ
ジウム合金を素材に用いた脱ハロゲン/硫化反応による
ポリアリーレンスルフィド製造用機器
Equipment for producing polyarylene sulfide through dehalogenation/sulfurization reaction using titanium palladium alloy with palladium content of 0.05 to 0.5% by weight as material
JP63218391A 1988-09-02 1988-09-02 Equipment for manufacturing polyarylene sulfide Pending JPH0267322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63218391A JPH0267322A (en) 1988-09-02 1988-09-02 Equipment for manufacturing polyarylene sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63218391A JPH0267322A (en) 1988-09-02 1988-09-02 Equipment for manufacturing polyarylene sulfide

Publications (1)

Publication Number Publication Date
JPH0267322A true JPH0267322A (en) 1990-03-07

Family

ID=16719171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63218391A Pending JPH0267322A (en) 1988-09-02 1988-09-02 Equipment for manufacturing polyarylene sulfide

Country Status (1)

Country Link
JP (1) JPH0267322A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062803A (en) * 1973-10-08 1975-05-29
JPS6123627A (en) * 1984-07-11 1986-02-01 Kureha Chem Ind Co Ltd Production apparatus for polyarylene sulfide
JPS61194142A (en) * 1985-02-21 1986-08-28 Nippon Mining Co Ltd Titanium alloy having superior corrosion resistance
JPS62109955A (en) * 1985-11-08 1987-05-21 Nippon Mining Co Ltd Manufacture of titanium-base alloy material excellent in corrosion resistance
JPS62133036A (en) * 1985-12-05 1987-06-16 Nippon Mining Co Ltd Titanium alloy material having superior corrosion resistance
JPS62149725A (en) * 1985-12-18 1987-07-03 Kureha Chem Ind Co Ltd Production of high-molecular weight polyarylene sulfide
JPS62199744A (en) * 1986-02-25 1987-09-03 Sumitomo Metal Ind Ltd Titanium alloy having superior crevice corrosion resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062803A (en) * 1973-10-08 1975-05-29
JPS6123627A (en) * 1984-07-11 1986-02-01 Kureha Chem Ind Co Ltd Production apparatus for polyarylene sulfide
JPS61194142A (en) * 1985-02-21 1986-08-28 Nippon Mining Co Ltd Titanium alloy having superior corrosion resistance
JPS62109955A (en) * 1985-11-08 1987-05-21 Nippon Mining Co Ltd Manufacture of titanium-base alloy material excellent in corrosion resistance
JPS62133036A (en) * 1985-12-05 1987-06-16 Nippon Mining Co Ltd Titanium alloy material having superior corrosion resistance
JPS62149725A (en) * 1985-12-18 1987-07-03 Kureha Chem Ind Co Ltd Production of high-molecular weight polyarylene sulfide
JPS62199744A (en) * 1986-02-25 1987-09-03 Sumitomo Metal Ind Ltd Titanium alloy having superior crevice corrosion resistance

Similar Documents

Publication Publication Date Title
US5856433A (en) Apparatus for manufacturing polyarylene sulfide and process for manufacturing polyarlene sulfide using the apparatus
FI90784B (en) A process for preparing a high molecular weight poly (arylene sulfide ketone)
JPH0339537B2 (en)
WO2004065457A1 (en) Polyarylene sulfide and process for producing the same
EP0226909B1 (en) Process for producing a polyarylene sulfide
US4812552A (en) Process for preparing poly(arylene sulfide ketone) with water addition
EP3524632B1 (en) Polyarylene sulfide preparation method
WO2016153610A1 (en) Technique for forming a high melt viscosity polyarylene sulfide
JP2001172387A (en) Method for producing polyarylene sulfide
US4794163A (en) Process for producing a polyarylene sulfide with alkali metal salt of pyridine carboxylic acid catalyst
JPH02276826A (en) Manufacture of poly(arylene sulfide ketone)
JPH0267322A (en) Equipment for manufacturing polyarylene sulfide
JPH0643492B2 (en) Production of aromatic sulfide / ketone polymers
JP6801232B2 (en) Manufacturing method of polyarylene sulfide resin
JPH01213338A (en) Apparatus for producing polyarylene sulfide
JP2707118B2 (en) Method for producing high molecular weight polyphenylene sulfide resin
CA1307138C (en) Use of a chromium-containing alloy
JPH07138360A (en) Production of crystalline polyether
KR940010019B1 (en) High-heat-resistant, crystalline block copolymers and production process thereof
JP2003026804A (en) Method for polyarylene sulfide production
JPH0525275A (en) Production of polyarylene sulfide
JP2960505B2 (en) Storage container for organic solvent containing aliphatic sulfonic acid
US5003042A (en) Preparation of poly(arylene sulfide ketone) and poly(arylene sulfide diketone) resins having improved filterability
JPH07102065A (en) Production of high-molecular-weight polyarylene sulfide
US20040097698A1 (en) Method to decrease corrosiveness of reactants in poly(arylene sulfide) polymer production