JPS61194142A - Titanium alloy having superior corrosion resistance - Google Patents
Titanium alloy having superior corrosion resistanceInfo
- Publication number
- JPS61194142A JPS61194142A JP3150485A JP3150485A JPS61194142A JP S61194142 A JPS61194142 A JP S61194142A JP 3150485 A JP3150485 A JP 3150485A JP 3150485 A JP3150485 A JP 3150485A JP S61194142 A JPS61194142 A JP S61194142A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- corrosion resistance
- alloy
- amount
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
チタンは、その耐食性が優れているため、従来の耐食性
金属に替わって広く工業用材料として使われるようにな
ってきたが、特に硝酸、クロム酸、塩素酸、二酸化塩素
、又は塩素酸塩等上記のような環境はど優れた威力を発
揮しない。[Detailed Description of the Invention] Due to its excellent corrosion resistance, titanium has come to be widely used as an industrial material in place of conventional corrosion-resistant metals. , or chlorate, etc., does not exhibit excellent effects.
そのため、この点を改良した既存の合金としてTi−P
d合金、 Ti−Ni合金、 Ti−N1−M0合
金(特願昭s o−37455)などが一部使用されて
いるが、 Ti−Pd合金は、高価なパラジウムを使
用しているため値段が高いという欠点があり、Ti−N
i合金、 Ti−IJi−Mo合金は、加工性が悪い
という欠点があるため広く利用されるにはいたっていな
いのが現状である。Therefore, Ti-P is an existing alloy that improves this point.
d alloy, Ti-Ni alloy, Ti-N1-M0 alloy (patent application Sho-37455), etc. are used in some cases, but Ti-Pd alloy is expensive because it uses expensive palladium. Ti-N has the disadvantage of being expensive.
Currently, the i-alloy and the Ti-IJi-Mo alloy have not been widely used because they have the disadvantage of poor workability.
匂上の点から、チタンは優れた耐食性を有しているとは
いえ過酷な腐食環境下では、まだ多くの問題をのこして
おり、又同時にこれらに対し一部改善されたチタン合金
も開発されてはいるが多くの欠点を有しており十分でな
い。Although titanium has excellent corrosion resistance, it still poses many problems in harsh corrosive environments, and at the same time titanium alloys with some improvements have been developed to address these problems. However, it has many drawbacks and is not sufficient.
本発明は、これらの状況を踏まえ見いだされ九ものであ
り、特に#酸化性の醗などの厳しい腐食環境で威力を発
揮すると同時に、塩素イオンが存在する溶液においてし
ばしば発生する隙間腐食にもおおいに威力を発揮するチ
タン基合金に関するものである。The present invention was discovered based on these circumstances, and is particularly effective in severe corrosive environments such as oxidizing alcohols, as well as being highly effective against crevice corrosion that often occurs in solutions containing chlorine ions. This relates to a titanium-based alloy that exhibits the following properties.
その組成は、チタンにパラジウムを添加し。Its composition is titanium with palladium added.
しかもニッケル、タングステン、モリブデンの中から1
m@以上添加することを特長とする。Moreover, one of nickel, tungsten, and molybdenum
The feature is that more than m@ is added.
その組成範囲は以下のごとくである。Its composition range is as follows.
元 素 組成範囲 (wtチ)パラジウム
0005〜2.0
チ タ ン ba1ance本発明の上記
チタン基台金においてパラジウムの下限を0.005
wtsとするのはこの添加量未満では耐食性の向上が小
さく実用的でないためであり、上限を2.0 wtqb
とするのは、これをこえても、あまり耐食性が向上せず
、しかも高価なパラジウムを使用するため非常に多くの
費用がかかるためである。Element Composition range (wt) Palladium 0005-2.0 Titanium balance In the titanium base metal of the present invention, the lower limit of palladium is 0.005
wts because if the addition amount is less than this, the improvement in corrosion resistance is small and it is not practical, so the upper limit is set at 2.0 wtqb.
The reason for this is that even if this value is exceeded, the corrosion resistance does not improve much, and furthermore, the use of expensive palladium results in an extremely high cost.
また二、ケルの下限をo、 o t wtlとするのは
。Second, let the lower limit of Kel be o, o t wtl.
この添加量未満では耐食性の向上が期待できず。If the amount added is less than this, no improvement in corrosion resistance can be expected.
上限を2. Owtlとするのは、これをこえると著し
く加工性が落ち製造が困難となるためである。The upper limit is 2. The reason why it is set as Owtl is that if it exceeds this value, the workability deteriorates significantly and manufacturing becomes difficult.
タングステンの下限をαO05wt−とするのは、上記
ニッケルの場合と同様にこの添加量未満では耐食性の向
上が期待できず、上限を[1,5wt%とするのは、こ
れをこえると加工性が著しく悪化し、製造が困難となる
ためである。The reason why the lower limit of tungsten is set at αO05wt- is that, as in the case of nickel mentioned above, no improvement in corrosion resistance can be expected if the addition amount is less than this, and the reason why the upper limit is set at [1.5wt%] is that if it exceeds this, the workability will deteriorate. This is because the condition deteriorates significantly and manufacturing becomes difficult.
モリブデンも同様に下限をα01 wtlとするのは、
この添加量未満では耐食性の向上が期待できず、上限を
t Owtsとするのは、これをこえると加工性が著し
く悪くなり、また耐食性の向上もなくなるからである。Similarly, the lower limit of molybdenum is α01 wtl.
If the addition amount is less than this, no improvement in corrosion resistance can be expected, and the reason why the upper limit is set at t Owts is that if this amount is exceeded, workability will be significantly deteriorated and there will be no improvement in corrosion resistance.
次に1本発明のチタン合金を従来の耐食性チタン合金と
比較しその有効性を説明することにする。Next, we will compare the titanium alloy of the present invention with conventional corrosion-resistant titanium alloys and explain its effectiveness.
比較試験
試験した腐食環境は、全面腐食では
1.1悌H,So、、沸騰状態
2.5悌HCX 、沸騰状態
であり、隙間腐食では
5.10%Mail、 pHa=6.1.沸騰状態で行
なった。Comparative test The corrosion environments tested were: 1.1° H, So for general corrosion, 2.5° HCX, boiling state, and 5.10% Mail, pHa = 6.1. for crevice corrosion. This was done in a boiling state.
第1表に11 H,So4の結果を示す。Table 1 shows the results for 11H, So4.
純T1及び既存の耐食性チタン合金をA1〜lI&4に
示し1本発明合金をム5〜ム28に示す。Pure T1 and existing corrosion-resistant titanium alloys are shown in A1 to 1I&4, and alloys of the present invention are shown in M5 to M28.
45〜ム12は、 Ti−Pct−Ni合金において
それぞれPd、Niの添加量を変化させたものである。Nos. 45 to 12 are Ti-Pct-Ni alloys in which the amounts of Pd and Ni added are changed.
N1添加量がCL 01 wtl (ム5)において既
に腐食速度の低下がみられており従来の耐食性合金(&
1〜lに4)のどれよシも低い値を示している。又。A decrease in the corrosion rate has already been observed when the amount of N1 added is CL 01 wtl (Mu5), and compared to conventional corrosion-resistant alloys (&
All of the values 1 to 4) are lower than those of 4). or.
Niの添加量が増すにしたがい耐食性もよシ増す傾向に
あるが、 Ni添加量が2. Owtlをこえると著
しく加工性が落ち製造が困難となる。pa添加量を変化
させた場合では、 Pd添加量が0.01wt%(A
9)において既に腐食速度の低下がみられており従来の
耐食性合金(ム1〜ム4)のどれよりも低い値を示して
いる。又、 Pdの添加量が増すにしたがい著しく耐
食性は増す傾向にあるがPd添加量が2. Owtチを
こえるとめ″!!シ耐食性は向上せず、しかも高価なP
dを使用するため非常に多くの費用がかかることになる
。Corrosion resistance tends to increase as the amount of Ni added increases, but when the amount of Ni added is 2. If it exceeds Owtl, the workability will drop significantly and manufacturing will become difficult. When the amount of Pa added was changed, the amount of Pd added was 0.01 wt% (A
A decrease in the corrosion rate has already been observed in No. 9), showing a lower value than any of the conventional corrosion-resistant alloys (No. 1 to No. 4). Furthermore, as the amount of Pd added increases, the corrosion resistance tends to increase significantly, but when the amount of Pd added is 2. The stop exceeds Owt!! It does not improve corrosion resistance and is expensive.
The use of d would result in a very high cost.
次に、 I&15〜A18は、 Ti−Pd−W合金
においてそれぞれPd、Wの添加量を変化させたもので
ある。Next, I&15 to A18 are Ti-Pd-W alloys in which the amounts of Pd and W added are changed, respectively.
wIIQh添加量が[1005wtl (413)にお
イー(既に腐食速度の低下がみられておシ従来の耐食性
合金(I&1〜ム4)のどれよ〕も低い値を示している
。The wIIQh addition amount is 1005 wtl (413), which is lower than any of the conventional corrosion-resistant alloys (I & 1 to M 4) in which a decrease in corrosion rate has already been observed.
又、Wの添加量が増すKしたがい耐食性はより増す傾向
にあるがW添加量が[15wt−をこえると著しく加工
性が落ち製造が困難となる。pa添加量を変化させたも
のが、轟16〜ム18に示されているが、その傾向はT
i−P(1−Ni合金の場合と同様である。Furthermore, as the amount of W added increases, the corrosion resistance tends to increase, but when the amount of W added exceeds 15 wt-, the workability deteriorates significantly and manufacturing becomes difficult. Todoroki No. 16 to No. 18 show results in which the amount of pa added is changed, but the tendency is that T
i-P (same as in the case of 1-Ni alloy).
次に、 A19〜A24は、 Ti−Pa−Mo合金に
おいてそれぞれP(1、MOの添加量を変化させたもの
である。Mo添加量がα01 wt慢(ム19)におい
て既に腐食速度の低下がみもれておシ従来の耐食性合金
(I61〜A4)のどれよりも低い値を示している。又
、 Moの添加量が増すにしたがい耐食性はより増す傾
向にあるがMo添加量がt Owt−をこえると著しく
加工性が落ち製造が困難となること、及びあまり耐食性
が向上しなくなる。P(1添加量を変化させたものが、
ム22〜A24に示されているが、その傾向はTi−P
d−Ni合金の場合と同様である。Next, A19 to A24 are Ti-Pa-Mo alloys in which the added amounts of P(1 and MO were changed, respectively.) When the amount of Mo added was α01 wt (Mu19), there was already a decrease in the corrosion rate. It shows a lower value than any of the conventional corrosion resistant alloys (I61 to A4).Also, as the amount of Mo added increases, the corrosion resistance tends to increase, but when the amount of Mo added is t Owt - If the amount exceeds -, the workability will drop significantly and manufacturing will become difficult, and the corrosion resistance will not improve much.
Figures 22 to A24 show that the tendency is Ti-P.
This is the same as in the case of d-Ni alloy.
最後に、ムク5〜ム28に四元系以上の合金の腐食結果
を示す。三元系合金との比較において明らかに耐食性が
増している。これより、四元系以上でも耐食性に優れた
新合金が得られていることがわかる。Finally, Muk 5 to M 28 show the corrosion results of quaternary or higher alloys. Corrosion resistance is clearly improved compared to ternary alloys. This shows that a new alloy with excellent corrosion resistance has been obtained even in quaternary or higher alloys.
第2表は、5俤HC’lでの腐食試験結果を示している
。Table 2 shows the corrosion test results at 5 HC'l.
1 % H,So、と比較した場合、腐食環境が厳しい
ため腐食速度は全体的に上昇しているが9本発明合金が
従来よりある耐食性チタン合金よりも優れていることに
かわりはない。When compared with 1% H, So, the overall corrosion rate increases due to the harsher corrosive environment, but the alloy of the present invention is still superior to conventional corrosion-resistant titanium alloys.
以下余白 第1表 全面腐食試験結果 1 ’L H,So4. ss 第2表 全面腐食試験結果 5チMCI、沸騰 次に、隙間腐食試験結果を第3表に示す。Margin below Table 1 Overall corrosion test results 1'LH, So4. ss Table 2 Overall corrosion test results 5chi MCI, boil Next, the crevice corrosion test results are shown in Table 3.
純チタン、 Ti−α15Pd合金は、1日を経ずし
て隙間腐食をおこしている。Ti−Q、8Ni−OJM
oは。Pure titanium and Ti-α15Pd alloys undergo crevice corrosion in less than a day. Ti-Q, 8Ni-OJM
o is.
2日間を経たのち隙間腐食をおこしている。これに比べ
2本発明合金はどれもその以上の耐隙間腐食性を有して
いることがわかる。After 2 days, crevice corrosion occurred. In comparison, it can be seen that the two alloys of the present invention all have higher crevice corrosion resistance.
第3表 隙間腐食試験結果
10 * NaC1,沸騰、pH=&1又9本発明合金
は以上の耐食性の他耐水素吸収性にもすぐれている。第
4表にその試験結果を示す。Table 3 Crevice Corrosion Test Results 10 *NaCl, boiling, pH=&1 or 9 In addition to the above corrosion resistance, the alloy of the present invention is also excellent in hydrogen absorption resistance. Table 4 shows the test results.
本テータは対極に白金をもちい、極間電圧を6、 OV
として供試材の表面より水素の泡を出し水素吸収を行な
わせたものである。This theta uses platinum as the counter electrode, and the voltage between electrodes is 6, OV.
As a result, hydrogen bubbles were emitted from the surface of the sample material to absorb hydrogen.
純チタンにくらべ明らかに本発明合金の方が水素吸収量
が少ないことがわかる。It can be seen that the amount of hydrogen absorbed by the alloy of the present invention is clearly lower than that of pure titanium.
第4表 水素吸収試験結果
均上2本発明合金は塩酸、硫酸等の非常に腐食力が強込
非酸化註酸に対しても強い耐食性を有すると共に隙間腐
食においても優れた抵抗力をもっており、又耐水素吸収
性にも優れている。Table 4 Hydrogen absorption test results Average level 2 The alloy of the present invention has strong corrosion resistance against extremely corrosive acids such as hydrochloric acid and sulfuric acid, but also strong non-oxidized formic acid, and also has excellent resistance to crevice corrosion. It also has excellent hydrogen absorption resistance.
これより1本発明合金は既存の耐食性チタン合金の欠点
をなりシ、シかもよりすぐれた耐食性を有している全く
新しいチタン合金であることがわかる。From this, it can be seen that the alloy of the present invention is a completely new titanium alloy that overcomes the drawbacks of existing corrosion-resistant titanium alloys and has superior corrosion resistance.
Claims (1)
びニッケル0.01重量%以上2.0重量%以下、タン
グステン0.005重量%以上0.5重量%以下、モリ
ブデン0.01重量%以上1.0重量%以下の群から選
択した1種類又は2種類以上の合金元素を含有し、残部
チタン及び不可避的不純物からなる耐食性に優れたチタ
ン基合金。Palladium 0.005 wt% or more and 2.0 wt% or less, nickel 0.01 wt% or more and 2.0 wt% or less, tungsten 0.005 wt% or more and 0.5 wt% or less, molybdenum 0.01 wt% or more A titanium-based alloy with excellent corrosion resistance, containing 1.0% by weight or less of one or more alloying elements selected from the group, with the remainder being titanium and unavoidable impurities.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3150485A JPS61194142A (en) | 1985-02-21 | 1985-02-21 | Titanium alloy having superior corrosion resistance |
US06/796,839 US4666666A (en) | 1984-11-22 | 1985-11-12 | Corrosion-resistant titanium-base alloy |
GB08528183A GB2167769B (en) | 1984-11-22 | 1985-11-15 | Corrosion-resistant titanium-base alloy |
DE19853541223 DE3541223A1 (en) | 1984-11-22 | 1985-11-21 | CORROSION-RESISTANT TITANIUM BASED ALLOY |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3150485A JPS61194142A (en) | 1985-02-21 | 1985-02-21 | Titanium alloy having superior corrosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61194142A true JPS61194142A (en) | 1986-08-28 |
JPS634891B2 JPS634891B2 (en) | 1988-02-01 |
Family
ID=12333053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3150485A Granted JPS61194142A (en) | 1984-11-22 | 1985-02-21 | Titanium alloy having superior corrosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61194142A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62107041A (en) * | 1985-11-05 | 1987-05-18 | Sumitomo Metal Ind Ltd | Highly corrosion resistant titanium alloy |
GB2198144A (en) * | 1986-10-31 | 1988-06-08 | Sumitomo Metal Ind | Method of improving the resistance of ti-based alloys to corrosion |
JPH0267322A (en) * | 1988-09-02 | 1990-03-07 | Tosoh Corp | Equipment for manufacturing polyarylene sulfide |
WO2007077645A1 (en) * | 2005-12-28 | 2007-07-12 | Sumitomo Metal Industries, Ltd. | Titanium alloy for corrosion-resistant material |
US8741217B2 (en) | 2005-12-28 | 2014-06-03 | Nippon Steel & Sumitomo Metal Corporation | Titanium alloy for corrosion-resistant materials |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS548529A (en) * | 1977-06-21 | 1979-01-22 | Nec Corp | Production of sintered type electrophotographic photoreceptor |
JPS5672186A (en) * | 1979-11-12 | 1981-06-16 | Sumitomo Metal Ind Ltd | Crevice corrosion preventing method for titanium structure |
-
1985
- 1985-02-21 JP JP3150485A patent/JPS61194142A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS548529A (en) * | 1977-06-21 | 1979-01-22 | Nec Corp | Production of sintered type electrophotographic photoreceptor |
JPS5672186A (en) * | 1979-11-12 | 1981-06-16 | Sumitomo Metal Ind Ltd | Crevice corrosion preventing method for titanium structure |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62107041A (en) * | 1985-11-05 | 1987-05-18 | Sumitomo Metal Ind Ltd | Highly corrosion resistant titanium alloy |
JPH0689423B2 (en) * | 1985-11-05 | 1994-11-09 | 住友金属工業株式会社 | Titanium alloy with excellent corrosion resistance |
GB2198144A (en) * | 1986-10-31 | 1988-06-08 | Sumitomo Metal Ind | Method of improving the resistance of ti-based alloys to corrosion |
US4859415A (en) * | 1986-10-31 | 1989-08-22 | Sumitomo Metal Industries, Ltd. | Method of improving the resistance of Ti-based alloys to corrosion in deep-well environments |
GB2198144B (en) * | 1986-10-31 | 1991-06-26 | Sumitomo Metal Ind | Method of improving the resistance of ti-based alloys to corrosion |
JPH0267322A (en) * | 1988-09-02 | 1990-03-07 | Tosoh Corp | Equipment for manufacturing polyarylene sulfide |
WO2007077645A1 (en) * | 2005-12-28 | 2007-07-12 | Sumitomo Metal Industries, Ltd. | Titanium alloy for corrosion-resistant material |
US8741217B2 (en) | 2005-12-28 | 2014-06-03 | Nippon Steel & Sumitomo Metal Corporation | Titanium alloy for corrosion-resistant materials |
Also Published As
Publication number | Publication date |
---|---|
JPS634891B2 (en) | 1988-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04503377A (en) | High heat resistant anti-corrosion coating especially for gas turbine structural components | |
JP3004654B2 (en) | Nickel-chromium-molybdenum alloy and method of using the same | |
US4666666A (en) | Corrosion-resistant titanium-base alloy | |
JP2000512345A (en) | Nickel-chromium-molybdenum-alloy | |
CN101292053B (en) | Titanium alloy having improved corrosion resistance and strength | |
JPS61194142A (en) | Titanium alloy having superior corrosion resistance | |
CA1211961A (en) | Corrosion resistant nickel base alloy | |
JPS62109936A (en) | Titanium alloy having superior corrosion resistance | |
JPS61127844A (en) | Titanium alloy having superior corrosion resistance | |
JP2871867B2 (en) | Corrosion resistant Ti-based alloy | |
JPH0689423B2 (en) | Titanium alloy with excellent corrosion resistance | |
AU2003248188B2 (en) | Titanium article having improved corrosion resistance | |
JPS6270543A (en) | Titanium-base alloy excellent in corrosion resistance | |
JPS62199744A (en) | Titanium alloy having superior crevice corrosion resistance | |
CA2528107C (en) | Fabricated titanium article having improved corrosion resistance | |
JPS6220268B2 (en) | ||
JPH04350138A (en) | Titanium alloy excellent in corrosion resistance | |
JPS61194143A (en) | Titanium-base alloy having superior corrosion resistance | |
JPH0577735B2 (en) | ||
JPH0121871B2 (en) | ||
JPH04160129A (en) | Corrosion-resistant titanium-base alloy | |
JPS62149836A (en) | Titanium base alloy having high strength and high corrosion resistance | |
Maritimer | The noble metals | |
JPH03267335A (en) | Corrosion resistant ti-based alloy | |
JPS5852030B2 (en) | titanium powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |