JPS6220268B2 - - Google Patents

Info

Publication number
JPS6220268B2
JPS6220268B2 JP59246317A JP24631784A JPS6220268B2 JP S6220268 B2 JPS6220268 B2 JP S6220268B2 JP 59246317 A JP59246317 A JP 59246317A JP 24631784 A JP24631784 A JP 24631784A JP S6220268 B2 JPS6220268 B2 JP S6220268B2
Authority
JP
Japan
Prior art keywords
corrosion
alloy
titanium
alloys
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59246317A
Other languages
Japanese (ja)
Other versions
JPS61127843A (en
Inventor
Chihiro Taki
Hideo Sakuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP24631784A priority Critical patent/JPS61127843A/en
Priority to US06/796,839 priority patent/US4666666A/en
Priority to GB08528183A priority patent/GB2167769B/en
Priority to DE19853541223 priority patent/DE3541223A1/en
Publication of JPS61127843A publication Critical patent/JPS61127843A/en
Publication of JPS6220268B2 publication Critical patent/JPS6220268B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

チタンは、その耐食性が優れているため、従来
の耐食性金属に替わつて広く工業用材料として使
われるようになつてきたが、特に硝酸、クロム
酸、塩素酸、二酸化塩素、又は塩素酸塩等のよう
な酸化性腐食環境、並びに海水その他塩化物を含
む腐食環境において優れている。一方、塩酸、硫
酸などのような非酸化性酸においては、上記のよ
うな環境ほど優れた威力を発揮しない。そのた
め、この点を改良した既存の合金としてTi―Pd
合金、Ti―Ni合金、Ti―Ni―Mo合金(特願昭50
―37435)などが一部使用されているが、Ti―Pd
合金は、高価なパラジウムを使用しているため値
段が高いという欠点があり、Ti―Ni合金、Ti―
Ni―Mo合金は、加工性が悪いという欠点がある
ため広く利用されるにはいたつていないのが現状
である。 以上の点から、チタンは優れた耐食性を有して
いるとはいえ過酷な腐食環境下では、まだ多くの
問題をのこしており、又同時にこれらに対し一部
改善されたチタン合金も開発されてはいるが多く
の欠点を有しており十分でない。 本発明は、これらの状況を踏まえ見いだされた
ものであり、特に非酸化性の酸など厳しい腐食環
境で威力を発揮すると同時に、塩素イオンが存在
する溶液においてしばしば発生する隙間腐食にも
おおいに威力を発揮するチタン基合金に関するも
のである。 その組成範囲は、以下のとおりである。
Due to its excellent corrosion resistance, titanium has come to be widely used as an industrial material in place of conventional corrosion-resistant metals. Excellent in oxidizing corrosive environments such as seawater and other corrosive environments containing chlorides. On the other hand, non-oxidizing acids such as hydrochloric acid and sulfuric acid do not exhibit as good an effect as in the above environment. Therefore, Ti-Pd is an existing alloy that improves this point.
Alloy, Ti-Ni alloy, Ti-Ni-Mo alloy (patent application 1972)
-37435) are used in some cases, but Ti-Pd
Alloys have the disadvantage of being expensive because they use expensive palladium, and Ti--Ni alloys, Ti--
Currently, Ni--Mo alloys have not been widely used because they have the disadvantage of poor workability. From the above points, although titanium has excellent corrosion resistance, it still has many problems in harsh corrosive environments, and at the same time, titanium alloys with some improvements in these problems have also been developed. However, it has many drawbacks and is not sufficient. The present invention was discovered in light of these circumstances, and is particularly effective in harsh corrosive environments such as non-oxidizing acids, and at the same time is highly effective against crevice corrosion that often occurs in solutions containing chlorine ions. This relates to titanium-based alloys that exhibit the following properties. Its composition range is as follows.

【表】 ルテニウムの下限を0.005wt%以上とするの
は、この添加量未満では耐食性の向上が小さく実
用的でないためであり、このましくは0.01wt%以
上が必要とされる。又、ルテニウムの上限を
2.0wt%以下としたのは、それより上の添加量で
は加工性が悪くなるためである。 タングステンの下限を0.005wt%以上とするの
は、この添加量未満では耐食性の向上が小さく実
用的でないためであり、好ましくは0.01wt%以上
が必要とされる。又上限を0.5wt%以下とするの
は、これより多く添加すると加工性の低下及び製
造が難しくなるためである。 モリブデンの下限を0.01wt%以上とするのは、
この添加量未満では耐食性の向上が小さく実用的
でないためである。又上限を1.0wt%以下とする
のは、これより多く添加してもその効果があまり
かわらないことと、加工性の低下及び製造が難し
くなるためである。 次に、本発明のチタン合金を従来の耐食性チタ
ン合金と比較しその有効性を説明することにす
る。試験した腐食環境は、全面腐食では 1.5%HCl、沸騰状態 2.1%H2SO4、沸騰状態 3.5%H2SO4、沸騰状態 であり、隙間腐食では 4.10%NaCl、PH=6.1、沸騰状態 で行なつた。 第1表に1%H2SO4の結果を示す。 純Ti及び既存の耐食性チタン合金をNo.1〜No.
5に示し、本発明合金をNo.6〜No.19に示す。 No.6〜No.9は、Ti―Ru―W合金においてWの
添加量を変化させたものである。W添加量が
0.01wt%(No.6)において既にW添加の効果が認
められているが、添加量を増すにしたがいより一
層の効果が得られている。No.10〜No.12は、Ruの
添加量を変化させたものであるが、Ruの添加量
が増すにしたがい耐食性が向上している。 次に、No.13〜No.15はTi―Ru―Mo合金において
Moの添加量を変化させたものである。0.01Mo
wt%(No.13)において既にMo添加の効果が認め
られる。No.16〜No.18は、Ruの添加量を変化させ
たものであるが、その添加量が増すにしたがい耐
食性が向上しているのがわかる。 No.19は、チタン、ルテニウム、タングステン、
モリブデンを添加した合金であるが、四元合金に
することにより一層優れた耐食性チタン合金がで
きていることがわかる。 第2表、第3表は、5%H2SO4及び5%HClで
腐食試験結果が示されている。1%H2SO4と比較
した場合、腐食環境がきびしいため腐食速度は全
体的に上昇しているが、本発明合金が従来よりあ
る耐食性チタン合金より優れていることにかわり
はない。 以上の結果より、TiにRu、WもしくはRu、Mo
もしくはRu、Mo、Wを添加した場合非常に優れ
た耐食性チタン合金ができることがわかるが、特
に、既存の耐食性チタン合金(No.1〜No.5)との
比較においてはつきりと認識することができ、本
発明合金の有効性がわかる。 次に、隙間腐食試験結果を第4表に示す。 純チタン、Ti―0.15Pd合金は、1日を経ずし
て隙間腐食をおこしている。Ti―0.8Ni―0.3Mo
は、2日間をへたのち隙間腐食を起こしている。
これに比べ、本発明合金はどれもそれ以上の耐隙
間腐食性を有していることがわかる。 また本発明合金は、以上の耐食性の他、耐水素
吸収性にもすぐれている。第5表にその試験結果
を示す。 本データーは、対極に白金をもちい、極間電圧
を6.0Vとして供試材の表面より水素の泡を出し
水素吸収を行なわせたものである。 純チタンにくらべ明らかに本発明合金の方が水
素吸収量が少ないことがわかる。 以上、本発明合金は塩酸、硫酸等の非常に腐食
力が強い非酸化性酸に対して強い耐食性を有する
と共に隙間腐食においても優れた抵抗力をもつて
おり、また耐水素吸収性にも優れている。これよ
り、本発明合金は既存の耐食性チタン合金よりす
ぐれた耐食性を有している全く新しいチタン合金
であることがわかる。
[Table] The lower limit of ruthenium is set at 0.005wt% or more because if the addition amount is less than this, the improvement in corrosion resistance is small and is not practical, and preferably 0.01wt% or more is required. Also, the upper limit of ruthenium
The reason why the amount is set at 2.0wt% or less is that if the amount added is higher than that, the processability will deteriorate. The reason why the lower limit of tungsten is set to 0.005 wt% or more is because if the addition amount is less than this, the improvement in corrosion resistance is small and is not practical, and preferably 0.01 wt% or more is required. The reason why the upper limit is set to 0.5 wt% or less is because adding more than this decreases processability and makes manufacturing difficult. The lower limit of molybdenum is 0.01wt% or more because
This is because if the addition amount is less than this, the improvement in corrosion resistance is small and is not practical. The reason why the upper limit is set to 1.0 wt% or less is that the effect does not change much even if added in a larger amount than this, and processability decreases and manufacturing becomes difficult. Next, the effectiveness of the titanium alloy of the present invention will be explained by comparing it with conventional corrosion-resistant titanium alloys. The corrosion environments tested were 1.5% HCl, 2.1% H 2 SO 4 in a boiling state, 3.5% H 2 SO 4 in a boiling state for general corrosion, and 4.10% NaCl, PH = 6.1, in a boiling state for crevice corrosion. I did it. Table 1 shows the results for 1% H 2 SO 4 . Pure Ti and existing corrosion-resistant titanium alloys No. 1 to No.
The alloys of the present invention are shown in Nos. 6 to 19. Nos. 6 to 9 are Ti—Ru—W alloys in which the amount of W added is changed. The amount of W added is
The effect of W addition has already been observed at 0.01wt% (No. 6), but as the amount added increases, even more effects are obtained. In No. 10 to No. 12, the amount of Ru added was changed, and the corrosion resistance improved as the amount of Ru added increased. Next, No. 13 to No. 15 are Ti-Ru-Mo alloys.
The amount of Mo added was changed. 0.01Mo
The effect of Mo addition is already recognized at wt% (No. 13). In Nos. 16 to 18, the amount of Ru added was varied, and it can be seen that the corrosion resistance improved as the amount added increased. No.19 is titanium, ruthenium, tungsten,
Although this is an alloy containing molybdenum, it can be seen that a titanium alloy with even better corrosion resistance can be produced by making it into a quaternary alloy. Tables 2 and 3 show the corrosion test results for 5% H 2 SO 4 and 5% HCl. When compared with 1% H 2 SO 4 , the corrosion rate is generally higher due to the harsher corrosive environment, but the alloy of the present invention is still superior to conventional corrosion-resistant titanium alloys. From the above results, it can be concluded that Ti has Ru, W or Ru, Mo.
Alternatively, it can be seen that when Ru, Mo, and W are added, a very excellent corrosion-resistant titanium alloy can be produced, but it is especially clear when compared with existing corrosion-resistant titanium alloys (No. 1 to No. 5). This shows the effectiveness of the alloy of the present invention. Next, the crevice corrosion test results are shown in Table 4. Pure titanium and Ti-0.15Pd alloys undergo crevice corrosion in less than a day. Ti―0.8Ni―0.3Mo
After 2 days, crevice corrosion occurred.
In comparison, it can be seen that all the alloys of the present invention have higher crevice corrosion resistance. In addition to the corrosion resistance described above, the alloy of the present invention also has excellent hydrogen absorption resistance. Table 5 shows the test results. In this data, platinum was used as the counter electrode, and the voltage between the electrodes was set to 6.0V, and hydrogen bubbles were generated from the surface of the test material to absorb hydrogen. It can be seen that the amount of hydrogen absorbed by the alloy of the present invention is clearly lower than that of pure titanium. As described above, the alloy of the present invention has strong corrosion resistance against highly corrosive non-oxidizing acids such as hydrochloric acid and sulfuric acid, and also has excellent resistance to crevice corrosion.It also has excellent hydrogen absorption resistance. ing. This shows that the alloy of the present invention is a completely new titanium alloy that has better corrosion resistance than existing corrosion-resistant titanium alloys.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ルテニウム0.005重量%以上2.0重量%以下、
及びタングステン0.005重量%以上0.5重量%以下
もしくはモリブデン0.01重量%以上1.0重量%以
下の一種または二種を含有し、残部チタン及び不
可避的不純物からなる耐食性に優れたチタン基合
金。
1 Ruthenium 0.005% by weight or more and 2.0% by weight or less,
A titanium-based alloy with excellent corrosion resistance, containing one or both of the following: and 0.005% to 0.5% by weight of tungsten or 0.01% to 1.0% by weight of molybdenum, with the remainder being titanium and unavoidable impurities.
JP24631784A 1984-11-22 1984-11-22 Titanium alloy having superior corrosion resistance Granted JPS61127843A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24631784A JPS61127843A (en) 1984-11-22 1984-11-22 Titanium alloy having superior corrosion resistance
US06/796,839 US4666666A (en) 1984-11-22 1985-11-12 Corrosion-resistant titanium-base alloy
GB08528183A GB2167769B (en) 1984-11-22 1985-11-15 Corrosion-resistant titanium-base alloy
DE19853541223 DE3541223A1 (en) 1984-11-22 1985-11-21 CORROSION-RESISTANT TITANIUM BASED ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24631784A JPS61127843A (en) 1984-11-22 1984-11-22 Titanium alloy having superior corrosion resistance

Publications (2)

Publication Number Publication Date
JPS61127843A JPS61127843A (en) 1986-06-16
JPS6220268B2 true JPS6220268B2 (en) 1987-05-06

Family

ID=17146753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24631784A Granted JPS61127843A (en) 1984-11-22 1984-11-22 Titanium alloy having superior corrosion resistance

Country Status (1)

Country Link
JP (1) JPS61127843A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784632B2 (en) * 1986-10-31 1995-09-13 住友金属工業株式会社 Method for improving corrosion resistance of titanium alloy for oil well environment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858428A (en) * 1981-10-02 1983-04-07 Yamatake Honeywell Co Ltd Three-wire temperature sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858428A (en) * 1981-10-02 1983-04-07 Yamatake Honeywell Co Ltd Three-wire temperature sensor

Also Published As

Publication number Publication date
JPS61127843A (en) 1986-06-16

Similar Documents

Publication Publication Date Title
US4666666A (en) Corrosion-resistant titanium-base alloy
JP3004654B2 (en) Nickel-chromium-molybdenum alloy and method of using the same
US8025747B2 (en) Titanium alloy having improved corrosion resistance and strength
JPS6220269B2 (en)
US4139373A (en) Alloys of titanium
US2819960A (en) Formable acid resistant titanium alloys
JPS634891B2 (en)
JPS6220268B2 (en)
JPS634892B2 (en)
JPS62109936A (en) Titanium alloy having superior corrosion resistance
JPS6312932B2 (en)
US2066870A (en) Alloys of rhodium and nickel
JPH0689423B2 (en) Titanium alloy with excellent corrosion resistance
JPS642662B2 (en)
AU2003248188B2 (en) Titanium article having improved corrosion resistance
JPH0577735B2 (en)
JPS62199744A (en) Titanium alloy having superior crevice corrosion resistance
JP2593158B2 (en) Method for producing titanium-based alloy material excellent in corrosion resistance and workability
JPH0121871B2 (en)
JPH0390526A (en) Titanium alloy excellent in corrosion resistance
JPH0565604A (en) Combinedly noble metal added surface alloy for chlorine generator electrode and activating treatment for the alloy
JPH04160129A (en) Corrosion-resistant titanium-base alloy
JPH03267335A (en) Corrosion resistant ti-based alloy
JPS62149836A (en) Titanium base alloy having high strength and high corrosion resistance
JPH03197636A (en) Titanium alloy having excellent corrosion resistance