JPH03267335A - Corrosion resistant ti-based alloy - Google Patents

Corrosion resistant ti-based alloy

Info

Publication number
JPH03267335A
JPH03267335A JP2069066A JP6906690A JPH03267335A JP H03267335 A JPH03267335 A JP H03267335A JP 2069066 A JP2069066 A JP 2069066A JP 6906690 A JP6906690 A JP 6906690A JP H03267335 A JPH03267335 A JP H03267335A
Authority
JP
Japan
Prior art keywords
corrosion
corrosion resistance
based alloy
resistant
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2069066A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
佐藤 廣士
Takashi Furuya
降矢 喬
Hidetoshi Nishimoto
西本 英敏
Yasuaki Sugizaki
康昭 杉崎
Keiji Ueda
啓司 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2069066A priority Critical patent/JPH03267335A/en
Publication of JPH03267335A publication Critical patent/JPH03267335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To make improvement in the corrosion resistance in nonoxidative environment by incorporating specific ratios of Ag as well as Ni, Pd and Ru into Ti. CONSTITUTION:The corrosion resistant Ti-based alloy is constituted of 0.005 to 1.5wt.% Ag and further, >=1 kinds of 0.005 to 2.0% Ni, 0.005 to 2.0% Pd, and 0.005 to 2.0% Ru, and the balance Ti and unavoidable impurities. The corrosion resistance equal to or higher than the corrosion resistance of the conventional Ti-Pd alloys is obtd. by the combined addition of the Ag and the Ni, Pd and Ru and by the synergistic effect thereof. The clevis corrosion resistance in the environment of a high-temp. chloride soln., etc., is also enhanced to a level satisfactory in practicable use.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は耐蝕性Ti基合金に関し、さらに詳細には、耐
蝕性に優れており、かつ、加工性耐隙間腐蝕性に優れて
いる耐蝕性Ti基合金に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a corrosion-resistant Ti-based alloy, and more particularly, to a corrosion-resistant Ti-based alloy that has excellent corrosion resistance and excellent crevice corrosion resistance in workability. This relates to Ti-based alloys.

「従来技術] 従来より、Tiは耐蝕性の優れている金属として良く知
られており、化学プラント等の工業用の構造材料として
使用されているが、使用される環境によってはその耐蝕
性について疑問視される場合がある。
"Prior Art" Ti has been well known as a metal with excellent corrosion resistance, and has been used as a structural material for industries such as chemical plants, but its corrosion resistance is questionable depending on the environment in which it is used. It may be seen.

Tiは特に、硝酸等の酸化性の腐蝕環境、および海水や
その他の塩化物を含有する腐蝕環境においては優れた耐
蝕性を示すものである。
Particularly, Ti exhibits excellent corrosion resistance in oxidizing corrosive environments such as nitric acid, and corrosive environments containing seawater and other chlorides.

しかし、塩酸および硫酸等の非酸化性の環境においては
、上記に説明した酸化性の環境等はど優れた耐蝕性を示
さない。
However, in non-oxidizing environments such as hydrochloric acid and sulfuric acid, excellent corrosion resistance is not exhibited as in the oxidizing environments described above.

また、高温の塩化物溶液等の環境においては、その環境
におかれる物に隙間があると、その隙間に存在するTi
が局部的に腐蝕を受けることはよく知られている。
In addition, in environments such as high-temperature chloride solutions, if there are gaps in objects placed in that environment, Ti may be present in those gaps.
It is well known that corrosion occurs locally.

このようにTiが比較的に腐蝕を受は易い環境における
問題を解決するために、Tiに種々の合金元素を含有さ
せて耐蝕性のTi基合金が既に提案され、かつ、一般に
市販されている。
In order to solve this problem in environments where Ti is relatively susceptible to corrosion, corrosion-resistant Ti-based alloys made by incorporating various alloying elements into Ti have already been proposed, and are generally commercially available. .

そして、このTi基合金としては、Ti−Pd合金、T
i−Ni−Mo合金等が挙げられるが、Tj−Pd合金
はPdは高価であり、経済的に問題があり、また、Ti
−Ni−Mo合金は加工性が悪いという問題があり、耐
蝕性が優れている割には広く使用されてしない。
As this Ti-based alloy, Ti-Pd alloy, T
Examples include i-Ni-Mo alloys, but Tj-Pd alloys are economically problematic because Pd is expensive, and Ti
-Ni-Mo alloy has a problem of poor workability, and is not widely used despite its excellent corrosion resistance.

[発明が解決しようとする課題] 本発明は上記に説明したように、従来の耐蝕性が良好で
あると言われているTi合金における種々の問題点に鑑
み、本発明者が鋭意研究を行い、検討を重ねた結果、加
工性が良好であり、かっ、Ti−Pd合金と同等または
それ以上の、特に、非酸化性等の環境において優れた耐
蝕性を示し、さらに、高温塩化物溶液等の環境における
耐隙間腐蝕性も実用上満足することができ、また、経済
的でもある耐蝕性Ti基合金を開発したのである。
[Problems to be Solved by the Invention] As explained above, the present inventor has conducted extensive research in view of various problems with conventional Ti alloys that are said to have good corrosion resistance. As a result of repeated studies, we found that it has good workability and exhibits excellent corrosion resistance, equivalent to or better than that of Ti-Pd alloys, especially in non-oxidizing environments. We have developed a corrosion-resistant Ti-based alloy that has practically satisfactory crevice corrosion resistance in the environment of

[問題点を解決するための手段] 本発明に係る耐蝕性Ti基合金の特徴とするところは、 Ag 0.OQ5〜1 、5wt% を含有し、さらに、 Ni 0.005〜2.ht%、Pd 0.005〜2
.ht%、Ru 0.005〜2.Owt% の1種以上 を含有し、残部がTiおよび不可避不純物からなること
にある。
[Means for Solving the Problems] The corrosion-resistant Ti-based alloy according to the present invention is characterized by: Ag 0. Contains OQ5-1, 5wt%, and further contains Ni 0.005-2. ht%, Pd 0.005-2
.. ht%, Ru 0.005-2. Owt%, and the remainder consists of Ti and unavoidable impurities.

本発明に係る耐蝕性Ti基合金について、以下詳細に説
明する。
The corrosion-resistant Ti-based alloy according to the present invention will be explained in detail below.

合金元素として、従来使用されてきているPdにかえて
、より経済的であり、また、加工性に悪影響を与えない
元素を探すために多数の合金を製作して、耐蝕性および
耐隙間腐蝕性について研究を重ね、上記した特性が得ら
れる合金元素としてAgを見出した。
In order to replace the conventionally used Pd as an alloying element, we created a number of alloys in search of elements that are more economical and do not have a negative effect on workability, and have improved corrosion resistance and crevice corrosion resistance. Through repeated research, Ag was discovered as an alloying element that provides the above properties.

しかして、TiにAg或いはRuのそれぞれ単独を含有
させることにより、耐蝕性の向上を図ることは特開昭5
3−123322号公報により提案されているが、これ
らAgおよびRuをそれぞれ単独に含有させても非酸化
性の環境下における耐蝕性の向上効果はない。このこと
は、これら貴金属の水素過電圧が比較的に大きいため、
T、の陽分極を速やかに促進させ、TlO2の形成を促
進する作用が小さいためである。
However, it has been proposed in Japanese Patent Application Laid-Open No. 5-11111 to improve corrosion resistance by incorporating Ag or Ru alone into Ti.
Although it is proposed in Japanese Patent No. 3-123322, even if each of Ag and Ru is contained alone, there is no effect of improving corrosion resistance in a non-oxidizing environment. This is because the hydrogen overvoltage of these precious metals is relatively large.
This is because the effect of rapidly promoting the anodic polarization of T and promoting the formation of TlO2 is small.

また、Tiに対してNi5Pd、Ruのみを単独で0.
005〜2.0wt%含有させても、非酸化性環境にお
いては従来のTi−Pd合金と同等の耐蝕性は示さない
In addition, Ni5Pd and Ru alone were added at 0.
Even if it is contained in an amount of 0.005 to 2.0 wt%, it does not exhibit corrosion resistance equivalent to that of conventional Ti-Pd alloys in a non-oxidizing environment.

しかし、TiにNi1Fd、Ruを0.QO5−2,Q
vt%含有させ、さらに、Agを0.005〜1.5w
t%含有させると、これらの合金元素の相乗効果によっ
て、耐蝕性は顕著に改善されてTi−Pd合金と同等ま
たはそれ以上となる。
However, Ti, Ni1Fd, and Ru were added to 0. QO5-2,Q
vt% and further contains 0.005 to 1.5 w of Ag.
When t% is contained, the synergistic effect of these alloying elements significantly improves the corrosion resistance to be equal to or higher than that of Ti--Pd alloy.

本発明に係る耐蝕性Ti合金の含有成分および成分割合
について説明する。
The components and component ratios of the corrosion-resistant Ti alloy according to the present invention will be explained.

[実 施 例] 本発明に係る耐蝕性T1基合金の実施例を比較例と共に
説明する。
[Example] Examples of the corrosion-resistant T1-based alloy according to the present invention will be described together with comparative examples.

実施例 第1表に示すTi合金を、スポンジチタン(JISt種
)に含有成分の金属粉末を各成分割合を変化させて含有
させ、真空アーク溶解炉において溶解して鋳塊を製造し
た。
EXAMPLES The Ti alloys shown in Table 1 were mixed with titanium sponge (JISt type) and metal powders were mixed in varying proportions of each component, and the mixture was melted in a vacuum arc melting furnace to produce an ingot.

また、比較例として、スポンジチタン(JIS1種)の
みの純Ti鋳塊を溶製した。
Further, as a comparative example, a pure Ti ingot made of only sponge titanium (JIS Class 1) was melted.

これらの鋳塊を熱間鍛造および熱間圧延を行なって、1
 、 Otmmの板を製作した。
These ingots are hot forged and hot rolled to produce 1
, I made an Otmm board.

この板を真空焼鈍寝熱処理を行なった後、20Dn+n
+X 1 tII+mの腐蝕試験片を採取した。
After performing vacuum annealing heat treatment on this plate, 20Dn+n
+X 1 tII+m corrosion test pieces were taken.

さらに、比較例として、市販の62相当材(純Ti)、
G7相当材(Ti−0,15Pd)、G12相当材(T
i−0,8Ni−0,3Mo)を併せて製作した。
Furthermore, as a comparative example, a commercially available material equivalent to 62 (pure Ti),
G7 equivalent material (Ti-0,15Pd), G12 equivalent material (T
i-0,8Ni-0,3Mo) were also produced.

以下説明する試験により評価試験を行なった。Evaluation tests were conducted using the tests described below.

425MgC1m   隙間腐蝕浸漬試験この試験は、
第1図に示すTjボルト1、T、P3、マルチクレビス
φ20帥(溝付き、テフロン)4、Tiナツト2を組立
た治具を隙間腐蝕環境を模擬した42%MgCLt溶液
中に48時間浸漬して、隙間腐蝕発生数により評価した
425MgC1m Crevice corrosion immersion test This test is
A jig assembled with Tj bolts 1, T, P3, multi-clevis φ20 (grooved, Teflon) 4, and Ti nut 2 shown in Fig. 1 was immersed for 48 hours in a 42% MgCLt solution simulating a crevice corrosion environment. Evaluation was made based on the number of crevice corrosion occurrences.

第2表に耐隙間腐蝕性試験の結果を示す。Table 2 shows the results of the crevice corrosion resistance test.

第1表 第2表 ○ ・・・ 隙間腐蝕発生なし × ・・・ 隙間腐蝕発生あり この第2表から明らかなように、本発明に係る耐蝕性T
i基合金は、42%MgCl、沸騰溶液中で24時間浸
漬した場合の試験において、優れた耐隙間腐蝕性を示し
ていることかわかる。
Table 1 Table 2 ○ ... No crevice corrosion occurred × ... Crevice corrosion occurred As is clear from this Table 2, the corrosion resistance T according to the present invention
It can be seen that the i-base alloy exhibits excellent crevice corrosion resistance in a test when immersed in a 42% MgCl boiling solution for 24 hours.

次に、本発明に係る耐蝕性Ti基合金の塩酸に対する全
面腐蝕性評価試験について第2図〜第5図により説明す
る。
Next, a full-surface corrosion evaluation test against hydrochloric acid of the corrosion-resistant Ti-based alloy according to the present invention will be explained with reference to FIGS. 2 to 5.

第2図はNi 0.4vt%、Pd 0.014vt%
、Ru0.026vt%と一定とし、Agの含有量を変
化させた場合に、Ti基合金の2%HCI沸騰溶液中に
おける24時間の浸漬試験結果を示しである。
Figure 2 shows Ni 0.4vt% and Pd 0.014vt%.
, the results of a 24-hour immersion test of a Ti-based alloy in a 2% HCI boiling solution when Ru is constant at 0.026 vt% and the Ag content is varied.

即ち、Ag含有量を0.1wt%以上とすることにより
、耐蝕性が明らかに改善されていることかわかる。
That is, it can be seen that the corrosion resistance is clearly improved by setting the Ag content to 0.1 wt% or more.

また、Ag含有量を0.2vt%とすることにより、G
7相当材(Ti−0,15Pd)より優れた耐蝕性を示
した。
In addition, by setting the Ag content to 0.2vt%, G
It exhibited superior corrosion resistance to the material equivalent to No. 7 (Ti-0,15Pd).

第3図は、Ag含有@ 0.2wt%、Pd/Ru=1
/2、Pd+Ru=0.(14vt%と一定にし、Ni
含有量を変化させた場合に、本発明に係る耐蝕性Ti基
合金の2%HCI沸騰溶液中における24時間の浸漬結
果を示しである。
Figure 3 shows Ag content @ 0.2wt%, Pd/Ru=1
/2, Pd+Ru=0. (Keep it constant at 14vt%, Ni
3 shows the results of immersion of the corrosion-resistant Ti-based alloy according to the present invention in a 2% HCI boiling solution for 24 hours when the content was varied.

即ち、N1含有重が増加するに従って腐蝕速度が減少し
ていることがわかる。
That is, it can be seen that the corrosion rate decreases as the N1 content increases.

第4図はAg含有量0.2tvt%と一定とし、N11
Pd、Ruの含有量を変化させた場合の、本発明に係る
耐蝕性Ti基合金の2%HCI沸騰溶液中において2時
間の浸漬結果を示しである。
In Figure 4, the Ag content is constant at 0.2 tvt%, and N11
This figure shows the results of immersion of the corrosion-resistant Ti-based alloy according to the present invention in a 2% HCI boiling solution for 2 hours when the contents of Pd and Ru were varied.

即ち、Ni5Pd、Ruの含有量が増加するに従って腐
蝕速度が減少しているが、NiよりもPd。
That is, as the content of Ni5Pd and Ru increases, the corrosion rate decreases, but the corrosion rate decreases with Pd than with Ni.

RuさらにRuよりPdの方が腐蝕速度か小さく優れて
いることがわかる。
It can be seen that the corrosion rate of Pd is lower than that of Ru and is superior to Ru.

第5図は実施例の第1表に示しである、本発明に係る耐
蝕性T1基合金の■〜[株]の幾つかの例および比較例
■純Tl(G2相当材)、比較例■Ti0.8Ni−0
,3Mo(CI 2相当材)、比較例■Ti0.2Ag
(0,2Ag)、比較例■Ti−0,5Ni(0,5N
j)等を2%沸!HCI溶液中において24時間浸漬し
た場合の浸漬結果を示しである。
FIG. 5 shows some examples and comparative examples of corrosion-resistant T1-based alloys according to the present invention, which are shown in Table 1 of the Examples. ■ Pure Tl (G2 equivalent material), comparative example ■ Ti0.8Ni-0
, 3Mo (CI 2 equivalent material), comparative example ■Ti0.2Ag
(0,2Ag), Comparative example ■Ti-0,5Ni (0,5N
Boil j) etc. at 2%! This figure shows the results of immersion in an HCI solution for 24 hours.

即ち、本発明に係る耐蝕性Ti基合金は、比較例■〜■
のTl−(pd、RLI)材と同等かそれ以上に小さく
優れていることを示し、また、比較例■〜■のTi基合
金より著しく腐蝕速度が小さいことを示している。
That is, the corrosion-resistant Ti-based alloy according to the present invention is
The results show that the corrosion rate of the Ti-based alloys is significantly lower than that of the Ti-based alloys of Comparative Examples (1) to (2).

従って、本発明に係る耐蝕性Ti基合金は非酸化性環境
において優れた耐蝕性(腐蝕速度が極めて小さいこと。
Therefore, the corrosion-resistant Ti-based alloy according to the present invention has excellent corrosion resistance (extremely low corrosion rate) in a non-oxidizing environment.

)を示していることがわかる。).

[発明の効果] 以上説明したように、本発明に係る耐蝕性Ti基合金は
上記の構成を有しているものであるから、非酸化性の環
境における耐蝕性に優れており、かつ、優れた耐隙間腐
蝕性をも併せて有しており、従来の耐蝕性Ti基合金の
問題点を著しく改善した極めて優れた高耐蝕性のTi基
合金である。
[Effects of the Invention] As explained above, since the corrosion-resistant Ti-based alloy according to the present invention has the above-mentioned structure, it has excellent corrosion resistance in a non-oxidizing environment. It also has crevice corrosion resistance, and is an extremely excellent highly corrosion-resistant Ti-based alloy that has significantly improved the problems of conventional corrosion-resistant Ti-based alloys.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐隙間腐蝕性を試験するための治具、第2図は
Agの含有量を変化させ、他の合金元素含有量は一定と
した場合の、HCI浸漬試験におする腐蝕速度を示した
図、第3図はNi含有量を変化させ、他の合金元素含有
量を一定とした場合の、HCI浸漬試験における腐蝕速
度を示す図、第4図はAg含有量を一定とした場合の、
HCI浸漬試験における腐蝕速度を示した図、第5図は
本発明のに係る耐蝕性Ti基合金の実施例および比較例
のHCI浸漬試験における腐蝕速度を示した図である。 1−−−Tibolt、  2−−−Tinut、 3
−・T、P、4・・・マルチクレビス。 才1図 4蝕J虚 (−−/Yつ 牙4 図 0.001 1 〜)PdRυ(u!tz)
Figure 1 shows a jig for testing crevice corrosion resistance, and Figure 2 shows the corrosion rate in the HCI immersion test when the Ag content is varied and the other alloy element contents are constant. Figure 3 shows the corrosion rate in the HCI immersion test when the Ni content is changed and the other alloying element contents are constant, and Figure 4 is when the Ag content is constant. of,
FIG. 5 is a diagram showing the corrosion rate in the HCI immersion test of the corrosion-resistant Ti-based alloy according to the present invention and a comparative example. 1---Tibolt, 2---Tinut, 3
-・T, P, 4...Multi clevis. 1 figure 4 eclipse J imaginary (--/Ytsuga 4 figure 0.001 1 ~)PdRυ(u!tz)

Claims (1)

【特許請求の範囲】 Ag0.005〜1.5wt% を含有し、さらに、 Ni0.005〜2.0wt%、Pd0.005〜2.
0wt%、Ru0.005〜2.0wt% の1種以上 を含有し、残部がTiおよび不可避不純物からなること
を特徴とする耐蝕性Ti基合金。
[Claims] Contains 0.005 to 1.5 wt% of Ag, and further contains 0.005 to 2.0 wt% of Ni, and 0.005 to 2.0 wt% of Pd.
A corrosion-resistant Ti-based alloy, characterized in that it contains at least one of the following: 0 wt%, Ru: 0.005-2.0 wt%, and the remainder consisting of Ti and unavoidable impurities.
JP2069066A 1990-03-19 1990-03-19 Corrosion resistant ti-based alloy Pending JPH03267335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2069066A JPH03267335A (en) 1990-03-19 1990-03-19 Corrosion resistant ti-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2069066A JPH03267335A (en) 1990-03-19 1990-03-19 Corrosion resistant ti-based alloy

Publications (1)

Publication Number Publication Date
JPH03267335A true JPH03267335A (en) 1991-11-28

Family

ID=13391831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2069066A Pending JPH03267335A (en) 1990-03-19 1990-03-19 Corrosion resistant ti-based alloy

Country Status (1)

Country Link
JP (1) JPH03267335A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100480934B1 (en) * 2002-12-05 2005-04-07 주식회사 바이오머테리얼즈코리아 Ti-Ag ALLOY FOR USE OF BIO-MATERIALS HAVING EXCELLENT STRENGTH AND CORROSION RESISTANCE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50102982A (en) * 1974-01-21 1975-08-14
JPH02167644A (en) * 1988-12-20 1990-06-28 Olympus Optical Co Ltd Transfer device for lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50102982A (en) * 1974-01-21 1975-08-14
JPH02167644A (en) * 1988-12-20 1990-06-28 Olympus Optical Co Ltd Transfer device for lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100480934B1 (en) * 2002-12-05 2005-04-07 주식회사 바이오머테리얼즈코리아 Ti-Ag ALLOY FOR USE OF BIO-MATERIALS HAVING EXCELLENT STRENGTH AND CORROSION RESISTANCE

Similar Documents

Publication Publication Date Title
JPH0372046A (en) Shape memory alloy
AU4249093A (en) Corrosion resistant iron aluminides exhibiting improved mechanical properties and corrosion resistance
JPH0219438A (en) High strength oxidation-resistant alpha titanium alloy
JP3076697B2 (en) α + β type titanium alloy
US4139373A (en) Alloys of titanium
JP2871867B2 (en) Corrosion resistant Ti-based alloy
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
JPH03267335A (en) Corrosion resistant ti-based alloy
JPH07126790A (en) Highly corrosion resistant mg-base alloy
JPS62199744A (en) Titanium alloy having superior crevice corrosion resistance
JPH0689423B2 (en) Titanium alloy with excellent corrosion resistance
JPS61127844A (en) Titanium alloy having superior corrosion resistance
US5238647A (en) Titanium alloys with excellent corrosion resistance
JPS638178B2 (en)
JPH04160129A (en) Corrosion-resistant titanium-base alloy
JPH03197638A (en) High strength and high corrosion-resistant titanium base alloy
JPH06228685A (en) High strength and high ductility tial intermetallic compound and its production
JP2936899B2 (en) Titanium alloy with excellent corrosion resistance and workability to non-oxidizing acids
JPS62109936A (en) Titanium alloy having superior corrosion resistance
JP2004027254A (en) Titanium alloy having excellent corrosion resistance and method of producing the same
JPS62120452A (en) Titanium-base alloy material excellent in corrosion resistance
JPH01252746A (en) High corrosion-resistant titanium-based alloy
JPH0121871B2 (en)
Eid et al. Mechanical property optimization of Sn-1.5 Ag-0.5 Cu solder alloys with additions of Bi, In, and Te
JPH0577736B2 (en)