JPH06228685A - High strength and high ductility tial intermetallic compound and its production - Google Patents

High strength and high ductility tial intermetallic compound and its production

Info

Publication number
JPH06228685A
JPH06228685A JP3615893A JP3615893A JPH06228685A JP H06228685 A JPH06228685 A JP H06228685A JP 3615893 A JP3615893 A JP 3615893A JP 3615893 A JP3615893 A JP 3615893A JP H06228685 A JPH06228685 A JP H06228685A
Authority
JP
Japan
Prior art keywords
atomic
heat treatment
content
phase
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3615893A
Other languages
Japanese (ja)
Inventor
Yoshinari Fujiwara
良也 藤原
Toshio Tokune
敏生 徳根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP3615893A priority Critical patent/JPH06228685A/en
Publication of JPH06228685A publication Critical patent/JPH06228685A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a TiAl intermetallic compd. having both excellent ductility at ordinary temp. and excellent strength. CONSTITUTION:This TiAl intermetallic compd. consists of, by atom, 42% to <46% Al, 1-4% Cr, at least, one selected among 1-4% Nb, 0.3-4% Ta, 0.05-4% W and 0.5-4% Mo and the balance Ti with inevitable impurities and has a metallic structure consisting of gamma-, alpha2-and beta-phases.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高強度高延性TiAl系
金属間化合物およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high strength and high ductility TiAl intermetallic compound and a method for producing the same.

【0002】[0002]

【従来の技術】従来、常温延性および耐酸化性の向上を
狙ったTiAl系金属間化合物としては、例えば特開平
2−25534号公報に開示されたものが知られてい
る。またこの種金属間化合物の製造方法としては、恒温
鍛造法等による加工熱処理法が知られている。
2. Description of the Related Art Hitherto, as a TiAl-based intermetallic compound aiming at improvement of room-temperature ductility and oxidation resistance, for example, one disclosed in JP-A-2-25534 is known. Further, as a method for producing this kind of intermetallic compound, a thermomechanical treatment method such as a constant temperature forging method is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
TiAl系金属間化合物は比較的良好な常温延性および
耐酸化性を有するものゝ、強度(常温下での強度、以下
同じ)上難点があるため構造部材用材料としては実用性
に欠ける、といった問題があった。一方、従来の製造方
法は、その工程が煩雑であるため製造作業性が悪く、T
iAl系金属間化合物の製造コストが上昇する、という
問題があった。
However, the conventional TiAl-based intermetallic compound has relatively good room temperature ductility and oxidation resistance, and has a drawback in strength (strength at room temperature, the same applies hereinafter). There is a problem that it is not practical as a material for structural members. On the other hand, in the conventional manufacturing method, since the process is complicated, the manufacturing workability is poor and the T
There is a problem that the manufacturing cost of the iAl-based intermetallic compound increases.

【0004】本発明は前記に鑑み、優れた常温延性と強
度とを兼備し、構造部材用材料として有効なTiAl系
金属間化合物を提供することを目的とする。
In view of the above, it is an object of the present invention to provide a TiAl-based intermetallic compound which has both excellent room temperature ductility and strength and is effective as a material for structural members.

【0005】また本発明は前記TiAl系金属間化合物
を容易に得ることのできる前記製造方法を提供すること
を目的とする。
Another object of the present invention is to provide the above-mentioned production method by which the TiAl-based intermetallic compound can be easily obtained.

【0006】[0006]

【課題を解決するための手段】本発明に係る高強度高延
性TiAl系金属間化合物は、Alと、Crと、Nb、
Ta、WおよびMoから選択される少なくとも一種とを
含有し、残部がTiおよび不可避不純物であって、Al
含有量が42原子%≦Al<46原子%、Cr含有量が
1原子%≦Cr≦4原子%、Nb含有量が1原子%≦N
b≦4原子%、Ta含有量が0.3原子%≦Ta≦4原
子%、W含有量が0.05原子%≦W≦4原子%、Mo
含有量が0.5原子%≦Mo≦4原子%であることを特
徴とする。
The high-strength and high-ductility TiAl-based intermetallic compound according to the present invention comprises Al, Cr, Nb,
At least one selected from Ta, W and Mo, with the balance being Ti and inevitable impurities, Al
Content is 42 atomic% ≤ Al <46 atomic%, Cr content is 1 atomic% ≤ Cr ≤ 4 atomic%, Nb content is 1 atomic% ≤ N
b ≦ 4 atomic%, Ta content is 0.3 atomic% ≦ Ta ≦ 4 atomic%, W content is 0.05 atomic% ≦ W ≦ 4 atomic%, Mo
It is characterized in that the content is 0.5 atomic% ≦ Mo ≦ 4 atomic%.

【0007】また本発明に係る高強度高延性TiAl系
金属間化合物の製造方法は、Alと、Crと、Nb、T
a、WおよびMoから選択される少なくとも一種とを含
有し、残部がTiおよび不可避不純物であって、Al含
有量が42原子%≦Al<46原子%、Cr含有量が1
原子%≦Cr≦4原子%、Nb含有量が1原子%≦Nb
≦4原子%、Ta含有量が0.3原子%≦Ta≦4原子
%、W含有量が0.05原子%≦W≦4原子%、Mo含
有量が0.5原子%≦Mo≦4原子%である素材に1次
熱処理、それに次ぐ2次熱処理を施し、1次熱処理の熱
処理温度T1 を、α2 相の高温相であるα相の体積分率
αとγ相の体積分率γとの比α/γが0.5≦α/γ≦
3である温度域に設定し、2次熱処理の熱処理温度T2
を、α2相が存在し、且つ1次熱処理の熱処理温度T1
よりも50℃以上低い温度域に設定することを特徴とす
る。
Further, the method for producing a high-strength and high-ductility TiAl-based intermetallic compound according to the present invention comprises Al, Cr, Nb, and T.
a, W and at least one selected from Mo, the balance being Ti and unavoidable impurities, the Al content is 42 atomic% ≦ Al <46 atomic%, and the Cr content is 1
Atomic% ≤ Cr ≤ 4 atomic%, Nb content 1 atomic% ≤ Nb
≦ 4 at%, Ta content is 0.3 at% ≦ Ta ≦ 4 at%, W content is 0.05 at% ≦ W ≦ 4 at%, Mo content is 0.5 at% ≦ Mo ≦ 4. The first atomic heat treatment, the second secondary heat treatment, and the heat treatment temperature T 1 of the primary heat treatment are applied to the material of which the atomic percentage is%, and the volume fraction α of the α 2 phase which is a high temperature phase of α 2 and the volume fraction of the γ phase. The ratio α / γ to γ is 0.5 ≦ α / γ ≦
The temperature range is set to 3 and the heat treatment temperature T 2 of the secondary heat treatment is set.
Is the heat treatment temperature T 1 of the primary heat treatment in which the α 2 phase exists.
It is characterized in that it is set in a temperature range lower than that by 50 ° C. or more.

【0008】さらに本発明に係る高強度高延性TiAl
系金属間化合物の製造方法は、Alと、Crと、Nb、
Ta、WおよびMoから選択される少なくとも一種とを
含有し、残部がTiおよび不可避不純物であって、Al
含有量が42原子%≦Al<46原子%、Cr含有量が
1原子%≦Cr≦4原子%、Nb含有量が1原子%≦N
b≦4原子%、Ta含有量が0.3原子%≦Ta≦4原
子%、W含有量が0.05原子%≦W≦4原子%、Mo
含有量が0.5原子%≦Mo≦4原子%である素材に1
次熱処理、それに次ぐ2次熱処理を施し、1次熱処理の
熱処理温度T1を、α2 相の体積分率α2 とγ相の体積
分率γとの比α2 /γが0.5≦α2 /γ≦3である温
度域に設定し、2次熱処理の熱処理温度T2 を1次熱処
理の熱処理温度T1 よりも50℃以上低い温度域に設定
することを特徴とする。
Further, high strength and high ductility TiAl according to the present invention
The manufacturing method of the intermetallic compound is Al, Cr, Nb,
At least one selected from Ta, W and Mo, with the balance being Ti and inevitable impurities, Al
Content is 42 atomic% ≤ Al <46 atomic%, Cr content is 1 atomic% ≤ Cr ≤ 4 atomic%, Nb content is 1 atomic% ≤ N
b ≦ 4 atomic%, Ta content is 0.3 atomic% ≦ Ta ≦ 4 atomic%, W content is 0.05 atomic% ≦ W ≦ 4 atomic%, Mo
1 for materials with a content of 0.5 atom% ≤ Mo ≤ 4 atom%
Next heat treatment, subjected to secondary heat treatment next to it, the primary heat treatment to a heat treatment temperature T 1 of the ratio alpha 2 / gamma is 0.5 ≦ a volume fraction gamma volume fraction alpha 2 and gamma phase of alpha 2 phase It is characterized in that the temperature range is set to α 2 / γ ≦ 3, and the heat treatment temperature T 2 of the secondary heat treatment is set to a temperature range lower than the heat treatment temperature T 1 of the primary heat treatment by 50 ° C. or more.

【0009】[0009]

【作用】TiAl系金属間化合物において、各化学成分
および各含有量を前記のように特定すると、その常温延
性および強度を向上させることができ、その上優れた高
温強度を具備させることができる。
In the TiAl intermetallic compound, when each chemical component and each content are specified as described above, the room temperature ductility and strength can be improved and excellent high temperature strength can be provided.

【0010】ただし、Al含有量がAl<42原子%で
は、TiAl系金属間化合物の常温延性および強度が低
く、一方、Al≧46原子%ではTiAl系金属間化合
物の常温延性は良好となるがその強度が低下する。
However, when the Al content is Al <42 atomic%, the room temperature ductility and strength of the TiAl intermetallic compound are low, while when Al ≧ 46 atomic%, the room temperature ductility of the TiAl intermetallic compound is good. Its strength decreases.

【0011】Crは常温延性向上効果を有し、Cr<1
原子%であるか、または4原子%<Crであると、Ti
Al系金属間化合物の常温延性が低下する。また4原子
%<CrではTiAl系金属間化合物の高温強度が低く
なり、その軽量耐熱材料としての特性が失われる。
Cr has a room temperature ductility improving effect, and Cr <1.
If atomic% or 4 atomic% <Cr, Ti
The room temperature ductility of the Al-based intermetallic compound decreases. On the other hand, if 4 atomic% <Cr, the high temperature strength of the TiAl-based intermetallic compound will be low, and its properties as a lightweight heat resistant material will be lost.

【0012】Nb、Ta、WおよびMoはTiAl系金
属間化合物の高温硬さ、したがって高温強度を向上させ
る効果を有する。ただし、Nb<1原子%、Ta<0.
3原子%、W<0.05原子%およびMo<0.5原子
%では前記効果を得ることができず、一方、4原子%<
Nb、Ta、W、Moでは、TiAl系金属間化合物の
脆化を招来し、例えば常温下でのビッカース硬さ試験に
おいて圧痕を起点とした亀裂が発生する。
Nb, Ta, W and Mo have the effect of improving the high temperature hardness of the TiAl intermetallic compound, and hence the high temperature strength. However, Nb <1 atomic%, Ta <0.
If 3 atom%, W <0.05 atom% and Mo <0.5 atom%, the above effect cannot be obtained, while 4 atom% <
Nb, Ta, W, and Mo cause embrittlement of the TiAl-based intermetallic compound, and for example, cracks originate from the indentation in the Vickers hardness test at room temperature.

【0013】前記製造方法において、1次および2次熱
処理の熱処理温度を前記のように設定すると、優れた常
温延性と強度とを兼備し、また優れた高温強度を有する
TiAl系金属間化合物を容易に得ることができる。
In the above manufacturing method, when the heat treatment temperatures of the first and second heat treatments are set as described above, it is easy to obtain a TiAl-based intermetallic compound having both excellent room temperature ductility and strength and excellent high temperature strength. Can be obtained.

【0014】ただし、両熱処理温度が前記温度域を逸脱
すると、常温延性および強度向上効果が少なくなる。
However, when both heat treatment temperatures deviate from the above temperature range, the room temperature ductility and strength improving effect are reduced.

【0015】[0015]

【実施例】TiAl系金属間化合物(以下、本欄におい
てTiAl系IMCという)は、必須化学成分としてA
lおよびCrを含有し、また選択化学成分としてNb、
Ta、WおよびMoから選択される少なくとも一種を含
有し、残部がTiおよび不可避不純物よりなる。
EXAMPLE A TiAl-based intermetallic compound (hereinafter referred to as TiAl-based IMC in this section) was used as A as an essential chemical component.
1 and Cr, and Nb as a selective chemical component,
It contains at least one selected from Ta, W and Mo, and the balance is Ti and unavoidable impurities.

【0016】この場合、Al含有量は42原子%≦Al
<46原子%に、Cr含有量は1原子%≦Cr≦4原子
%に、Nb含有量は1原子%≦Nb≦4原子%に、Ta
含有量は0.3原子%≦Ta≦4原子%に、W含有量は
0.05原子%≦W≦4原子%に、Mo含有量は0.5
原子%≦Mo≦4原子%にそれぞれ設定される。
In this case, the Al content is 42 atomic% ≦ Al
<46 atomic%, Cr content 1 atomic% ≦ Cr ≦ 4 atomic%, Nb content 1 atomic% ≦ Nb ≦ 4 atomic%, Ta
The content is 0.3 atomic% ≤ Ta ≤ 4 atomic%, the W content is 0.05 atomic% ≤ W ≤ 4 atomic%, and the Mo content is 0.5.
It is set to atomic% ≦ Mo ≦ 4 atomic%.

【0017】TiAl系IMCの製造に当っては、次の
ような諸工程が順次実施される。即ち、各化学成分を秤
量する工程、その秤量物を非消耗型アルゴンアーク溶解
炉により溶解してインゴットを得る工程、インゴット
に、真空中にて、主として溶体化を狙った1次熱処理を
施す工程およびインゴットに真空中にて、主として時効
化を狙った2次熱処理を施す工程である。
In manufacturing the TiAl-based IMC, the following steps are sequentially carried out. That is, a step of weighing each chemical component, a step of melting the weighed material in a non-consumable argon arc melting furnace to obtain an ingot, and a step of subjecting the ingot to a primary heat treatment mainly aimed at solution treatment in a vacuum. And a step of subjecting the ingot to a secondary heat treatment in vacuum mainly for the purpose of aging.

【0018】溶解工程では、TiAl系IMCの均質化
を狙って、先ず1回目の溶解(表側からの溶解)を行っ
た後、インゴットを裏返して2回目の溶解(裏側からの
溶解)を行い、この表側からの溶解および裏側からの溶
解を1サイクルとして2サイクル以上繰返して行う。
In the melting step, the first melting (melting from the front side) is performed first, and then the ingot is turned over and the second melting (melting from the rear side) is performed in order to homogenize the TiAl-based IMC. The dissolution from the front side and the dissolution from the back side are repeated for 2 cycles or more as one cycle.

【0019】熱処理法としては2方法が採用される。第
1法においては、1次熱処理の熱処理温度T1 は、α2
相の高温相であるα相の体積分率αとγ相の体積分率γ
との比α/γが0.5≦α/γ≦3である温度域に、ま
た熱処理時間は0.1〜168時間にそれぞれ設定さ
れ、2次熱処理の熱処理温度T2 は、α2 相が存在し、
且つ1次熱処理の熱処理温度T1 よりも50℃以上低い
温度域に、また熱処理時間は0.1〜168時間にそれ
ぞれ設定される。
Two heat treatment methods are adopted. In the first method, the heat treatment temperature T 1 of the primary heat treatment is α 2
Volume fraction α of α phase and γ volume fraction γ
And the heat treatment time is set to 0.1 to 168 hours, and the heat treatment temperature T 2 of the secondary heat treatment is set to α 2 phase. Exists,
And the low temperature range 50 ° C. or higher than the heat treatment temperature T 1 of the first heat-treatment, also the heat treatment time is set to the 0.1 to 168 hours.

【0020】Ti−Al二元系IMCにおいて、(α+
γ)相から(α2 +γ)相へ相変化するときの規則−不
規則変態点は約1125℃であり、三元系以上の系にお
いても、規則−不規則変態点はそれ程変わらないので、
第1法における1次熱処理の熱処理温度T1 はT1 >約
1125℃の温度域であり、また2次熱処理の熱処理温
度T2 はT2 ≦約1125℃の温度域である、といえ
る。
In the Ti-Al binary IMC, (α +
The order-disorder transformation point at the time of the phase change from the (γ) phase to the (α 2 + γ) phase is about 1125 ° C., and the order-disorder transformation point does not change so much even in a ternary system or more.
It can be said that the heat treatment temperature T 1 of the first heat treatment in the first method is a temperature range of T 1 > about 1125 ° C., and the heat treatment temperature T 2 of the second heat treatment is a temperature range of T 2 ≦ about 1125 ° C.

【0021】第2法においては、1次熱処理の熱処理温
度T1 は、α2 相の体積分率α2 とγ相の体積分率γと
の比α2 /γが0.5≦α2 /γ≦3である温度域に、
また熱処理時間は0.1〜168時間にそれぞれ設定さ
れ、2次熱処理の熱処理温度T2 は1次熱処理の熱処理
温度T1 よりも50℃以上低い温度域に、また熱処理時
間は0.1〜168時間にそれぞれ設定される。この場
合、1次、2次熱処理の熱処理温度T1 ,T2 は、
1 ,T2 ≦約1125℃の温度域であるといえる。な
お、1次熱処理の熱処理温度T1 の下限値は800℃で
あることが望ましい。
[0021] In the second method, the primary heat treatment temperature T 1 of the heat treatment, the ratio of the volume fraction gamma volume fraction alpha 2 and gamma phase of alpha 2 phase alpha 2 / gamma is 0.5 ≦ alpha 2 In the temperature range where / γ ≦ 3,
The heat treatment time is set to 0.1 to 168 hours, the heat treatment temperature T 2 of the secondary heat treatment is lower than the heat treatment temperature T 1 of the primary heat treatment by 50 ° C. or more, and the heat treatment time is 0.1 to Each is set to 168 hours. In this case, the heat treatment temperatures T 1 and T 2 of the primary and secondary heat treatments are
It can be said that the temperature range is T 1 , T 2 ≤ about 1125 ° C. The lower limit of the heat treatment temperature T 1 of the primary heat treatment is preferably 800 ° C.

【0022】第1,第2法において、2次熱処理の熱処
理温度T2 の下限値は650℃であることが望ましい。
In the first and second methods, the lower limit of the heat treatment temperature T 2 of the secondary heat treatment is preferably 650 ° C.

【0023】このような製造方法を採用することによっ
て、金属組織がγ相と、α2 相およびβ相の少なくとも
一方とよりなるTiAl系IMCが得られ、このTiA
l系IMCは優れた常温延性と強度とを兼備し、また優
れた高温強度を有する。
By adopting such a manufacturing method, a TiAl type IMC having a metallic structure of γ phase and at least one of α 2 phase and β phase can be obtained.
The 1-system IMC has both excellent room temperature ductility and strength, and also has excellent high temperature strength.

【0024】次に、TiAl系IMCにおける各化学成
分の含有量および熱処理条件と、機械的性質との関係に
ついて具体的に説明する。
Next, the relationship between the content of each chemical component in the TiAl type IMC and the heat treatment conditions and the mechanical properties will be specifically described.

【0025】〔I〕Al含有量について 純度99.8%のスポンジチタン、純度99.99%の
アルミニウム粒、純度99.9%のクロム粒およびチタ
ン−ニオブ合金粒(チタン純度99.8%)を、Cr含
有量が2原子%に、またNb含有量が2原子%にそれぞ
れ固定されると共にAl含有量が41〜49原子%の範
囲で変化するように秤量して、全体重量が40gの各種
秤量物を得た。次いで各秤量物を非消耗型アルゴンアー
ク溶解炉により溶解して各種インゴットを得た。この溶
解は2サイクル行われた。その後、各インゴットに、真
空中、1000〜1350℃、3時間の1次熱処理を施
し、次いで真空中、900℃、8時間の2次熱処理を施
して各種TiAl系IMCを得た。
[I] Al content: Sponge titanium having a purity of 99.8%, aluminum particles having a purity of 99.99%, chromium particles having a purity of 99.9%, and titanium-niobium alloy particles (titanium purity 99.8%). Were weighed so that the Cr content was fixed at 2 atomic% and the Nb content was fixed at 2 atomic%, and the Al content was changed in the range of 41 to 49 atomic%, and the total weight was 40 g. Various kinds of weighing materials were obtained. Next, each weighed material was melted in a non-consumable argon arc melting furnace to obtain various ingots. This lysis was performed for 2 cycles. Then, each ingot was subjected to a primary heat treatment in vacuum at 1000 to 1350 ° C. for 3 hours, and then subjected to a secondary heat treatment in vacuum at 900 ° C. for 8 hours to obtain various TiAl-based IMCs.

【0026】各TiAl系IMCを縦3mm、横4mm、長
さ37mmの曲げ試験片に形成し、各曲げ試験片の各面を
#600番までのエメリー紙によって、それらの面が相
互に平行するように仕上げた。
Each TiAl-based IMC was formed into a bending test piece having a length of 3 mm, a width of 4 mm, and a length of 37 mm, and each surface of each bending test piece was made parallel to each other by emery paper up to # 600. Was finished.

【0027】各曲げ試験片の伸び側にストレインゲージ
を貼着して4点曲げ試験を行い、各曲げ試験片の組成、
1次熱処理における比α2 /γ、α/γおよび熱処理温
度T1 と、曲げ強さ(強度)および伸び(常温延性)と
の関係を調べたところ、表1の結果を得た。曲げ強さ
は、ロードセルのデータから換算したものである。
A four-point bending test was carried out by attaching a strain gauge to the extension side of each bending test piece to determine the composition of each bending test piece,
When the relationship between the ratio α 2 / γ, α / γ and the heat treatment temperature T 1 in the primary heat treatment and the bending strength (strength) and elongation (normal temperature ductility) was examined, the results in Table 1 were obtained. The bending strength is converted from the load cell data.

【0028】[0028]

【表1】 図1は、表1におけるAl含有量と、曲げ強さおよび伸
びとの関係をグラフ化したもので、図中、点(1)〜
(10)は例1〜10にそれぞれ対応する。
[Table 1] FIG. 1 is a graph showing the relationship between the Al content in Table 1 and the bending strength and elongation. In the figure, points (1) to
(10) corresponds to Examples 1 to 10, respectively.

【0029】例2〜6のTiAl系IMCのように、A
l含有量を42原子%≦Al<46原子%に設定し、ま
たCrおよびNb含有量ならびに1次、2次熱処理条件
を前記範囲内に収めるようにそれぞれ設定すると、常温
延性および強度を向上させることができる。
As in the TiAl-based IMCs of Examples 2-6, A
When the 1 content is set to 42 at% ≦ Al <46 at%, and the Cr and Nb contents and the primary and secondary heat treatment conditions are set to fall within the above ranges, the room temperature ductility and the strength are improved. be able to.

【0030】〔II〕Cr含有量について 純度99.8%のスポンジチタン、純度99.99%の
アルミニウム粒、純度99.9%のクロム粒およびチタ
ン−ニオブ合金粒(チタン純度99.8%)を、Al含
有量が45原子%に、またNb含有量が1原子%にそれ
ぞれ固定されると共にCr含有量が0〜5原子%の範囲
で変化するように秤量して、全体重量が40gの各種秤
量物を得た。次いで各秤量物を非消耗型アルゴンアーク
溶解炉により溶解して各種インゴットを得た。この溶解
は2サイクル行われた。その後、各インゴットに、真空
中、1200℃(α/γ=1.5)、3時間の1次熱処
理を施し、次いで真空中、900℃、8時間の2次熱処
理を施して各種TiAl系IMCを得た。
[II] Cr content: Sponge titanium having a purity of 99.8%, aluminum particles having a purity of 99.99%, chromium particles having a purity of 99.9%, and titanium-niobium alloy particles (titanium purity 99.8%). Were weighed so that the Al content was fixed at 45 atom% and the Nb content was fixed at 1 atom%, and the Cr content was changed in the range of 0 to 5 atom%, and the total weight was 40 g. Various kinds of weighing materials were obtained. Next, each weighed material was melted in a non-consumable argon arc melting furnace to obtain various ingots. This lysis was performed for 2 cycles. Then, each ingot is subjected to a primary heat treatment in vacuum at 1200 ° C. (α / γ = 1.5) for 3 hours, and then subjected to a secondary heat treatment in vacuum at 900 ° C. for 8 hours to obtain various TiAl-based IMCs. Got

【0031】各TiAl系IMCを前記同様の曲げ試験
片に形成し、各曲げ試験片の各面を#600番までのエ
メリー紙によって、それらの面が相互に平行するように
仕上げた。
Each TiAl-based IMC was formed on a bending test piece similar to the above, and each surface of each bending test piece was finished by emery paper up to # 600 so that those surfaces were parallel to each other.

【0032】各曲げ試験片の伸び側にストレインゲージ
を貼着して4点曲げ試験を行い、各曲げ試験片の組成
と、伸び(常温延性)との関係を調べたところ、表2の
結果を得た。
A strain gauge was attached to the extension side of each bending test piece to conduct a 4-point bending test, and the relationship between the composition of each bending test piece and the elongation (normal temperature ductility) was examined. Got

【0033】[0033]

【表2】 表2において、例13〜17のTiAl系IMCのよう
に、Cr含有量を1原子%≦Cr≦4原子%に設定し、
またAlおよびNb含有量ならびに1次、2次熱処理条
件を前記範囲内に収めるようにそれぞれ設定すると、常
温延性を向上させることができる。
[Table 2] In Table 2, as in the TiAl-based IMCs of Examples 13 to 17, the Cr content was set to 1 atomic% ≤ Cr ≤ 4 atomic%,
Further, when the Al and Nb contents and the primary and secondary heat treatment conditions are set to fall within the above ranges, the room temperature ductility can be improved.

【0034】〔III 〕Nb、Ta、W、Mo含有量につ
いて 純度99.8%のスポンジチタン、純度99.99%の
アルミニウム粒および純度99.9%のクロム粒ならび
に、チタン−ニオブ合金粒(チタン純度99.8%、こ
れは以下の各合金について同じである)、チタン−タン
タル合金粒、チタン−タングステン合金粒およびチタン
−モリブデン合金粒から選択される一種を、Al含有量
が45原子%に、またCr含有量が2原子%にそれぞれ
固定されると共にNbおよびTa含有量が0〜5原子%
の範囲で、またWおよびMo含有量が0〜8原子%の範
囲でそれぞれ変化するように秤量して、全体重量が40
gの各種秤量物を得た。次いで各秤量物を非消耗型アル
ゴンアーク溶解炉により溶解して各種インゴットを得
た。この溶解は3サイクル行われた。その後、各インゴ
ットに、真空中、1200℃(α/γ=1.5)、3時
間の1次熱処理を施し、次いで真空中、900℃、8時
間の2次熱処理を施して各種TiAl系IMCを得た。
[III] Content of Nb, Ta, W, and Mo Sponge titanium having a purity of 99.8%, aluminum particles having a purity of 99.99%, chromium particles having a purity of 99.9%, and titanium-niobium alloy particles ( Titanium purity 99.8%, which is the same for each alloy below), titanium-tantalum alloy particles, titanium-tungsten alloy particles and titanium-molybdenum alloy particles, Al content of 45 atomic% In addition, the Cr content is fixed at 2 atomic% and the Nb and Ta contents are 0 to 5 atomic%.
And the W and Mo contents are varied so as to vary in the range of 0 to 8 atom%, and the total weight is 40.
g of each kind of weighing material was obtained. Next, each weighed material was melted in a non-consumable argon arc melting furnace to obtain various ingots. This lysis was performed for 3 cycles. Then, each ingot is subjected to a primary heat treatment in vacuum at 1200 ° C. (α / γ = 1.5) for 3 hours, and then subjected to a secondary heat treatment in vacuum at 900 ° C. for 8 hours to obtain various TiAl-based IMCs. Got

【0035】各TiAl系IMCについて、800℃に
おけるビッカース硬さを測定したところ、図2〜図5の
結果を得た。これらの図面から明らかなように、Nb含
有量を1原子%≦Nbに、Ta含有量を0.3原子%≦
Taに、W含有量を0.05原子%≦Wに、またMo含
有量を0.5原子%≦Moにそれぞれ設定することによ
って、TiAl系IMCの高温硬さを向上させることが
できる。
When the Vickers hardness at 800 ° C. was measured for each TiAl type IMC, the results shown in FIGS. 2 to 5 were obtained. As is clear from these drawings, the Nb content is 1 atomic% ≦ Nb and the Ta content is 0.3 atomic% ≦
The high temperature hardness of the TiAl-based IMC can be improved by setting Ta to W content of 0.05 atomic% ≦ W and Mo content of 0.5 atomic% ≦ Mo.

【0036】また各TiAl系IMCについて、常温に
おけるビッカース硬さ試験を行って圧痕を起点とする亀
裂の有無を調べたところ、Nb、Ta、WおよびMo含
有量が4原子%<Nb、Ta、W、Moになると、前記
亀裂が発生することが確認され、TiAl系IMCが脆
化することが判明した。
Each TiAl-based IMC was subjected to a Vickers hardness test at room temperature to check for the presence of cracks starting from indentations. The content of Nb, Ta, W and Mo was 4 atomic% <Nb, Ta, It was confirmed that the cracks were generated in the case of W and Mo, and it was found that the TiAl-based IMC became brittle.

【0037】したがって、TiAl系IMCにおいて、
Nb含有量を1原子%≦Nb≦4原子%に、Ta含有量
を0.3原子%≦Ta≦4原子%に、W含有量を0.0
5原子%≦W≦4原子%に、Mo含有量を0.5原子%
≦Mo≦4原子%にそれぞれ設定し、またAlおよびC
r含有量ならびに1次,2次熱処理条件を前記範囲内に
収めるようにそれぞれ設定すると、常温延性および強度
だけでなく、高温強度も向上させることができる。
Therefore, in the TiAl type IMC,
The Nb content is 1 atomic% ≤ Nb ≤ 4 atomic%, the Ta content is 0.3 atomic% ≤ Ta ≤ 4 atomic%, and the W content is 0.0.
Mo content of 0.5 atomic% in 5 atomic% ≤ W ≤ 4 atomic%
≤ Mo ≤ 4 atomic%, and Al and C
When the r content and the primary and secondary heat treatment conditions are set to fall within the above ranges, not only room temperature ductility and strength but also high temperature strength can be improved.

【0038】次に、TiAl系IMCの複数例につい
て、800℃における100時間クリープ破断強さを測
定したところ、図6の結果を得た。
Next, the creep rupture strength for 100 hours at 800 ° C. was measured for a plurality of TiAl type IMCs, and the results shown in FIG. 6 were obtained.

【0039】図6から明らかなように、Al含有量45
原子%において、Nb、Ta、W、Moを前記範囲にて
含有する例19〜22のTiAl系IMCは、これら化
学成分を含まない例23,24に比べて高温強度が大幅
に向上することが判る。
As is clear from FIG. 6, the Al content is 45
The TiAl-based IMCs of Examples 19 to 22 containing Nb, Ta, W, and Mo in the above-described ranges in atomic% can significantly improve high-temperature strength as compared with Examples 23 and 24 not containing these chemical components. I understand.

【0040】〔IV〕熱処理条件について 前記〔I〕項で述べた溶解法に則って、組成がTi−4
5原子%Al−2原子%Cr−2原子%Nbである複数
のインゴットを製造し、それらインゴットに、表3に示
す条件で真空下、1次,2次熱処理を施して各種TiA
l系IMCを得た。
[IV] Heat Treatment Conditions According to the melting method described in the above [I], the composition is Ti-4.
A plurality of ingots containing 5 atomic% Al-2 atomic% Cr-2 atomic% Nb were manufactured, and these ingots were subjected to primary and secondary heat treatments under vacuum under the conditions shown in Table 3 to produce various TiAs.
I system IMC was obtained.

【0041】[0041]

【表3】 例25〜33のTiAl系IMCを前記同様の曲げ試験
片に形成し、それら曲げ試験片について前記同様の4点
曲げ試験を行って、それらの曲げ強さ(強度)および伸
び(常温延性)を測定したところ、表4の結果を得た。
[Table 3] The TiAl-based IMCs of Examples 25 to 33 were formed on the same bending test pieces as described above, and the bending test pieces were subjected to the same four-point bending test to determine their bending strength (strength) and elongation (normal temperature ductility). Upon measurement, the results shown in Table 4 were obtained.

【0042】[0042]

【表4】 表3,4から明らかなように、各化学成分が前記範囲内
に収められたTiAl系IMCにおいて、例28〜30
のように、1次熱処理の熱処理温度T1 を0.5≦α/
γ≦3の温度域に設定し、また2次熱処理の熱処理温度
2 をα2 相が存在し、且つ1次熱処理の熱処理温度T
1 よりも50℃以上低い温度域に設定すると、常温延性
および強度を向上させることができる。
[Table 4] As is clear from Tables 3 and 4, in the TiAl-based IMC containing each chemical component within the above range, Examples 28 to 30 were used.
The heat treatment temperature T 1 of the primary heat treatment is 0.5 ≦ α /
The temperature range of γ ≦ 3 is set, the heat treatment temperature T 2 of the secondary heat treatment has α 2 phase, and the heat treatment temperature T of the primary heat treatment is T 2.
When set in a temperature range lower than 1 by 50 ° C. or more, room temperature ductility and strength can be improved.

【0043】なお、例27の場合、前記組成における1
次熱処理の熱処理温度1350℃はα単相領域に属し、
したがってα/γは成立しない。
In the case of Example 27, 1 in the above composition
The heat treatment temperature of 1350 ° C. of the next heat treatment belongs to the α single phase region,
Therefore, α / γ does not hold.

【0044】図7(a)は、例29の金属組織を示す顕
微鏡写真(750倍)であり、同図(b)は(a)の要
部写図である。両図(a),(b)より、(a)の白色
部分はβ相に、灰色部分はα2 相に、黒色部分はγ相に
それぞれ該当することが判る。
FIG. 7 (a) is a photomicrograph (750 times) showing the metal structure of Example 29, and FIG. 7 (b) is a principal part map of (a). From both figures (a) and (b), it is understood that the white part of (a) corresponds to the β phase, the gray part to the α 2 phase, and the black part to the γ phase.

【0045】[0045]

【発明の効果】請求項1記載の発明によれば、各化学成
分を前記のように特定することによって、優れた常温延
性および強度を兼備し、また優れた高温強度を有するT
iAl系金属間化合物を提供することができる。
According to the invention described in claim 1, by specifying each chemical component as described above, T having excellent room temperature ductility and strength and excellent high temperature strength can be obtained.
An iAl-based intermetallic compound can be provided.

【0046】請求項3および4記載の発明によれば、前
記のように特定された素材に、特定の1次および2次熱
処理を施す、といった比較的簡単な手段を採用すること
によって、前記のように優れた機械的性質を有するTi
Al系金属間化合物を容易に得ることができる。
According to the third and fourth aspects of the present invention, by adopting a relatively simple means of subjecting the material specified as above to the specified primary and secondary heat treatments, Has excellent mechanical properties
An Al-based intermetallic compound can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】Al含有量と曲げ強さおよび伸びとの関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between Al content and bending strength and elongation.

【図2】Nb含有量と800℃における硬さとの関係を
示すグラフである。
FIG. 2 is a graph showing the relationship between Nb content and hardness at 800 ° C.

【図3】Ta含有量と800℃における硬さとの関係を
示すグラフである。
FIG. 3 is a graph showing a relationship between Ta content and hardness at 800 ° C.

【図4】W含有量と800℃における硬さとの関係を示
すグラフである。
FIG. 4 is a graph showing the relationship between W content and hardness at 800 ° C.

【図5】Mo含有量と800℃における硬さとの関係を
示すグラフである。
FIG. 5 is a graph showing the relationship between Mo content and hardness at 800 ° C.

【図6】各種TiAl系金属間化合物の、800℃にお
ける100時間クリープ破断強さを示すグラフである。
FIG. 6 is a graph showing the 100-hour creep rupture strength at 800 ° C. of various TiAl-based intermetallic compounds.

【図7】(a)はTiAl系金属間化合物の金属組織を
示す顕微鏡写真であり、(b)は(a)の要部写図であ
る。
FIG. 7 (a) is a micrograph showing a metal structure of a TiAl-based intermetallic compound, and FIG. 7 (b) is a main part map of (a).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Alと、Crと、Nb、Ta、Wおよび
Moから選択される少なくとも一種とを含有し、残部が
Tiおよび不可避不純物であって、 Al含有量が42原子%≦Al<46原子%、 Cr含有量が1原子%≦Cr≦4原子%、 Nb含有量が1原子%≦Nb≦4原子%、 Ta含有量が0.3原子%≦Ta≦4原子%、 W含有量が0.05原子%≦W≦4原子%、 Mo含有量が0.5原子%≦Mo≦4原子% であることを特徴とする高強度高延性TiAl系金属間
化合物。
1. Al, Cr, and at least one selected from Nb, Ta, W, and Mo, with the balance being Ti and unavoidable impurities, and the Al content being 42 atomic% ≦ Al <46. Atomic%, Cr content 1 atomic% ≤ Cr ≤ 4 atomic%, Nb content 1 atomic% ≤ Nb ≤ 4 atomic%, Ta content 0.3 atomic% ≤ Ta ≤ 4 atomic%, W content Is 0.05 atomic% ≤ W ≤ 4 atomic%, and Mo content is 0.5 atomic% ≤ Mo ≤ 4 atomic%, a high-strength and highly ductile TiAl-based intermetallic compound.
【請求項2】 金属組織が、γ相と、α2 相およびβ相
の少なくとも一方とよりなる、請求項1記載の高強度高
延性TiAl系金属間化合物。
2. The high-strength and high-ductility TiAl-based intermetallic compound according to claim 1, wherein the metallographic structure comprises a γ phase and at least one of an α 2 phase and a β phase.
【請求項3】 Alと、Crと、Nb、Ta、Wおよび
Moから選択される少なくとも一種とを含有し、残部が
Tiおよび不可避不純物であって、 Al含有量が42原子%≦Al<46原子%、 Cr含有量が1原子%≦Cr≦4原子%、 Nb含有量が1原子%≦Nb≦4原子%、 Ta含有量が0.3原子%≦Ta≦4原子%、 W含有量が0.05原子%≦W≦4原子%、 Mo含有量が0.5原子%≦Mo≦4原子% である素材に1次熱処理、それに次ぐ2次熱処理を施
し、1次熱処理の熱処理温度T1 を、α2 相の高温相で
あるα相の体積分率αとγ相の体積分率γとの比α/γ
が0.5≦α/γ≦3である温度域に設定し、2次熱処
理の熱処理温度T2を、α2 相が存在し、且つ1次熱処
理の熱処理温度T1 よりも50℃以上低い温度域に設定
することを特徴とする高強度高延性TiAl系金属間化
合物の製造方法。
3. Al, Cr, and at least one selected from Nb, Ta, W, and Mo, with the balance being Ti and unavoidable impurities, and the Al content being 42 atomic% ≦ Al <46. Atomic%, Cr content 1 atomic% ≤ Cr ≤ 4 atomic%, Nb content 1 atomic% ≤ Nb ≤ 4 atomic%, Ta content 0.3 atomic% ≤ Ta ≤ 4 atomic%, W content Is 0.05 atomic% ≤ W ≤ 4 atomic%, Mo content is 0.5 atomic% ≤ Mo ≤ 4 atomic%, the first heat treatment, the second heat treatment, and the heat treatment temperature of the first heat treatment. T 1 is the ratio α / γ of the volume fraction α of the α phase, which is the high temperature phase of the α 2 phase, and the volume fraction γ of the γ phase.
Is set to a temperature range of 0.5 ≦ α / γ ≦ 3, and the heat treatment temperature T 2 of the secondary heat treatment is lower than the heat treatment temperature T 1 of the primary heat treatment by 50 ° C. or more than the heat treatment temperature T 1 of the α 2 phase. A method for producing a high-strength and high-ductility TiAl-based intermetallic compound, which is characterized in that the temperature range is set.
【請求項4】 Alと、Crと、Nb、Ta、Wおよび
Moから選択される少なくとも一種とを含有し、残部が
Tiおよび不可避不純物であって、 Al含有量が42原子%≦Al<46原子%、 Cr含有量が1原子%≦Cr≦4原子%、 Nb含有量が1原子%≦Nb≦4原子%、 Ta含有量が0.3原子%≦Ta≦4原子%、 W含有量が0.05原子%≦W≦4原子%、 Mo含有量が0.5原子%≦Mo≦4原子% である素材に1次熱処理、それに次ぐ2次熱処理を施
し、1次熱処理の熱処理温度T1 を、α2 相の体積分率
α2 とγ相の体積分率γとの比α2 /γが0.5≦α2
/γ≦3である温度域に設定し、2次熱処理の熱処理温
度T2 を1次熱処理の熱処理温度T1 よりも50℃以上
低い温度域に設定することを特徴とする高強度高延性T
iAl系金属間化合物の製造方法。
4. Al, Cr, and at least one selected from Nb, Ta, W, and Mo, with the balance being Ti and unavoidable impurities, the Al content being 42 atomic% ≦ Al <46. Atomic%, Cr content 1 atomic% ≤ Cr ≤ 4 atomic%, Nb content 1 atomic% ≤ Nb ≤ 4 atomic%, Ta content 0.3 atomic% ≤ Ta ≤ 4 atomic%, W content Is 0.05 atomic% ≤ W ≤ 4 atomic%, Mo content is 0.5 atomic% ≤ Mo ≤ 4 atomic%, the first heat treatment, the second heat treatment, and the heat treatment temperature of the first heat treatment. T 1 and the ratio of the volume fraction gamma volume fraction alpha 2 and gamma phase of alpha 2 phase alpha 2 / gamma is 0.5 ≦ alpha 2
/ Γ ≦ 3, and the heat treatment temperature T 2 of the secondary heat treatment is set to a temperature region lower by 50 ° C. or more than the heat treatment temperature T 1 of the primary heat treatment.
Method for producing iAl-based intermetallic compound.
JP3615893A 1993-02-01 1993-02-01 High strength and high ductility tial intermetallic compound and its production Pending JPH06228685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3615893A JPH06228685A (en) 1993-02-01 1993-02-01 High strength and high ductility tial intermetallic compound and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3615893A JPH06228685A (en) 1993-02-01 1993-02-01 High strength and high ductility tial intermetallic compound and its production

Publications (1)

Publication Number Publication Date
JPH06228685A true JPH06228685A (en) 1994-08-16

Family

ID=12461969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3615893A Pending JPH06228685A (en) 1993-02-01 1993-02-01 High strength and high ductility tial intermetallic compound and its production

Country Status (1)

Country Link
JP (1) JPH06228685A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320647A (en) * 2012-03-23 2013-09-25 通用电气公司 Methods for processing titanium aluminide intermetallic compositions
WO2014017692A1 (en) * 2012-07-25 2014-01-30 한국기계연구원 Lamellar-structure titanium-aluminium based alloy having a beta-gamma phase
CN108559872A (en) * 2018-06-05 2018-09-21 中国航发北京航空材料研究院 A kind of TiAl alloy and preparation method thereof
CN110643877A (en) * 2019-09-09 2020-01-03 中国航发北京航空材料研究院 TiAl intermetallic compound containing W, Mn, Si, B, C and rare earth elements
JP2021080547A (en) * 2019-11-22 2021-05-27 国立大学法人島根大学 Lightweight heat resistant alloy
CN117089748A (en) * 2023-09-06 2023-11-21 威海科米沃新材料有限公司 Preparation method of high-elongation aluminum alloy material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320647A (en) * 2012-03-23 2013-09-25 通用电气公司 Methods for processing titanium aluminide intermetallic compositions
WO2014017692A1 (en) * 2012-07-25 2014-01-30 한국기계연구원 Lamellar-structure titanium-aluminium based alloy having a beta-gamma phase
CN108559872A (en) * 2018-06-05 2018-09-21 中国航发北京航空材料研究院 A kind of TiAl alloy and preparation method thereof
CN108559872B (en) * 2018-06-05 2020-06-30 中国航发北京航空材料研究院 TiAl alloy and preparation method thereof
CN110643877A (en) * 2019-09-09 2020-01-03 中国航发北京航空材料研究院 TiAl intermetallic compound containing W, Mn, Si, B, C and rare earth elements
JP2021080547A (en) * 2019-11-22 2021-05-27 国立大学法人島根大学 Lightweight heat resistant alloy
CN117089748A (en) * 2023-09-06 2023-11-21 威海科米沃新材料有限公司 Preparation method of high-elongation aluminum alloy material
CN117089748B (en) * 2023-09-06 2024-04-26 威海科米沃新材料有限公司 Preparation method of high-elongation aluminum alloy material

Similar Documents

Publication Publication Date Title
JP2599263B2 (en) Nickeloo iron aluminide alloy capable of high temperature processing
US5124121A (en) Titanium base alloy for excellent formability
JP2543982B2 (en) Titanium-aluminum alloy modified with manganese and niobium
JP2001049371A (en) Al-Zn ALLOY EXCELLENT IN VIBRATION ABSORBING CAPACITY AND ITS PRODUCTION
US5256369A (en) Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof
JP3308090B2 (en) Fe-based super heat-resistant alloy
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
JPH0730419B2 (en) Chromium and silicon modified .GAMMA.-titanium-aluminum alloys and methods for their production
JP2586023B2 (en) Method for producing TiA1-based heat-resistant alloy
JPH08295969A (en) High strength titanium alloy suitable for superplastic forming and production of alloy sheet thereof
EP0593824A1 (en) Nickel aluminide base single crystal alloys and method
US5362441A (en) Ti-Al-V-Mo-O alloys with an iron group element
EP0379798B1 (en) Titanium base alloy for superplastic forming
JP2001089821A (en) Titanium alloy having high strength and high ductility and excellent in high temperature atmospheric oxidation resistance
JPH06228685A (en) High strength and high ductility tial intermetallic compound and its production
EP0476043B1 (en) Improved nickel aluminide alloy for high temperature structural use
US5417779A (en) High ductility processing for alpha-two titanium materials
JP3407054B2 (en) Copper alloy with excellent heat resistance, strength and conductivity
JP2006200008A (en) beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
EP0634496B1 (en) High strength and high ductility TiAl-based intermetallic compound
JP2686020B2 (en) Superplastically deformable β + γTiAl-based intermetallic alloy and method for producing the same
JPH11293433A (en) Treatment of titanium-aluminum reformed by chromium and niobium
JPH0649565A (en) High strength and high ductility ti al intermetallic compound
JP2532752B2 (en) Gamma-titanium-aluminum alloy modified by chromium and tungsten and its manufacturing method
JPH10237574A (en) Precipitation strengthening superalloy