JP2686020B2 - Superplastically deformable β + γTiAl-based intermetallic alloy and method for producing the same - Google Patents

Superplastically deformable β + γTiAl-based intermetallic alloy and method for producing the same

Info

Publication number
JP2686020B2
JP2686020B2 JP4177157A JP17715792A JP2686020B2 JP 2686020 B2 JP2686020 B2 JP 2686020B2 JP 4177157 A JP4177157 A JP 4177157A JP 17715792 A JP17715792 A JP 17715792A JP 2686020 B2 JP2686020 B2 JP 2686020B2
Authority
JP
Japan
Prior art keywords
phase
tial
intermetallic compound
based intermetallic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4177157A
Other languages
Japanese (ja)
Other versions
JPH05209243A (en
Inventor
直哉 正橋
洋治 水原
宗次 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4177157A priority Critical patent/JP2686020B2/en
Publication of JPH05209243A publication Critical patent/JPH05209243A/en
Application granted granted Critical
Publication of JP2686020B2 publication Critical patent/JP2686020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はTiAl基合金に超塑性
変形能を付与し、超塑性加工により複雑形状への加工成
形品及びその製造方法に関するもので、高比強度耐熱構
造部材への適用に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a TiAl-based alloy having superplastic deformability, and a processed product into a complex shape by superplastic working and a method for producing the same, which is applied to a high specific strength heat resistant structural member. Used for.

【0002】[0002]

【従来の技術】耐熱材料として実用化の期待されている
金属間化合物TiAlは、展延性に乏しいために加工が
難しい。TiAlの実用化のための最大の障害であるこ
の低加工性改善のための手法は、大別して加工プロセス
の応用と合金設計が挙げられる。低加工性とは主として
室温における延性の欠如を指し、TiAlは圧延、鍛造
といった従来行なわれている加工法を直接室温で適用す
ることはできない。
2. Description of the Related Art The intermetallic compound TiAl, which is expected to be put to practical use as a heat-resistant material, is difficult to process because of poor ductility. Techniques for improving the low workability, which are the biggest obstacles to the practical use of TiAl, are roughly classified into the application of the working process and the alloy design. Low workability mainly refers to lack of ductility at room temperature, and TiAl cannot be directly applied at room temperature to conventional working methods such as rolling and forging.

【0003】加工プロセス適用の場合、粉末加工法に代
表されるニアー・ネット・シェイプ化から従来の圧延、
鍛造といった加工法も含む。これまでにCo基超合金
(S−816)を用いての高温シース圧延(1373
K,圧延速度:1.5m/min)による成型(特開昭61
−213361号公報)や、800℃以上、歪速度10
-2sec -1以下における恒温鍛造(特開昭63−1718
62号公報)等による加工形状付与化が報告されてい
る。こうした加工法の特徴は、TiAlの800℃以上
における延性能の発現を利用したものであり、TiAl
の機械的性質に及ぼす歪速度依存性と併用することによ
り、成型加工を可能にしている。但し充分な成型加工を
行なうための加工条件が、1273K以上の高温である
こと、更に歪速度をできるだけ低減化させなくてはなら
ないことから、大型設備の適用が必ずしも容易では無い
という欠点を有する。
[0003] In the case of applying a processing process, conventional rolling, from near net shaping represented by powder processing,
Including processing methods such as forging. High temperature sheath rolling (1373) using Co-based superalloy (S-816)
K, rolling speed: 1.5 m / min)
213361), 800 ° C. or higher, strain rate 10
-2 sec -1 or less at constant temperature forging (JP-A-63-1718)
No. 62) has been reported. The feature of such a processing method is to utilize the development of the rolling performance of TiAl at 800 ° C. or higher.
Molding is enabled by using the strain rate dependency on the mechanical properties of. However, there is a drawback that the application of large-scale equipment is not always easy because the processing conditions for performing sufficient molding are a high temperature of 1273 K or more and the strain rate must be reduced as much as possible.

【0004】一方、TiとAlの混合、圧粉成型後、高
温高圧処理による成型化が報告されている(特開昭63
−140049号公報)。この方法は上記加工プロセス
とは異なり、成型化と同時に様々な形への形状加工化が
可能であることを長所とする反面、問題点としてTiや
Alといった活性金属を用いることによる不純物混入が
不可避であるという点が指摘される。
On the other hand, it has been reported that after mixing and compacting of Ti and Al, compacting by high-temperature and high-pressure treatment (Japanese Patent Application Laid-Open No. 63-163).
-140049). This method is different from the above-mentioned processing process, and has an advantage that it can be formed into various shapes simultaneously with molding. On the other hand, there is a problem in that impurities are inevitable due to the use of an active metal such as Ti or Al. Is pointed out.

【0005】これに対して添加元素による室温延性改善
の報告は、金属材料技術研究所によるMn添加(特開昭
61−41740号公報)、Ag添加(特開昭58−1
23847号公報)、そしてGeneral Elec
tric Corp.によるSi添加(米国特許:48
36983)、Ta添加(米国特許:484281
7)、Cr添加(米国特許:4842819)、B添加
(米国特許:4842820)が挙げられる。この中で
General Electric Corp.による
Si,Ta,Cr,Bの各合金系の成分範囲は、四点曲
げ試験による延性評価から決定しているが、いずれもチ
タンがアルミニウムと等量、あるいはアルミニウムより
も高くなっている。また、高温延性改善のために、0.
005〜0.2wt.%B添加(特開昭63−12563
4号公報)、あるいは0.02〜0.3wt.%Bと0.
2〜5.0wt.%Siを複合添加(特開昭63−125
634号公報)した報告がある。これまでのところ複合
添加による発明例はこの一件のみであるが、複数の特性
の改善をはかる上で、第4及び第5添加元素の検討も必
要になる。すなわちこれらの添加元素の効果は、延性能
改善に加え、耐酸化性の改善や耐クリープ特性の改善も
含めて、幅広い合金成分調整を行なう必要がある。延性
能の目安は室温引張伸び値が3.0%といわれている
が、どの添加元素の選択による成分設計法によっても未
だ達成されておらず、加工プロセスとの併用による微細
化等の組織制御を通した対応が不可欠と考えられる。
[0005] On the other hand, reports on improvement of room temperature ductility by addition elements are described in Mn addition (Japanese Patent Application Laid-Open No. 61-41740) and Ag addition (Japanese Patent Application Laid-Open No.
No. 23847), and General Elec
tric Corp. Addition of Si (US Patent: 48
36983), Ta added (US Patent: 484281)
7), Cr addition (US Pat. No. 4,842,819), and B addition (US Pat. No. 4,842,820). Among them, General Electric Corp. The ranges of the components of each alloy system of Si, Ta, Cr, and B are determined from the ductility evaluation by a four-point bending test. In each case, titanium is equivalent to aluminum or higher than aluminum. Further, in order to improve the high-temperature ductility, 0.1%
005 to 0.2 wt. % B (Japanese Unexamined Patent Publication No. 63-12563)
No. 4) or 0.02 to 0.3 wt. % B and 0.
2 to 5.0 wt. % Si as a composite (Japanese Patent Laid-Open No. 63-125)
634). So far, this is the only example of invention by compound addition, but it is also necessary to examine the fourth and fifth additive elements in order to improve a plurality of characteristics. That is, the effects of these additional elements require a wide range of alloy component adjustments, including improvement in oxidation resistance and improvement in creep resistance, in addition to improvement in rolling performance. It is said that the tensile elongation at room temperature is a value of 3.0%, but this has not yet been achieved by the component design method by selecting any of the added elements, and the microstructure control such as refining by combined use with the processing process. It is considered essential to respond through this.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、成分
系と加工条件の選択によりTiAl基合金の組織制御を
行い、超塑性変形能を有した材料を設計すると同時に、
設計材料の超塑性変形能を利用して成形加工を施して最
終製品形状近くまで成形することである。
SUMMARY OF THE INVENTION An object of the present invention is to control the structure of a TiAl-based alloy by selecting a component system and processing conditions, and to design a material having superplastic deformability,
It is a process of forming using the superplastic deformability of the design material to form a product close to the final product shape.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記課題
を達成させるために多元系TiAl基金属間化合物合金
の基本力学特性、及び加工再結晶処理による組織制御材
の力学特性、そして本材料の力学特性に強く影響を及ぼ
す構成相の相安定性について、実験的且つ理論的解析を
進めた結果、以下のような課題解決手段を有効法として
見いだした。即ち、目標とする組織制御には、単なる加
工再結晶による組織微細化にとどまるのではなく、準安
定相と予想されるβ相を粒界に析出させることによりβ
+γ二相組織とし、導入歪の緩和を変形能に富むβ相に
になわせ、TiAlの持っている優れた強度を損なわ
ず、超塑性変形能を負荷させることである。以下にその
詳細について説明する。
In order to achieve the above object, the present inventors have developed basic mechanical properties of a multi-component TiAl-based intermetallic compound alloy, mechanical properties of a structure controlling material obtained by processing recrystallization, and the present invention. As a result of an experimental and theoretical analysis of the phase stability of the constituent phases that strongly affect the mechanical properties of the material, the following means for solving the problems were found as effective methods. In other words, the target microstructure control is not limited to microstructure refinement by simple recrystallization, but the β phase expected to be a metastable phase is precipitated at
+ Γ two-phase structure, the relaxation of the introduced strain is converted to the β phase rich in deformability, and the superplastic deformability is loaded without impairing the excellent strength of TiAl. The details will be described below.

【0008】粒界β相の析出は、上記超塑性変形能の付
与のための絶対条件である。そこで報告済のCrも含
め、第三添加元素としてTiに対してβ安定化元素であ
るMo,V,Nb,Fe,Mnの6種を選択し、組織制
御を施した結果、明瞭な粒界析出相を観察できたのは、
Crのみであったことから、第三添加元素としてCrを
選ぶことにした。さらに粒界β相の析出形態を損なうこ
と無く、TiAlCr三元系の欠点であった強度の不足
分を補うために、随時高融点元素の添加を試みた。組織
制御を施す前に室温における変形特性を調査した結果、
Crの室温圧縮変形能改善効果を損なうこと無く、M
o,V,Nb,W,Hf,Taの6種の添加元素におい
て強度の向上が認められTiAlγ相への固溶強化が確
認された。さらに強度の上昇は室温のみならず、高温で
も強度の向上が認められた。
Precipitation of the grain boundary β phase is an absolute condition for imparting the superplastic deformability. Therefore, including the reported Cr, six types of β-stabilizing elements Mo, V, Nb, Fe, and Mn were selected as the third additive element with respect to Ti, and as a result of controlling the structure, clear grain boundaries were obtained. I was able to observe the precipitation phase
Since it was only Cr, it was decided to select Cr as the third additive element. Further, addition of refractory elements was attempted at any time in order to compensate for the lack of strength, which was a drawback of the TiAlCr ternary system, without impairing the precipitation morphology of the grain boundary β phase. As a result of investigating the deformation characteristics at room temperature before applying the tissue control,
Without compromising the room temperature compressive deformability improving effect of Cr, M
It was confirmed that the six additive elements of o, V, Nb, W, Hf, and Ta improved in strength, and solid solution strengthening in the TiAlγ phase was confirmed. Further, the strength was increased not only at room temperature but also at high temperature.

【0009】以上の結果から、第四添加元素として、M
o,V,Nb,W,Hf,Taを選択した。この四元系
においても、上記の粒界β相は基本的に満足されてお
り、その成分範囲も第三添加元素であるCr量が第四添
加元素に対してある範囲内での関係が満足されれば問題
の無いことが示された。さらに第五添加元素として、第
三添加元素のCrによるβ相形成能、及び第四添加元素
である6種の元素による固溶効果が損なわれること無し
に、さらなる高強度化を目指したマイクロアロイイング
をB,Siの微量添加で試みたところ、室温から107
3Kまでの強度の著しい向上が認められたことから、最
終成分系は請求項3に掲示された3元系から、請求項6
に掲げられた5元系までと決定された。
From the above results, M was selected as the fourth additive element.
o, V, Nb, W, Hf and Ta were selected. Also in this quaternary system, the above-mentioned grain boundary β phase is basically satisfied, and its component range also satisfies the relationship that the amount of Cr, which is the third additive element, is within a certain range with respect to the fourth additive element. If it was done, it was shown that there was no problem. Further, as a fifth additive element, a microalloy aiming at further strengthening without impairing the β phase forming ability of Cr of the third additive element and the solid solution effect of the six elements of the fourth additive element. Was tried by adding a small amount of B and Si.
Since a remarkable improvement in the strength up to 3K was observed, the final component system was changed from the ternary system posted in claim 3 to the claim 6
It was decided to be up to the five-element system listed in.

【0010】成分系の組成範囲は、Cr添加の効果がT
i過剰側である必要性と第四添加元素がある範囲を超え
た場合、粒界β相が析出したとしても、マトリックスの
高強度化による超塑性変形能の欠如により、Cr添加及
び第四添加元素は全てAlと置換方向に添加し、さらに
Crの添加量はβ相を析出させるために、1%(原子分
率、以下同じ)以上にする。1%以下では、粒界β相の
量は超塑性変形を起こさせるには十分とは言えず、5%
を超えると、マトリックス内にTiとCrを主成分とす
る析出相が出現し、もはやCrは粒界β相の形成には分
配されないためである。
In the composition range of the component system, the effect of Cr addition is T
If the i-excess side and the fourth additive element exceed a certain range, even if the grain boundary β phase is precipitated, the addition of Cr and the fourth additive element due to the lack of superplastic deformability due to the high strength of the matrix. All elements are added in the direction of substitution with Al, and the amount of added Cr is 1% or more (atomic fraction, hereinafter the same) in order to precipitate a β phase. If it is less than 1%, the amount of β phase in the grain boundary is not enough to cause superplastic deformation, and it is 5%.
Is exceeded, a precipitation phase mainly composed of Ti and Cr appears in the matrix, and Cr is no longer distributed to the formation of the grain boundary β phase.

【0011】第四添加元素の成分範囲の最も重要な点
は、第三添加元素であるCrの添加量を超えないことで
ある。特にMo(1/30/1990,第53回超塑性
研究会、於・大阪国際交流センター),W(Metal
l.Trans.A(1983)2170)等は公知例
にあるように、マトリックス内部でβ相の析出を可能に
し、折角形成された粒界β相が、マトリックスの強化に
よって、損なわれてしまうからである。即ち、β相の析
出サイトはマトリックスである必要はなく、β相の形成
は粒界に限定させる。これはβ相がマトリックスに析出
しても強度の向上化には寄与するが、変形能の確保には
寄与しないことが本発明者等によって示されたからであ
る。以上の点から、第四添加元素の量は常にCr添加量
よりも少ない範囲内において、0.5〜3%とする。
0.5%以下ではこれらの第四添加元素による固溶強化
が明確ではないためである。また3%以下としたのは、
粒界β相による高温変形能の確保のためにはマトリック
スの強化は必要以上にする必要がなく、仮に強化がそれ
ほどではなかったとしても、後の工程でその強化分を変
態熱処理によって十分補えるからである。
The most important point of the component range of the fourth additive element is that the addition amount of Cr, which is the third additive element, is not exceeded. Especially Mo (1/30/1990, 53rd Superplasticity Research Group, Osaka International Exchange Center), W (Metal)
l. Trans. A (1983) 2170) enables precipitation of the β phase inside the matrix, as is known in the art, and the angle-formed grain boundary β phase is impaired by the strengthening of the matrix. That is, the precipitation site of the β phase does not need to be a matrix, and the formation of the β phase is limited to the grain boundaries. This is because the present inventors have shown that even if the β phase precipitates in the matrix, it contributes to improvement in strength but does not contribute to securing deformability. From the above points, the amount of the fourth additive element is always 0.5 to 3% within a range smaller than the Cr addition amount.
This is because solid solution strengthening by these fourth addition elements is not clear at 0.5% or less. Also, the reason for setting it to 3% or less is that
In order to secure the high temperature deformability by the grain boundary β phase, it is not necessary to strengthen the matrix more than necessary, and even if the strengthening is not so great, the strengthening component can be sufficiently supplemented by the transformation heat treatment in the subsequent process. Is.

【0012】第五添加元素のSi,Bは、もはや中間温
度以下の強度の向上化を目指して添加されており、微量
添加による固溶強化及び微細分散析出相による析出効果
を目的としている。そのため、本合金で重要な粒界β相
の形成と、第四添加元素によるマトリックスの固溶効果
を損なうようなことがないように添加量は決定される。
0.1%以下ではこれらの強化効果が顕著ではなく、2
%を超えると逆に析出相によりマトリックス強化が強く
なり、粒界β相の変形によっても蓄積歪の緩和を可能に
しないからである。
The fifth additive elements Si and B have already been added for the purpose of improving the strength at an intermediate temperature or lower, and are aimed at solid solution strengthening by addition of a small amount and precipitation effect by a fine dispersion precipitation phase. Therefore, the addition amount is determined so as not to impair the formation of the important grain boundary β phase in the present alloy and the effect of the fourth additive element on the solid solution of the matrix.
At 0.1% or less, these reinforcing effects are not remarkable and 2
On the contrary, when the content exceeds%, the matrix strengthening becomes stronger due to the precipitation phase, and the deformation of the grain boundary β phase does not allow relaxation of the accumulated strain.

【0013】このようにして決定された成分系に対し溶
製した後、高温加工処理によって粒界にβ相を析出した
γ相をマトリックスとするγ+β微細二相組織とさせ
る。試料の溶製後、均質化処理を施すが、温度範囲を1
273K〜固相線温度以下とし、加熱時間を2〜100
時間とした理由は、溶製によるマクロ偏析の除去と、組
織の平衡化によってβ相が一部初期α2 相に析出したラ
メラー相を安定化させるためである。なお、γ相および
準安定β相からなる微細2相組織は、若干のα2相を含
むが、このα2 相は加工再結晶で形成された準安定β相
に相変態しきれなかった一部で、本発明において何等意
味をなすことはなく、体積分率も数%以下とごく微量で
ある。この後者の理由については、以下に詳述する。
After the components thus determined have been melted, a high temperature processing treatment is carried out to form a γ + β fine two-phase structure having a γ phase with a β phase precipitated at the grain boundaries as a matrix. After melting the sample, homogenize it, but set the temperature range to 1
273 K to solidus temperature or less, heating time 2 to 100
The reason for setting the time is to remove macrosegregation by melting and to stabilize the lamellar phase in which the β phase is partially precipitated in the initial α 2 phase due to the equilibration of the structure. The fine two-phase structure consisting of the γ phase and the metastable β phase contains some α 2 phase, but this α 2 phase could not be transformed into the metastable β phase formed by work recrystallization. In the present invention, it does not make any sense in the present invention, and the volume fraction is a very small amount of several% or less. The reason for this latter will be described in detail below.

【0014】高温加工条件の決定には、初期の溶解鋳造
後のγ+α2 二相組織を破壊してγ相を再結晶化させな
ければならない。γ相の再結晶を引き起こすに必要な加
工温度及び加工度では、熱的に変態あるいは高温加工前
に既に熱処理によって形成された析出β相が、十分変形
に耐えることができ、最終的には再結晶γ相が粒成長過
程で変形を受けたβ相を障壁として、γ相粒界にβ相の
偏析した組織になったと考えられる。このようなメカニ
ズムはこれまでの実験結果から提言されたものである
が、この仮説に基づき必要な高温加工条件を検討する。
まず温度であるが、Crを第三添加元素にした場合、溶
解熱処理の段階で既にβ相が、初期ラメラー組織のα2
相に形成されることが発明者等によって明らかになり、
β相の形成に熱的な加工再結晶が必ずしも必要条件では
ないことが示されたことから、加工温度はγ相の再結晶
に必要な1173K以上とした。この温度より低い場合
には、γ粒の再結晶が十分に起こらず、β相をγ粒界に
晶出させることは困難である。また均一組織を得るため
には加工度を60%以上とした。この加工度より低いと
未再結晶領域が形成され、粒界β相を含有したβ+γ二
相組織に十分にできず、γマトリックス内部にβ相を残
存してしまい、超塑性変形能の付与が困難であるためで
ある。
To determine the high temperature processing conditions, it is necessary to destroy the γ + α 2 two-phase structure after the initial melt casting and recrystallize the γ phase. At the processing temperature and degree of processing required to cause recrystallization of the γ phase, the precipitated β phase already formed by heat treatment before thermal transformation or high-temperature processing can sufficiently withstand deformation, and finally It is considered that the crystal γ phase became a structure in which the β phase segregated at the γ phase grain boundary with the β phase deformed in the grain growth process as a barrier. Although such a mechanism has been proposed based on the experimental results so far, the necessary high temperature processing conditions will be examined based on this hypothesis.
First, regarding the temperature, when Cr was used as the third additive element, the β phase had already formed in the initial lamellar structure α 2 at the stage of the melting heat treatment.
It became clear by the inventors that they were formed in a phase,
The processing temperature was set to 1173 K or higher, which is necessary for the recrystallization of the γ phase, because it was shown that the thermal processing and recrystallization is not always necessary for the formation of the β phase. If the temperature is lower than this temperature, recrystallization of γ grains does not sufficiently occur, and it is difficult to crystallize the β phase at γ grain boundaries. Further, in order to obtain a uniform structure, the working ratio was set to 60% or more. If the workability is lower than this, a non-recrystallized region is formed, the β + γ two-phase structure containing the grain boundary β phase cannot be sufficiently formed, and the β phase remains inside the γ matrix, so that the superplastic deformability is imparted. Because it is difficult.

【0015】一方、初期歪速度については5×10-1se
c-1 以上では、再結晶組織に加えて加工変形組織が形成
され、やはり粒界β相を得ることができないためであ
る。また初期歪速度が5×10-5 sec-1よりも遅い場合
には、微細再結晶γ粒が粒成長を起こし、微細粒超塑性
の効果を著しく低減して本発明のような超塑性の発現が
不可能かつ生産性が著しく低下するためである。このよ
うな加工条件を設定した場合、粒界β相の体積分率は必
然的に2〜25%となるが、2%よりも低い場合超塑性
加工を行うに必要なβ相は絶対的に不足するので不適で
ある。また25%よりも高い場合、TiAlとしての材
料強度は低下するためである。
On the other hand, the initial strain rate is 5 × 10 -1 se
This is because when c- 1 or more, a work-deformation structure is formed in addition to the recrystallization structure, and the grain boundary β phase cannot be obtained. When the initial strain rate is slower than 5 × 10 −5 sec −1 , fine recrystallized γ grains cause grain growth, and the effect of fine grain superplasticity is remarkably reduced, and the superplasticity of the present invention is reduced. This is because expression is impossible and productivity is significantly reduced. When such processing conditions are set, the volume fraction of the grain boundary β phase inevitably becomes 2 to 25%, but if it is lower than 2%, the β phase necessary for superplastic working is absolutely It is not suitable because it will be insufficient. Further, if it is higher than 25%, the material strength as TiAl decreases.

【0016】また、高温加工に於いて、非酸化性雰囲気
または真空度を5×10-3Torrより高真空とした理由
は、酸化性雰囲気またはこの真空度よりも低い真空度の
場合、TiAl基金属間化合物合金が酸化し、諸特性を
劣化させるためである。また冷却速度を10K/minより
速くした理由は、粒界β相を有したγ相を高温での加工
熱処理で得たのちは、そのβ相を用いて超塑性加工を施
さなければならないが、もし10K/minより遅い冷却速
度で冷却した場合、β相の一部はα2 相とγ相に変態し
て超塑性変形能を損なうためである。さらに降温温度を
873Kまでとした理由は、冷却速度を遅くし、降温温
度を低下させることは、TTT図上でのラメラー組織を
安定化させることと同値であり、超塑性変形に必要なβ
相をなるべく安定に存在させておくためである。即ち、
降温温度はなるべく高温で設定し、その設定最大値を8
73Kとした。この温度よりも低い場合ラメラー組織を
より安定化させると同時に引き続いて行う、変態熱処理
に於いて再加熱の必要性から、産業上の簡便性を確保し
たいがためである。
Further, in the high temperature processing, the reason why the non-oxidizing atmosphere or the degree of vacuum is higher than 5 × 10 −3 Torr is that the TiAl group is used when the oxidizing atmosphere or the degree of vacuum is lower than this degree. This is because the intermetallic compound alloy is oxidized and various characteristics are deteriorated. The reason why the cooling rate is higher than 10 K / min is that after the γ phase having the grain boundary β phase is obtained by thermomechanical treatment at high temperature, the β phase must be used for superplastic working. This is because if cooling is performed at a cooling rate lower than 10 K / min, a part of the β phase transforms into the α 2 phase and the γ phase and impairs superplastic deformability. Further, the reason why the temperature lowering temperature is set to 873K is that lowering the cooling rate and lowering the temperature lowering temperature is the same value as stabilizing the lamellar structure on the TTT diagram, and β necessary for superplastic deformation
This is to keep the phases as stable as possible. That is,
Set the cooling temperature as high as possible and set the maximum value to 8
73K. When the temperature is lower than this temperature, the lamellar structure is further stabilized, and at the same time, it is necessary to reheat the transformation heat treatment to be performed subsequently.

【0017】一方、恒温鍛造、熱間押し出し、圧延に於
いて試料をTi合金カプセルに挿入し、カプセル内部を
5×10-3Torrよりも高真空に脱気した理由は、引き続
いて行う各高温加工処理に於いて、大気雰囲気下でもで
きるように試料自体の酸化を防止する目的で、大気と接
しないようにするためである。
On the other hand, the reason why the sample was inserted into a Ti alloy capsule in constant temperature forging, hot extrusion and rolling and the inside of the capsule was degassed to a vacuum higher than 5 × 10 −3 Torr was the reason why each subsequent high temperature was performed. This is because in the processing, the sample itself is not in contact with the atmosphere in order to prevent the sample itself from being oxidized so that it can be performed even in the atmosphere.

【0018】さらに、恒温鍛造、熱間押し出し、圧延に
於いて試料をTi合金でシースした理由は、引き続いて
行う各高温加工に於いて、Ti合金のシースによって加
工組織制御を行うに必要な最低限の酸化防止が可能で、
産業上の利用に於いて簡便性が認められるからである。
Furthermore, the reason why the sample is sheathed with a Ti alloy in constant temperature forging, hot extrusion, and rolling is that the minimum required for controlling the texture by the sheath of Ti alloy in each subsequent high-temperature machining. It is possible to prevent the limit of oxidation,
This is because simplicity is recognized in industrial use.

【0019】これらの処理に於いてカプセルあるいはケ
ースにTi合金を使用した理由は、本材料との接触界面
での反応性が低いこと、及び加工温度に於ける強度比が
加工に適していることによる。即ち、試料とこれらカプ
セルあるいはケースとの両者に於ける強度比において、
試料強度が著しく高い場合、カプセルあるいはケースが
加工歪を担い、静水圧に近い状態での加圧ができず、最
悪の場合、試料組織制御前に破壊してしまう。またカプ
セルあるいはケース強度が試料強度よりも高い場合、加
工歪はカプセルあるいはケースの変形に費やされ、試料
への負荷が低減すると同時に、加工再結晶が進行しない
と同時に、最悪の場合、カプセルあるいはケースが破壊
してしまうからである。本発明は1173K以上で超塑
性変形能が発現するものである。
The reason why the Ti alloy is used for the capsule or the case in these treatments is that the reactivity at the contact interface with this material is low and the strength ratio at the processing temperature is suitable for processing. by. That is, in the strength ratio of both the sample and these capsules or case,
When the sample strength is extremely high, the capsule or case bears processing strain, and cannot be pressurized in a state close to the hydrostatic pressure. In the worst case, the capsule or the case is broken before controlling the sample structure. When the strength of the capsule or the case is higher than the strength of the sample, the processing strain is consumed for the deformation of the capsule or the case, the load on the sample is reduced, and at the same time, the process recrystallization does not proceed. This is because the case will be destroyed. The present invention exhibits superplastic deformability at 1173 K or higher.

【0020】[0020]

【実施例】【Example】

(実施例1) 原子%で50.6Ti−46.5Al−2.88Cr金
属間化合物 1473K(1200℃)で60%加工度、初期歪速度
5×10-4-1の恒温鍛造材 高純度Ti(99.9wt.%)、Al(99.99wt.
%)とCr(99.3wt.%)を溶解原料とし、プラズ
マ溶解によって約80mmφ×300mmの標記合金成分系
Cr添加TiAl基金属間化合物を溶製した。1323
K(1050℃)で96時間真空中にて均質化熱処理を
施した結果、結晶粒径80μmの等軸粒組織となった。
表1は均質化熱処理後の化学分析値である。このインゴ
ットから放電加工によって、35mmφ×42mmの円柱状
インゴットを切り出し、恒温鍛造を行った。鍛造は真空
雰囲気中にて、初期歪速度5×10-4-1、試料温度1
473K(1200℃)で60%圧下した。図1に本試
料の恒温鍛造後の組織写真を示す。平均粒径18μmの
等軸微細結晶粒からなる組織と共に、結晶粒界に数μm
以下の厚みを有する粒界析出相が観察された。この粒界
相は後にβ相と同定された。鍛造後のインゴット材よ
り、ワイヤーカットにてゲージ部寸法11.5×3×2
mm3 の引張試験片を切り出し、真空雰囲気中にて歪速度
及び試験温度を変化させて引張試験を行った。各試料に
ついて試験温度、歪速度を一定にして試料破断まで試験
を行い、真応力−真歪線図を求めた。超塑性を示した結
果の一例として、1473K(1200℃)の試験温
度、5×10-4-1の歪速度で約480%もの伸び値が
得られた。超塑性を示す試料は、ネッキングを示すこと
なくゲージ部が一様に変形しているのが観察され、粒界
β相が引張後延伸しているのが観察された。また応力の
歪速度依存性から算出される歪速度感受性指数(以下m
値)は、真応力0.1の値を用いると1273K(10
00℃)では0.31、1473K(1200℃)では
0.49という数字が得られた。これらの真応力−真歪
線図からm値を算出し温度依存性を示したのが表2であ
る。この表から1273K(1000℃)以上におい
て、m値は超塑性発現の指標である0.3を超えている
ことが明らかである。これらの高温引張試験結果とし
て、伸び値の温度依存性を表3に示す。表3から127
3K(1000℃)以上において、伸び値が著しく向上
することがわかる。
(Example 1) 50.6Ti-46.5Al-2.88Cr intermetallic compound at 5% atomic%, 60% workability at 1473K (1200 ° C), and constant temperature forged material with an initial strain rate of 5 × 10 -4 s -1 High purity Ti (99.9 wt.%), Al (99.99 wt.%)
%) And Cr (99.3 wt.%) As melting raw materials, and a TiAl-based intermetallic compound containing Cr and about 80 mmφ × 300 mm was alloyed by plasma melting. 1323
As a result of performing a homogenizing heat treatment in vacuum at K (1050 ° C.) for 96 hours, an equiaxed grain structure having a crystal grain size of 80 μm was obtained.
Table 1 shows the chemical analysis values after the homogenization heat treatment. A cylindrical ingot of 35 mmφ × 42 mm was cut out from the ingot by electric discharge machining and subjected to constant temperature forging. Forging is performed in a vacuum atmosphere at an initial strain rate of 5 × 10 -4 s -1 and a sample temperature of 1
The pressure was reduced by 60% at 473K (1200 ° C). FIG. 1 shows a photograph of the structure of this sample after constant temperature forging. Along with the structure consisting of equiaxed fine crystal grains having an average grain size of 18 μm, several μm
A grain boundary precipitated phase having the following thickness was observed. This grain boundary phase was later identified as β phase. From ingot material after forging, gauge part size 11.5 × 3 × 2 by wire cutting
A tensile test piece of mm 3 was cut out, and a tensile test was performed in a vacuum atmosphere while changing a strain rate and a test temperature. The test was performed until the sample was broken at a constant test temperature and strain rate for each sample, and a true stress-true strain diagram was obtained. As an example of the result showing superplasticity, an elongation value of about 480% was obtained at a test temperature of 1473 K (1200 ° C.) and a strain rate of 5 × 10 −4 s −1 . In the sample showing superplasticity, it was observed that the gauge portion was uniformly deformed without showing necking, and it was observed that the grain boundary β phase was stretched after tension. Further, a strain rate sensitivity index (hereinafter referred to as m) calculated from the strain rate dependency of stress.
Value) is 1273K (10
At 00 ° C.), 0.31 was obtained, and at 1473 K (1200 ° C.), 0.49 was obtained. Table 2 shows m-values calculated from these true stress-true strain diagrams to show the temperature dependence. From this table, it is clear that at 1273 K (1000 ° C.) or more, the m value exceeds 0.3 which is an index of the appearance of superplasticity. Table 3 shows the temperature dependence of the elongation value as the results of these high temperature tensile tests. Table 3 to 127
It can be seen that the elongation value is remarkably improved at 3 K (1000 ° C.) or higher.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】(実施例2) 原子%で51.6Ti−43.5Al−4.87Cr金
属間化合物 1473K(1200℃)で60%加工度、初期歪速度
5×10-4-1の恒温鍛造材 標記成分を実施例1と同様のプラズマ溶解法で溶製し、
同一熱処理を施した試料を、真空雰囲気中にて、初期歪
速度5×10-4-1、試料温度1473K(1200
℃)で60%圧下の恒温鍛造を行った。表4はプラズマ
溶製熱処理後の成分分析値である。組織制御により平均
粒径約25μmの等軸微細組織が得られ、粒界には数μ
m以下の厚みを有する相が観察された。この粒界相は後
に実施例1同様にβ相と同定された。実施例1と同一方
法により高温引張試験を行い、真応力−真歪線図を求め
た。超塑性を示した結果の一例として、1473K(1
200℃),5×10-4-1の歪速度で約470%以
上、1273K(1000℃),5×10-4-1の歪速
度でやはり約470%以上の伸び値が得られた。超塑性
を示す試料は、ネッキングを示すことなくゲージ部が一
様に変形しているのが観察され、粒界相が引張後延伸し
ているのがみられた。また応力の歪速度依存性から算出
される歪速度感受性指数(以下m値)は、真応力10%
の値を用いると1273K(1000℃)では0.3
3、1473K(1200℃)では0.46という数字
が得られた。これらの真応力−真歪線図からm値を算出
し温度依存性を表2に併せて示す。この表から1273
K(1000℃)以上において、m値は超塑性発現の指
標である0.3を超えていることが明らかである。これ
らの高温引張試験結果として、伸び値の温度依存性を表
3に併せて示す。
(Example 2) A constant temperature forging of 51.6 Ti-43.5 Al-4.87 Cr intermetallic compound in atomic% at 1473 K (1200 ° C.), 60% workability, and an initial strain rate of 5 × 10 -4 s -1 . The title components were melted by the same plasma melting method as in Example 1,
The sample subjected to the same heat treatment was subjected to an initial strain rate of 5 × 10 −4 s −1 and a sample temperature of 1473 K (1200) in a vacuum atmosphere.
C) at a constant pressure of 60%. Table 4 shows component analysis values after the plasma melting heat treatment. An equiaxed microstructure with an average grain size of about 25 μm is obtained by microstructure control, and several μm
m or less was observed. This grain boundary phase was later identified as β phase as in Example 1. A high-temperature tensile test was performed in the same manner as in Example 1 to obtain a true stress-true strain diagram. As an example of the result showing superplasticity, 1473K (1
Elongation value of about 470% or more at a strain rate of 5 × 10 -4 s -1 at 200 ° C, and about 470% or more at a strain rate of 1273K (1000 ° C) of 5 × 10 -4 s -1. It was In the sample exhibiting superplasticity, it was observed that the gauge portion was uniformly deformed without showing necking, and it was observed that the grain boundary phase was stretched after tension. In addition, the strain rate sensitivity index (m value below) calculated from the strain rate dependence of stress is 10% of true stress.
Value is 0.3 at 1273K (1000 ° C)
At 3,1473K (1200 ° C), a figure of 0.46 was obtained. The m value was calculated from the true stress-true strain diagram, and the temperature dependence is also shown in Table 2. From this table, 1273
At K (1000 ° C.) or higher, it is apparent that the m value exceeds 0.3 which is an index of the appearance of superplasticity. Table 3 also shows the temperature dependence of the elongation values as the results of these high temperature tensile tests.

【0025】[0025]

【表4】 [Table 4]

【0026】(実施例3) 原子%で50.1Ti−46.6Al−2.80Cr−
0.57Si金属間化合物 1473K(1200℃)で60%加工度、初期歪速度
5×10-4-1の恒温鍛造材 標記成分を実施例1と同様のプラズマ溶解法で溶製し、
同一熱処理を施した試料を、真空雰囲気中にて、初期歪
速度5×10-4-1、試料温度1473K(1200
℃)で60%圧下の恒温鍛造を行った。表5はプラズマ
溶製熱処理後の成分分析値である。組織制御により平均
粒径約30μmの等軸微細組織が得られ、粒界には数μ
m以下の厚みを有する相が観察された。この粒界相は後
に実施例1同様にβ相と同定された。実施例1と同一方
法により高温引張試験を行い、真応力−真歪線図を求め
た。超塑性を示した結果の一例として、1473K(1
200℃),5×10-4-1の歪速度で約470%以上
の伸び値が得られた。超塑性を示す試料は、ネッキング
を示すことなくゲージ部が一様に変形しているのが観察
され、粒界相が引張後延伸しているのがみられた。また
応力の歪速度依存性から算出される歪速度感受性指数
(以下m値)は、真応力0.1の値を用いると1273
K(1000℃)では0.30、1473K(1200
℃)では0.41という数字が得られた。これらの真応
力−真歪線図からm値を算出し温度依存性を表2に併せ
て示す。この表から1273K(1000℃)以上にお
いて、m値は超塑性発現値の指標である0.3を超えて
いることが明らかである。これらの高温引張試験結果と
して、伸び値の温度依存性を表3に併せて示す。
(Example 3) 50.1Ti-46.6Al-2.80Cr-in atomic%
0.57Si intermetallic compound A constant temperature forging material having a working ratio of 60% at 1473 K (1200 ° C.) and an initial strain rate of 5 × 10 −4 s −1 The title component was melted by the same plasma melting method as in Example 1,
The sample subjected to the same heat treatment was subjected to an initial strain rate of 5 × 10 −4 s −1 and a sample temperature of 1473 K (1200) in a vacuum atmosphere.
C) at a constant pressure of 60%. Table 5 shows the component analysis values after the plasma melting heat treatment. By controlling the structure, an equiaxed fine structure with an average grain size of about 30 μm can be obtained, and several μ at the grain boundaries
m or less was observed. This grain boundary phase was later identified as β phase as in Example 1. A high-temperature tensile test was performed in the same manner as in Example 1 to obtain a true stress-true strain diagram. As an example of the result showing superplasticity, 1473K (1
An elongation value of about 470% or more was obtained at a strain rate of 5 × 10 −4 s −1 at 200 ° C.). In the sample exhibiting superplasticity, it was observed that the gauge portion was uniformly deformed without showing necking, and it was observed that the grain boundary phase was stretched after tension. The strain rate sensitivity index (hereinafter referred to as m value) calculated from the strain rate dependency of the stress is 1273 when the value of the true stress 0.1 is used.
For K (1000 ° C), 0.30, 1473K (1200
° C) gave a number of 0.41. The m value was calculated from the true stress-true strain diagram, and the temperature dependence is also shown in Table 2. From this table, it is clear that at 1273 K (1000 ° C.) or higher, the m value exceeds 0.3, which is an index of the superplasticity expression value. Table 3 also shows the temperature dependence of the elongation values as the results of these high temperature tensile tests.

【0027】[0027]

【表5】 [Table 5]

【0028】(実施例4) 原子%で48.9Ti−47.0Al−2.83Cr−
1.33B金属間化合物 1473K(1200℃)で60%加工度、初期歪速度
5×10-4-1の恒温鍛造材 標記成分を実施例1と同様のプラズマ溶解法で溶製し、
同一熱処理を施した試料を、真空雰囲気中にて、初期歪
速度5×10-4-1、試料温度1473K(1200
℃)で60%圧下の恒温鍛造を行った。表6はプラズマ
溶製熱処理後の成分分析値である。組織制御により平均
粒径約23μmの等軸微細組織が得られ、粒界には数μ
m以下の厚みを有する相が観察された。この粒界相は後
に実施例1同様にβ相と同定された。実施例1と同一方
法により高温引張試験を行い、真応力−真歪線図を求め
た。超塑性を示した結果の一例として、1473K(1
200℃),5×10-4-1の歪速度で約440%以上
の伸び値が得られた。超塑性を示す試料は、ネッキング
を示すことなくゲージ部が一様に変形しているのが観察
され、粒界相が引張後延伸しているのがみられた。また
応力の歪速度依存性から算出される歪速度感受性指数
(以下m値)は、真応力0.1の値を用いると1273
K(1000℃)では0.28、1473K(1200
℃)では0.47という数字が得られた。これらの真応
力−真歪線図からm値を算出し温度依存性を表2に併せ
て示す。この表から1273K(1000℃)以上にお
いて、m値は超塑性発現の指標である0.3を超えてい
ることが明らかである。これらの高温引張試験結果とし
て、伸び値の温度依存性を表3に併せて示す。
(Example 4) 48.9Ti-47.0Al-2.83Cr- in atomic%
1.33B intermetallic compound A constant temperature forged material having a working ratio of 60% at 1473 K (1200 ° C.) and an initial strain rate of 5 × 10 −4 s −1 The title component was melted by the same plasma melting method as in Example 1,
The sample subjected to the same heat treatment was subjected to an initial strain rate of 5 × 10 −4 s −1 and a sample temperature of 1473 K (1200) in a vacuum atmosphere.
C) at a constant pressure of 60%. Table 6 shows the component analysis values after the plasma melting heat treatment. An equiaxed microstructure having an average particle size of about 23 μm is obtained by microstructure control, and several μm
m or less was observed. This grain boundary phase was later identified as β phase as in Example 1. A high-temperature tensile test was performed in the same manner as in Example 1 to obtain a true stress-true strain diagram. As an example of the result showing superplasticity, 1473K (1
An elongation value of about 440% or more was obtained at a strain rate of 5 × 10 −4 s −1 at 200 ° C.). In the sample exhibiting superplasticity, it was observed that the gauge portion was uniformly deformed without showing necking, and it was observed that the grain boundary phase was stretched after tension. The strain rate sensitivity index (hereinafter referred to as m value) calculated from the strain rate dependency of the stress is 1273 when the value of the true stress 0.1 is used.
For K (1000 ° C.), 0.28, 1473 K (1200
° C) gave a number of 0.47. The m value was calculated from the true stress-true strain diagram, and the temperature dependence is also shown in Table 2. From this table, it is clear that at 1273 K (1000 ° C.) or more, the m value exceeds 0.3 which is an index of the appearance of superplasticity. Table 3 also shows the temperature dependence of the elongation values as the results of these high temperature tensile tests.

【0029】[0029]

【表6】 [Table 6]

【0030】(実施例5) 原子%で49.2Ti−47.0Al−2.85Cr−
0.99Nb金属間化合物 1473K(1200℃)で60%加工度、初期歪速度
5×10-4-1の恒温鍛造材 標記成分を実施例1と同様のプラズマ溶解法で溶製し、
同一熱処理を施した試料を、真空雰囲気中にて、初期歪
速度5×10-4-1、試料温度1473K(1200
℃)で60%圧下の恒温鍛造を行った。表7はプラズマ
溶製熱処理後の成分分析値である。組織制御により平均
粒径約16μmの等軸微細組織が得られ、粒界には数μ
m以下の厚みを有する相が観察された。この粒界相は後
に実施例1同様にβ相と同定された。実施例1と同一方
法により高温引張試験を行い、真応力−真歪線図を求め
た。超塑性を示した結果の一例として、1473K(1
200℃),5×10-4-1の歪速度で約380%以上
の伸び値が得られた。超塑性を示す試料は、ネッキング
を示すことなくゲージ部が一様に変形しているのが観察
され、粒界相が引張後延伸しているのがみられた。また
応力の歪速度依存性から算出される歪速度感受性指数
(以下m値)は、真応力0.1の値を用いると1273
K(1000℃)では0.30、1473K(1200
℃)では0.42という数字が得られた。これらの真応
力−真歪線図からm値を算出し温度依存性を表2に併せ
て示す。この表から1273K(1000℃)以上にお
いて、m値は超塑性発現の指標である0.3を超えてい
ることが明らかである。これらの高温引張試験結果とし
て、伸び値の温度依存性を表3に併せて示す。
(Example 5) 49.2Ti-47.0Al-2.85Cr- in atomic%
0.99 Nb intermetallic compound A constant temperature forged material having a working ratio of 60% at 1473 K (1200 ° C.) and an initial strain rate of 5 × 10 −4 s −1 The title component was melted by the same plasma melting method as in Example 1,
The sample subjected to the same heat treatment was subjected to an initial strain rate of 5 × 10 −4 s −1 and a sample temperature of 1473 K (1200) in a vacuum atmosphere.
C) at a constant pressure of 60%. Table 7 shows the component analysis values after the plasma melting heat treatment. An equiaxed microstructure with an average grain size of about 16 μm was obtained by microstructure control, and several μm
m or less was observed. This grain boundary phase was later identified as β phase as in Example 1. A high-temperature tensile test was performed in the same manner as in Example 1 to obtain a true stress-true strain diagram. As an example of the result showing superplasticity, 1473K (1
An elongation value of about 380% or more was obtained at a strain rate of 5 × 10 −4 s −1 at 200 ° C.). In the sample exhibiting superplasticity, it was observed that the gauge portion was uniformly deformed without showing necking, and it was observed that the grain boundary phase was stretched after tension. The strain rate sensitivity index (hereinafter referred to as m value) calculated from the strain rate dependency of the stress is 1273 when the value of the true stress 0.1 is used.
For K (1000 ° C), 0.30, 1473K (1200
A value of 0.42 was obtained in ° C. The m value was calculated from the true stress-true strain diagram, and the temperature dependence is also shown in Table 2. From this table, it is clear that at 1273 K (1000 ° C.) or more, the m value exceeds 0.3 which is an index of the appearance of superplasticity. Table 3 also shows the temperature dependence of the elongation values as the results of these high temperature tensile tests.

【0031】[0031]

【表7】 [Table 7]

【0032】(実施例6) 原子%で48.8Ti−46.8Al−2.60Cr−
1.05Nb−0.75Si金属間化合物 1473K(1200℃)で60%加工度、初期歪速度
5×10-4-1の恒温鍛造材 標記成分を実施例1と同様のプラズマ溶解法で溶製し、
同一熱処理を施した試料を、真空雰囲気中にて、初期歪
速度5×10-4-1、試料温度1473K(1200
℃)で60%圧下の恒温鍛造を行った。表8はプラズマ
溶製熱処理後の成分分析値である。組織制御により平均
粒径約20μmの等軸微細組織が得られ、粒界には数μ
m以下の厚みを有する相が観察された。この粒界相は後
に実施例1同様にβ相と同定された。実施例1と同一方
法により高温引張試験を行い、真応力−真歪線図を求め
た。超塑性を示した結果の一例として、1473K(1
200℃),5×10-4-1の歪速度で約350%以上
の伸び値が得られた。超塑性を示す試料は、ネッキング
を示すことなくゲージ部が一様に変形しているのが観察
され、粒界相が引張後延伸しているのがみられた。また
応力の歪速度依存性から算出される歪速度感受性指数
(以下m値)は、真応力0.1の値を用いると1273
K(1000℃)では0.29、1473K(1200
℃)では0.40という数字が得られた。これらの真応
力−真歪線図からm値を算出し温度依存性を表2に併せ
て示す。この表から1273K(1000℃)以上にお
いて、m値は超塑性発現の指標である0.3を超えてい
ることが明らかである。これらの高温引張試験結果とし
て、伸び値の温度依存性を表3に併せて示す。
(Embodiment 6) 48.8Ti-46.8Al-2.60Cr- in atomic%
1.05 Nb-0.75 Si intermetallic compound Isothermal forging with 60% workability at 1473 K (1200 ° C.) and initial strain rate of 5 × 10 −4 s −1 The title component was melted by the same plasma melting method as in Example 1. Made
The sample subjected to the same heat treatment was subjected to an initial strain rate of 5 × 10 −4 s −1 and a sample temperature of 1473 K (1200) in a vacuum atmosphere.
C) at a constant pressure of 60%. Table 8 shows the component analysis values after the plasma melting heat treatment. An equiaxed microstructure with an average particle size of about 20 μm is obtained by microstructure control, and several μm
m or less was observed. This grain boundary phase was later identified as β phase as in Example 1. A high-temperature tensile test was performed in the same manner as in Example 1 to obtain a true stress-true strain diagram. As an example of the result showing superplasticity, 1473K (1
An elongation value of about 350% or more was obtained at a strain rate of 5 × 10 −4 s −1 at 200 ° C.). In the sample exhibiting superplasticity, it was observed that the gauge portion was uniformly deformed without showing necking, and it was observed that the grain boundary phase was stretched after tension. The strain rate sensitivity index (hereinafter referred to as m value) calculated from the strain rate dependency of the stress is 1273 when the value of the true stress 0.1 is used.
For K (1000 ° C.), 0.29, 1473 K (1200
° C) gave a number of 0.40. The m value was calculated from the true stress-true strain diagram, and the temperature dependence is also shown in Table 2. From this table, it is clear that at 1273 K (1000 ° C.) or more, the m value exceeds 0.3 which is an index of the appearance of superplasticity. Table 3 also shows the temperature dependence of the elongation values as the results of these high temperature tensile tests.

【0033】[0033]

【表8】 [Table 8]

【0034】(比較例1) 原子%で48.2Ti−48.6Al−3.2V金属間
化合物 1473K(1200℃)で60%加工度、初期歪速度
5×10-4-1の恒温鍛造材 標記成分を実施例1と同様のプラズマ溶解法で溶製し、
同一熱処理を施した試料を、真空雰囲気中にて、初期歪
速度5×10-4-1、試料温度1473K(1200
℃)で60%圧下の恒温鍛造を行った。図2に本試料の
恒温鍛造後の組織写真を示す。平均粒径25μmの等軸
微細結晶粒からなる組織が観察されたが、実施例に観察
されたような粒界相はみられなかった。表9はプラズマ
溶製熱処理後の成分分析値である。実施例1と同一方法
により高温引張試験を行い、真応力−真歪線図を求め
た。実施例で超塑性伸びの得られた試験条件の1473
K(1200℃),5×10-4-1の歪速度で約170
%の伸び値が得られた。引張試験片は、ネッキングを示
していた。また応力の歪速度依存性から算出される歪速
度感受性指数(以下m値)は、真応力0.1の値を用い
ると1473K(1200℃)では0.20という値が
得られた。これらの真応力−真歪線図からm値を算出し
温度依存性を示したのが表2に併せて示す。この表から
本試料は超塑性を示さないことが明らかになった。これ
らの高温引張試験結果として、伸び値の温度依存性を表
3に実施例1と併せて示す。この表から高温に於いても
実施例でみられたような塑性伸びが得られていないこと
が明らかである。
Comparative Example 1 48.2 Ti-48.6 Al-3.2 V intermetallic compound in atomic% 60% workability at 1473 K (1200 ° C.), isothermal forging with initial strain rate of 5 × 10 -4 s -1 The material described above was melted by the same plasma melting method as in Example 1,
The sample subjected to the same heat treatment was subjected to an initial strain rate of 5 × 10 −4 s −1 and a sample temperature of 1473 K (1200) in a vacuum atmosphere.
C) at a constant pressure of 60%. FIG. 2 shows a microstructure photograph of this sample after isothermal forging. A structure composed of equiaxed fine crystal grains having an average particle size of 25 μm was observed, but no grain boundary phase as observed in the examples was observed. Table 9 shows the component analysis values after the plasma melting heat treatment. A high-temperature tensile test was performed in the same manner as in Example 1 to obtain a true stress-true strain diagram. 1473 of the test conditions under which the superplastic elongation was obtained in the examples.
K (1200 ° C.), about 170 at a strain rate of 5 × 10 -4 s -1
% Elongation was obtained. The tensile specimen showed necking. The strain rate sensitivity index (hereinafter referred to as m value) calculated from the strain rate dependency of the stress was 0.20 at 1473 K (1200 ° C.) when the true stress value of 0.1 was used. Table 2 also shows m values calculated from these true stress-true strain diagrams and showing the temperature dependence. From this table, it became clear that this sample did not show superplasticity. As a result of these high temperature tensile tests, the temperature dependence of the elongation value is shown in Table 3 together with Example 1. From this table, it is clear that even at a high temperature, the plastic elongation as in the examples was not obtained.

【0035】[0035]

【表9】 [Table 9]

【0036】(比較例2) 原子%で50.2Ti−48.6Al−1.2Mn金属
間化合物 1473K(1200℃)で60%加工度、初期歪速度
5×10-4-1の恒温鍛造材 標記成分を実施例1と同様のプラズマ溶解法で溶製し、
同一熱処理を施した試料を、真空雰囲気中にて、初期歪
速度5×10-4-1、試料温度1473K(1200
℃)で60%圧下の恒温鍛造を行った。約32μmの等
軸微細粒組織が得られた。表10はプラズマ溶製熱処理
後の成分分析値である。実施例1と同一方法により高温
引張試験を行い、真応力−真歪線図を求めた。実施例で
超塑性伸びの得られた試験条件の1473K(1200
℃),5×10-4-1の歪速度で約120%の伸び値が
得られ、引張試験片はネッキングを示していた。また応
力の歪速度依存性から算出される歪速度感受性指数(以
下m値)は、真応力0.1の値を用いると1473K
(1200℃)では0.20という値が得られた。これ
らの真応力−真歪線図からm値を算出し温度依存性を示
したのが表2に併せて示す。この表から本試料は超塑性
を示さないことが明らかになった。これらの高温引張試
験結果として、伸び値の温度依存性を表3に実施例1と
併せて示す。この表3から高温に於いても実施例でみら
れたような塑性伸びが得られていないことが明らかであ
る。
Comparative Example 2 50.2 Ti-48.6 Al-1.2 Mn intermetallic compound in atomic% 60% workability at 1473 K (1200 ° C.), constant temperature forging with an initial strain rate of 5 × 10 -4 s -1 The material described above was melted by the same plasma melting method as in Example 1,
The sample subjected to the same heat treatment was subjected to an initial strain rate of 5 × 10 −4 s −1 and a sample temperature of 1473 K (1200) in a vacuum atmosphere.
C) at a constant pressure of 60%. An equiaxed fine grain structure of about 32 μm was obtained. Table 10 shows the component analysis values after the plasma melting heat treatment. A high-temperature tensile test was performed in the same manner as in Example 1 to obtain a true stress-true strain diagram. In the example, 1473K (1200
° C), an elongation value of about 120% was obtained at a strain rate of 5 × 10 -4 s -1 , and the tensile test piece showed necking. The strain rate sensitivity index (hereinafter referred to as m value) calculated from the strain rate dependency of the stress is 1473K when the true stress value of 0.1 is used.
At (1200 ° C.), a value of 0.20 was obtained. Table 2 also shows m values calculated from these true stress-true strain diagrams and showing the temperature dependence. From this table, it became clear that this sample did not show superplasticity. As a result of these high temperature tensile tests, the temperature dependence of the elongation value is shown in Table 3 together with Example 1. It is clear from Table 3 that the plastic elongation as seen in the examples is not obtained even at high temperatures.

【0037】[0037]

【表10】 [Table 10]

【0038】(比較例3) 原子%で50.5Ti−49.5Al金属間化合物 1473K(1200℃)で74%加工度、初期歪速度
5×10-4-1の恒温鍛造材 標記成分を実施例1と同様のプラズマ溶解法で溶製し、
同一熱処理を施した試料を、真空雰囲気中にて、初期歪
速度5×10-4-1、試料温度1473K(1200
℃)で60%圧下の恒温鍛造を行った。約26μmの等
軸微細粒組織が得られた。表11はプラズマ溶製熱処理
後の成分分析値である。実施例1と同一方法により高温
引張試験を行い、真応力−真歪線図を求めた。実施例で
超塑性伸びの得られた試験条件の1473K(1200
℃),5×10-4-1の歪速度で約120%の伸び値が
得られ、引張試験片はネッキングを示していた。また応
力の歪速度依存性から算出される歪速度感受性指数(以
下m値)は、真応力0.1の値を用いると1473K
(1200℃)では0.20という値が得られた。これ
らの真応力−真歪線図からm値を算出し温度依存性を示
したのが表2に併せて示す。この表3から本試料は超塑
性を示さないことが明らかになった。これらの高温引張
試験結果として、伸び値の温度依存性を表3に実施例1
と併せて示す。この表3から高温に於いても実施例でみ
られたような塑性伸びが得られていないことが明らかで
ある。
Comparative Example 3 50.5 Ti-49.5 Al intermetallic compound in atomic% 74% workability at 1473 K (1200 ° C.), constant temperature forging material with initial strain rate of 5 × 10 -4 s -1 Melted by the same plasma melting method as in Example 1,
The sample subjected to the same heat treatment was subjected to an initial strain rate of 5 × 10 −4 s −1 and a sample temperature of 1473 K (1200) in a vacuum atmosphere.
C) at a constant pressure of 60%. An equiaxed fine grain structure of about 26 μm was obtained. Table 11 shows the component analysis values after the plasma melting heat treatment. A high-temperature tensile test was performed in the same manner as in Example 1 to obtain a true stress-true strain diagram. In the example, 1473K (1200
° C), an elongation value of about 120% was obtained at a strain rate of 5 × 10 -4 s -1 , and the tensile test piece showed necking. The strain rate sensitivity index (hereinafter referred to as m value) calculated from the strain rate dependency of the stress is 1473K when the true stress value of 0.1 is used.
At (1200 ° C.), a value of 0.20 was obtained. Table 2 also shows m values calculated from these true stress-true strain diagrams and showing the temperature dependence. From this Table 3, it became clear that this sample does not exhibit superplasticity. As a result of these high temperature tensile tests, the temperature dependence of the elongation value is shown in Table 3 in Example 1
It is shown together with. It is clear from Table 3 that the plastic elongation as seen in the examples is not obtained even at high temperature.

【0039】[0039]

【表11】 [Table 11]

【0040】以上は成分系に関する実施例、比較例であ
るが、以下に成分系に関するその他の比較例を表12に
上記の実施例、比較例と併せて掲載する。
The above are examples and comparative examples relating to the component system, but other comparative examples relating to the component system are shown in Table 12 together with the above examples and comparative examples.

【0041】[0041]

【表12】 [Table 12]

【表13】 [Table 13]

【0042】製造の際の均質化条件と加工組織制御条件
(温度、歪速度、加工率、雰囲気、冷却速度、加工方
法)に関する実施例、比較例を表13に示す。
Table 13 shows examples and comparative examples concerning homogenization conditions and processed structure control conditions (temperature, strain rate, processing rate, atmosphere, cooling rate, processing method) in the production.

【0043】[0043]

【表14】 [Table 14]

【表15】 表13によれば、本発明例ではm値がすべて超塑性発現
の指標である0.3を超えている。これに対して比較例
はいずれもm値が0.3未満である。
[Table 15] According to Table 13, in the present invention examples, all m values exceed 0.3 which is an index of superplasticity development. On the other hand, in each of the comparative examples, the m value is less than 0.3.

【0044】[0044]

【発明の効果】本発明のTiAl基金属間化合物合金
は、高い超塑性変形能を有しているので、成形性が向上
し、高精度で最終製品に近い形状を得ることができる。
Since the TiAl-based intermetallic compound alloy of the present invention has a high superplastic deformability, the formability is improved and a shape close to the final product can be obtained with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1において得られた試料の恒温
鍛造後の金属組織写真。
FIG. 1 is a photograph of a metallographic structure of a sample obtained in Example 1 of the present invention after isothermal forging.

【図2】比較例1において得られた試料の恒温鍛造後の
金属組織写真。
FIG. 2 is a metallographic photograph of the sample obtained in Comparative Example 1 after isothermal forging.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22F 1/00 683 8719−4K C22F 1/00 683 691 8719−4K 691B 8719−4K 691C 692 8719−4K 692A 694 8719−4K 694A 8719−4K 694B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C22F 1/00 683 8719-4K C22F 1/00 683 691 8719-4K 691B 8719-4K 691C 692 8719- 4K 692A 694 8719-4K 694A 8719-4K 694B

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 TiAl基金属間化合物に添加元素とし
てCrを含む三元系に、さらにNb,Mo,Hf,T
a,W,Vの1種または2種以上を以下の原子分率で添
加した多元系からなる下式で表記される組成で、γ相
界にβ相を体積分率で225%含有する超塑性変形能
を示すβ+γ二相組織であることを特徴とするTiAl
基金属間化合物合金。
1. A ternary system containing Cr as an additive element in a TiAl-based intermetallic compound , and further containing Nb, Mo, Hf, and T.
Add one or more of a, W, and V at the following atomic fractions:
The composition expressed by the following formula consisting of the added multi-component system , characterized in that it is a β + γ two-phase structure exhibiting superplastic deformability containing 2 to 25% of β phase in the γ phase grain boundary in volume fraction TiAl
Base intermetallic compound alloy.
【請求項2】 TiAl基金属間化合物に添加元素とし
てCrを含む三元系に、さらにSi,Bの1種または2
種を以下の原子分率で添加した多元系からなる下式で表
記される組成で、γ相粒界にβ相を体積分率で25
%含有する超塑性変形能を示すβ+γ二相組織であるこ
とを特徴とするTiAl基金属間化合物合金。
2. A ternary system containing Cr as an additive element in a TiAl-based intermetallic compound, and one or two of Si and B.
The composition represented by the following formula consisting of a multi-element system in which seeds are added in the following atomic fractions, and β phase in the γ phase grain boundary in a volume fraction of 2 to 25
% TiAl-based intermetallic compound alloy having a β + γ two-phase structure exhibiting superplastic deformability.
【請求項3】 TiAl基金属間化合物に添加元素とし
てCrを含む三元系に、さらにNb,Mo,Hf,T
a,W,Vの1種または2種以上を、そしてSi,Bの
1種または2種を以下の原子分率で添加した多元系から
なる下式で表記される組成で、γ相粒界にβ相を体積分
率で25%含有する超塑性変形能を示すβ+γ二相
組織であることを特徴とするTiAl基金属間化合物合
金。
3. A ternary system containing Cr as an additive element in a TiAl-based intermetallic compound, and further Nb, Mo, Hf, T.
a, W, V, one or more, and Si, B
The composition expressed by the following formula consisting of a multi-component system in which one or two kinds are added in the following atomic fractions, and the β phase is integrated into the γ phase grain boundary.
A TiAl-based intermetallic compound alloy having a β + γ two-phase structure showing a superplastic deformability of 2 to 25% in terms of content.
【請求項4】 請求項1〜3のいずれか1項に記載の成
分を有するTiAl基金属間化合物を溶製後、1273
K〜固相線温度の温度範囲で2〜100時間保持する均
質化処理を施し、次いで非酸化性雰囲気または5×10
-3 Torrより高真空雰囲気下で、1173K〜固相線温度
の温度にて、初期歪速度が5×10 -1 sec -1 以下、加工
率60%以上の高温加工を施し、10K/minより速い冷
却速度で最低873Kまで降温することを特徴とするγ
及びβ二相TiAl基金属間化合物合金の製造方法
4. A formation according to any one of claims 1 to 3
1273 after melting a TiAl-based intermetallic compound containing
K to solidus temperature range for 2 to 100 hours
Qualitative treatment, then non-oxidizing atmosphere or 5x10
-3 Torr, higher vacuum atmosphere, 1173K ~ solidus temperature
Initial strain rate is 5 × 10 -1 sec -1 or less at
High-temperature processing with a rate of 60% or more, and cooling faster than 10K / min
Γ characterized by lowering the temperature to a minimum of 873K at the cooling speed
And a method for producing a β two-phase TiAl-based intermetallic compound alloy.
【請求項5】 前記高温加工が恒温鍛造であり、試料を
Ti合金ケースに挿入し、前記恒温鍛造を大気中にて行
い、1173K以上で超塑性変形能を有する請求項4記
載のTiAl基金属間化合物の製造方法。
5. The high temperature processing is isothermal forging,
Insert into a Ti alloy case and perform the above isothermal forging in the atmosphere.
And having superplastic deformability above 1173K.
A method for producing a TiAl-based intermetallic compound as described above.
【請求項6】 前記試料を挿入したTi合金ケースの内
部を5×10-3Torrよりも高真空で脱気後、Ti合金ケ
ースをエレクトロンビーム溶接で密閉し、恒温鍛造を大
気中にて行う請求項5記載のTiAl基金属間化合物の
製造方法。
6. A Ti alloy case in which the sample is inserted
Part is degassed at a vacuum higher than 5 × 10 -3 Torr, and then Ti alloy case
The method for producing a TiAl-based intermetallic compound according to claim 5, wherein the base is sealed by electron beam welding, and isothermal forging is performed in the atmosphere.
【請求項7】 前記高温加工が圧延であり、試料をTi
合金ケースに挿入し、前記圧延を大気中にて行い、11
73K以上で超塑性変形能を有する請求項4記載のTi
Al基金属間化合物の製造方法。
7. The high temperature working is rolling, and the sample is made of Ti.
Inserted in an alloy case and rolled in the atmosphere,
The Ti according to claim 4, which has superplastic deformability at 73 K or more.
A method for producing an Al-based intermetallic compound.
【請求項8】 前記試料を挿入したTi合金ケースの
部を5×10-3Torrよりも高真空で脱気後、Ti合金ケ
ースをエレクトロンビーム溶接で密閉し、圧延を大気中
にて行う請求項7記載のTiAl基金属間化合物の製造
方法。
8. The Ti alloy case in which the sample is inserted is degassed under a vacuum higher than 5 × 10 −3 Torr, and then the Ti alloy case is removed.
The method for producing a TiAl-based intermetallic compound according to claim 7, wherein the base is sealed by electron beam welding and rolling is performed in the atmosphere.
【請求項9】 前記高温加工が熱間押出しであり、試料
をTi合金ケースに挿入し、前記熱間押出しを大気中に
て行い、1173K以上で超塑性変形能を有する請求項
記載のTiAl基金属間化合物の製造方法。
9. The high temperature processing is hot extrusion, the sample
Is inserted into a Ti alloy case, and the hot extrusion is performed in the atmosphere.
Performed, claim having superplastic deformability above 1173K
4. The method for producing a TiAl-based intermetallic compound as described in 4 .
【請求項10】 前記試料を挿入したTi合金ケースの
内部を5×10-3Torrよりも高真空で脱気後、Ti合金
ケースをエレクトロンビーム溶接で密閉し、前記熱間押
出しを大気中にて行う請求項9記載のTiAl基金属間
化合物の製造方法。
10. A Ti alloy case in which the sample is inserted
After degassing the inside with a vacuum higher than 5 × 10 -3 Torr, Ti alloy
The case is sealed by electron beam welding and the hot pressing
The method for producing a TiAl-based intermetallic compound according to claim 9, wherein the deposition is performed in the atmosphere.
JP4177157A 1991-07-05 1992-07-03 Superplastically deformable β + γTiAl-based intermetallic alloy and method for producing the same Expired - Lifetime JP2686020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4177157A JP2686020B2 (en) 1991-07-05 1992-07-03 Superplastically deformable β + γTiAl-based intermetallic alloy and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-165403 1991-07-05
JP16540391 1991-07-05
JP4177157A JP2686020B2 (en) 1991-07-05 1992-07-03 Superplastically deformable β + γTiAl-based intermetallic alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05209243A JPH05209243A (en) 1993-08-20
JP2686020B2 true JP2686020B2 (en) 1997-12-08

Family

ID=26490155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4177157A Expired - Lifetime JP2686020B2 (en) 1991-07-05 1992-07-03 Superplastically deformable β + γTiAl-based intermetallic alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP2686020B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923127B2 (en) * 2005-11-09 2011-04-12 United Technologies Corporation Direct rolling of cast gamma titanium aluminide alloys
KR101888049B1 (en) * 2016-12-14 2018-08-13 안동대학교 산학협력단 Method for preparing Ti-Al-Nb-Fe alloy improved fracture toughness and creep properties
KR101890642B1 (en) * 2016-12-14 2018-08-22 안동대학교 산학협력단 Method for preparing Ti-Al-Nb-V alloy improved fracture toughness and creep properties

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546551B2 (en) * 1991-01-31 1996-10-23 新日本製鐵株式会社 γ and β two-phase TiAl-based intermetallic alloy and method for producing the same

Also Published As

Publication number Publication date
JPH05209243A (en) 1993-08-20

Similar Documents

Publication Publication Date Title
US5518690A (en) Tial-based intermetallic compound alloys and processes for preparing the same
US6056835A (en) Superplastic aluminum alloy and process for producing same
US5226985A (en) Method to produce gamma titanium aluminide articles having improved properties
CA2022572A1 (en) Method of modifying multicomponent titanium alloys and alloy produced
JP2635804B2 (en) Gamma-titanium-aluminum alloy modified with carbon, chromium and niobium
GB2219310A (en) Chromium- and niobium-modified titanium aluminum alloys and method of preparation
US5232661A (en) γ and β dual phase TiAl based intermetallic compound alloy having superplasticity
US5417781A (en) Method to produce gamma titanium aluminide articles having improved properties
WO1998022629A2 (en) A new class of beta titanium-based alloys with high strength and good ductility
AU2023282167A1 (en) Creep Resistant Titanium Alloys
JP2586023B2 (en) Method for producing TiA1-based heat-resistant alloy
EP0379798B1 (en) Titanium base alloy for superplastic forming
JP2686020B2 (en) Superplastically deformable β + γTiAl-based intermetallic alloy and method for producing the same
JP3374553B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
JP2734794B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
JP3328557B2 (en) TiAl-based intermetallic compound alloy having high strength and method for producing the same
JP2729011B2 (en) TiAl-based intermetallic compound alloy having high strength and method for producing the same
JP3046349B2 (en) Method of treating titanium-aluminum modified with chromium and niobium
JP3056541B2 (en) TiAl-based intermetallic compound and method for producing the same
US4806305A (en) Ductile nickel-silicon alloy
JP3308615B2 (en) TiAl alloy and method for producing the same
JP2684891B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
JPH09249926A (en) Titanium-aluminum base intermetallic compound alloy containing w and excellent in superplastic characteristic and its production
JP3331625B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 15

EXPY Cancellation because of completion of term