JP2729011B2 - TiAl-based intermetallic compound alloy having high strength and method for producing the same - Google Patents
TiAl-based intermetallic compound alloy having high strength and method for producing the sameInfo
- Publication number
- JP2729011B2 JP2729011B2 JP4177158A JP17715892A JP2729011B2 JP 2729011 B2 JP2729011 B2 JP 2729011B2 JP 4177158 A JP4177158 A JP 4177158A JP 17715892 A JP17715892 A JP 17715892A JP 2729011 B2 JP2729011 B2 JP 2729011B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- temperature
- tial
- alloy
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Forging (AREA)
- Powder Metallurgy (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は超塑性変形と変態熱処理
を利用して、高強度を有するTiAl基金属間化合物合
金及びその製造方法に関するもので、高比強度耐熱構造
部材への適用に利用される。BACKGROUND OF THE INVENTION The present invention utilizes the transformation heat treatment and superplastic deformation, TiAl-based intermetallic compound if having high strength
The present invention relates to gold and a method for producing the same, and is used for application to heat resistant structural members having high specific strength.
【0002】[0002]
【従来の技術】耐熱材料として実用化の期待されている
金属間化合物TiAlは、展延性に乏しいために加工が
難しい。TiAlの実用化のための最大の障害であるこ
の低加工性改善のための手法は、大別して加工プロセス
の応用と合金設計が挙げられる。低加工性とは主として
室温における延性の欠如を指し、TiAlは圧延、鍛造
といった従来行なわれている加工法を直接室温で適用す
ることはできない。2. Description of the Related Art The intermetallic compound TiAl, which is expected to be put to practical use as a heat-resistant material, is difficult to process because of poor ductility. Techniques for improving the low workability, which are the biggest obstacles to the practical use of TiAl, are roughly classified into the application of the working process and the alloy design. Low workability mainly refers to lack of ductility at room temperature, and TiAl cannot be directly applied at room temperature to conventional working methods such as rolling and forging.
【0003】加工プロセス適用の場合、粉末加工法に代
表されるニアー・ネット・シェイプ化から従来の圧延、
鍛造といった加工法も含む。これまでにCo基超合金
(S−816)を用いての高温シース圧延(1373
K,圧延速度:1.5m/min)による成型(特開昭61
−213361号公報)や、800℃以上、歪速度10
-2sec -1以下における恒温鍛造(特開昭63−1718
62号公報)等による加工形状付与化が報告されてい
る。こうした加工法の特徴は、TiAlの800℃以上
における延性能の発現を利用したものであり、TiAl
の機械的性質に及ぼす歪速度依存性と併用することによ
り、成型加工を可能にしている。但し充分な成型加工を
行なうための加工条件が、1273K以上の高温である
こと、更に歪速度をできるだけ低減化させなくてはなら
ないことから、大型設備の適用が必ずしも容易では無い
という欠点を有する。[0003] In the case of applying a processing process, conventional rolling, from near net shaping represented by powder processing,
Including processing methods such as forging. High temperature sheath rolling (1373) using Co-based superalloy (S-816)
K, rolling speed: 1.5 m / min)
213361), 800 ° C. or higher, strain rate 10
-2 sec -1 or less at constant temperature forging (JP-A-63-1718)
No. 62) has been reported. The feature of such a processing method is to utilize the development of the rolling performance of TiAl at 800 ° C. or higher.
Molding is enabled by using the strain rate dependency on the mechanical properties of. However, there is a drawback that the application of large-scale equipment is not always easy because the processing conditions for performing sufficient molding are a high temperature of 1273 K or more and the strain rate must be reduced as much as possible.
【0004】一方、TiとAlの混合、圧粉成型後、高
温高圧処理による成型化が報告されている(特開昭63
−140049号公報)。この方法は上記加工プロセス
とは異なり、成型化と同時に様々な形への形状加工化が
可能であることを長所とする反面、問題点としてTiや
Alといった活性金属を用いることによる不純物混入が
不可避であるという点が指摘される。On the other hand, it has been reported that after mixing and compacting of Ti and Al, compacting by high-temperature and high-pressure treatment (Japanese Patent Application Laid-Open No. 63-163).
-140049). This method is different from the above-mentioned processing process, and has an advantage that it can be formed into various shapes simultaneously with molding. On the other hand, there is a problem in that impurities are inevitable due to the use of an active metal such as Ti or Al. Is pointed out.
【0005】これに対して添加元素による室温延性改善
の報告は、金属材料技術研究所によるMn添加(特開昭
61−41740号公報)、Ag添加(特開昭58−1
23847号公報)、そしてGeneral Elec
tric Corp.によるSi添加(米国特許:48
36983)、Ta添加(米国特許:484281
7)、Cr添加(米国特許:4842819)、B添加
(米国特許:4842820)が挙げられる。この中で
General Electric Corp.による
Si,Ta,Cr,Bの各合金系の成分範囲は、四点曲
げ試験による延性評価から決定しているが、いずれもチ
タンがアルミニウムと等量、あるいはアルミニウムより
も高くなっている。また、高温延性改善のために、0.
005〜0.2wt.%B添加(特開昭63−12563
4号公報)、あるいは0.02〜0.3wt.%Bと0.
2〜5.0wt.%Siを複合添加(特開昭63−125
634号公報)した報告がある。これまでのところ複合
添加による特許例はこの一件のみであるが、複数の特性
の改善をはかる上で、第4及び第5添加元素の検討も必
要になる。すなわちこれらの添加元素の効果は、延性能
改善に加え、耐酸化性の改善や耐クリープ特性の改善も
含めて、幅広い合金成分調整を行なう必要がある。延性
能の目安は室温引張伸び値が3.0%といわれている
が、どの添加元素の選択による成分設計法によっても未
だ達成されておらず、加工プロセスとの併用による微細
化等の組織制御を通した対応が不可欠と考えられる。[0005] On the other hand, reports on improvement of room temperature ductility by addition elements are described in Mn addition (Japanese Patent Application Laid-Open No. 61-41740) and Ag addition (Japanese Patent Application Laid-Open No.
No. 23847), and General Elec
tric Corp. Addition of Si (US Patent: 48
36983), and Ta addition (U.S. Pat.
7), Cr addition (US Pat. No. 4,842,819), and B addition (US Pat. No. 4,842,820). Among them, General Electric Corp. The ranges of the components of each alloy system of Si, Ta, Cr, and B are determined from the ductility evaluation by a four-point bending test. In each case, titanium is equivalent to aluminum or higher than aluminum. Further, in order to improve the high-temperature ductility, 0.1%
005 to 0.2 wt. % B (Japanese Unexamined Patent Publication No. 63-12563)
No. 4) or 0.02 to 0.3 wt. % B and 0.
2 to 5.0 wt. % Si as a composite (Japanese Patent Laid-Open No. 63-125)
634). Until now, there is only one patent example by composite addition, but in order to improve a plurality of characteristics, it is necessary to consider the fourth and fifth additional elements. That is, the effects of these additional elements require a wide range of alloy component adjustments, including improvement in oxidation resistance and improvement in creep resistance, in addition to improvement in rolling performance. It is said that the tensile elongation at room temperature is a value of 3.0%, but this has not yet been achieved by the component design method by selecting any of the added elements, and the microstructure control such as refining by combined use with the processing process. It is considered essential to respond through this.
【0006】[0006]
【発明が解決しようとする課題】本発明の目的は、成分
系と加工条件の選択によりTiAl基合金の組織制御を
行い、超塑性変形能を有した材料を設計すると同時に、
設計材料の超塑性変形能を利用して成形加工を施して最
終製品形状近くまで成形し、さらに相変態を利用した熱
処理によって高強度を持った製品を作製することであ
る。SUMMARY OF THE INVENTION An object of the present invention is to control the structure of a TiAl-based alloy by selecting a component system and processing conditions, and to design a material having superplastic deformability,
Forming is performed using the superplastic deformability of the design material to form a product close to the final product shape, and a high-strength product is produced by heat treatment using phase transformation.
【0007】[0007]
【課題を解決するための手段】本発明者等は、上記課題
を達成させるために多元系TiAl基金属間化合物合金
の基本力学特性、及び加工再結晶処理による組織制御材
の力学特性、そして本材料の力学特性に強く影響を及ぼ
す構成相の相安定性について、実験的且つ理論的解析を
進めた結果、以下のような課題解決手段を有効法として
見いだした。即ち、目標とする組織制御には、単なる加
工再結晶による組織微細化にとどまるのではなく、準安
定相と予想されるβ相を粒界に析出させることによりβ
+γ二相組織とし、導入歪の緩和を変形能に富むβ相に
になわせ、TiAlの持っている優れた強度を損なわ
ず、超塑性変形能を負荷させることを第一段階とする。
そして第二段階として、強度特性、クリープ特性、水素
脆性、及び耐酸化特性を向上化させるために、この組織
制御超塑性変形材を相変態を利用して、γ+α2 二相組
織にする。そして、この一連のプロセスを組み込んだ加
工成形組織制御一貫プロセスを確立させることにより、
上記課題の解決手法とする。以下にその詳細について説
明する。本発明のTiAl基金属間化合物合金は、組成
が原子分率で下式により表記され、γ粒界に析出したβ
相の体積分率が2〜25%であり、超塑性変形能を有す
るβ+γTiAl基金属間化合物を変態熱処理して作製
された合金であって、室温〜1073Kの温度範囲で4
00MPa 以上の強度を有するα 2 +γ二相組織から成る
高強度を有する。 Ti a Al 100-a-b-c Cr b X c X:Nb,Mo,Hf,Ta,Wの一種または二種以上 但し 47.5≦a≦52 1≦b≦5 0.5≦c≦3 b≧c 2a+b+c≧100 本発明の他のTiAl基金属間化合物合金は、組成が原
子分率で下式により表記される。 Ti a Al 100-a-b-d Cr b Y d Y:Si,Bの一種または二種 但し 47.5≦a≦52 1≦b≦5 0.1≦d≦2 2a+b+d≧100 本発明の更に他のTiAl基金属間化合物合金は、組成
が原子分率で下式により表記される。 Ti a Al 100-a-b-c-d Cr b X c Y d X:Nb,Mo,Hf,Ta,W,Vの一種または二種以上 Y:Si,Bの一種または二種 但し 47.5≦a≦52 1≦b≦5 0.5≦c≦3 b≧c 0.1≦d≦2 2a+b+c+d≧100 In order to achieve the above object, the present inventors have developed basic mechanical properties of a multi-component TiAl-based intermetallic compound alloy, mechanical properties of a structure controlling material obtained by processing recrystallization, and the present invention. As a result of an experimental and theoretical analysis of the phase stability of the constituent phases that strongly affect the mechanical properties of the material, the following means for solving the problems were found as effective methods. In other words, the target microstructure control is not limited to microstructure refinement by simple recrystallization, but the β phase expected to be a metastable phase is precipitated at
The first step is to form a + γ two-phase structure, relax the introduced strain to a β phase that is rich in deformability, and apply superplastic deformability without impairing the excellent strength of TiAl.
Then the second step, strength properties, creep characteristics, hydrogen embrittlement and to improve the oxidation resistance, by utilizing this structure control phase transformation superplastic deformation material, to gamma + alpha 2 dual phase structure. And, by establishing a process for controlling the structure of the working structure incorporating this series of processes,
This is a solution to the above problem. The details will be described below. The TiAl-based intermetallic alloy of the present invention has a composition
Is expressed by the following formula in atomic fraction, and β precipitated at the γ grain boundary
The phase has a volume fraction of 2 to 25% and has superplastic deformability
Β + γ TiAl-based intermetallic compound produced by transformation heat treatment
Alloy at room temperature to 1073 K
Composed of α 2 + γ two-phase structure with a strength of more than 00MPa
Has high strength. Ti a Al 100-abc Cr b X c X: one or more of Nb, Mo, Hf, Ta, W, provided that 47.5 ≦ a ≦ 52 1 ≦ b ≦ 5 0.5 ≦ c ≦ 3 b ≧ c 2a + b + c ≧ 100 The other TiAl-based intermetallic alloys of the present invention have the original composition.
It is expressed by the following formula in the subfraction. Ti a Al 100-abd Cr b Y d Y: Si, B of one, two or where 47.5 ≦ a ≦ 52 1 ≦ b ≦ 5 0.1 ≦ d ≦ 2 2a + b + yet another TiAl of d ≧ 100 invention The base intermetallic compound alloy has the composition
Is represented by the following formula in atomic fraction. Ti a Al 100-abcd Cr b X c Y d X: Nb, Mo, Hf, Ta, W, one of V or two or more Y: Si, one or two provided that 47.5 ≦ a ≦ 52 1 of B ≦ b ≦ 5 0.5 ≦ c ≦ 3 b ≧ c 0.1 ≦ d ≦ 2 2a + b + c + d ≧ 100
【0008】粒界β相の析出は、上記第一段階の超塑性
変形能の付与のための絶対条件である。第三添加元素と
してTiに対してβ安定化元素であるMo,V,Nb,
Fe,Mnの6種を選択し、組織制御を施した結果、明
瞭な粒界析出相を観察できたのは、Crのみであったこ
とから、第三添加元素としてCrを選ぶことにした。さ
らに粒界β相の析出形態を損なうこと無く、TiAlC
r三元系の欠点であった強度の不足分を補うために、随
時高融点元素の添加を試みた。組織制御を施す前に室温
における変形特性を調査した結果、Crの室温圧縮変形
能改善効果を損なうこと無く、Mo,Nb,W,Hf,
Taの5種の添加元素において強度の向上が認められT
iAlγ相への固溶強化が確認された。さらに強度の上
昇は室温のみならず、高温でも強度の向上が認められ
た。以上の結果から、第四添加元素として、Mo,N
b,W,Hf,Taを選択した。この四元系において
も、上記第一段階の粒界β相は基本的に満足されてお
り、その成分範囲も第三添加元素であるCr量が第四添
加元素に対してある範囲内での関係が満足されれば問題
の無いことが示された。さらに第五添加元素として、第
三添加元素のCrによるβ相形成能、及び第四添加元素
である上記5種の元素あるいはVによる固溶効果が損な
われること無しに、さらなる高強度化を目指したマイク
ロアロイイングをB,Siの微量添加で試みたところ、
室温から1073Kまでの強度の著しい向上が認められ
た。[0008] The precipitation of the grain boundary β phase is the superplasticity of the first stage described above.
This is an absolute condition for imparting deformability. With the third additive element
And the β-stabilizing elements Mo, V, Nb,
As a result of selecting six types of Fe and Mn and controlling the structure,
Only Cr was able to observe a clear grain boundary precipitation phase.
Therefore, Cr was selected as the third additive element. Sa
In addition, the TiAlC
r To compensate for the lack of strength that was a disadvantage of the ternary system,
Attempted to add high melting point elements. Room temperature before tissue control
The deformation characteristics of Cr at room temperature
Mo without loss of performance improvement effect, Nb, W, Hf,
Ta's5Improvement of strength was observed in some additional elements, and T
Solid solution strengthening in the iAlγ phase was confirmed. Further strength
Increase in strength not only at room temperature but also at high temperature
Was. From the above results, Mo as the fourth additive element, N
b, W, Hf and Ta were selected. In this quaternary
However, the above-mentioned first stage grain boundary β phase is basically satisfied.
The content of the third additive element, Cr, is also in the fourth additive range.
It is a problem if the relation within a certain range is satisfied for the additive element
It was shown that there was no. Further, as a fifth additive element,
Β phase formation ability by Cr of three additive elements, and fourth additive element
Is5 aboveSeed elementOr VDissolves the solid solution effect
A microphone that aims for even higher strength without being heard
When the lower alloying was tried by adding a small amount of B and Si,
Significant improvement in strength from room temperature to 1073K
Was.
【0009】成分系の組成範囲は、Cr添加の効果がT
i過剰側である必要性と第四添加元素がある範囲を超え
た場合、粒界β相が析出したとしても、マトリックスの
高強度化による超塑性変形能の欠如により、Cr添加及
び第四添加元素は全てAlと置換方向に添加し、さらに
Crの添加量はβ相を析出させるために、1%(原子分
率、以下同じ)以上にする。1%以下では、粒界β相の
量は超塑性変形をおこさせるには十分とは言えず、5%
を超えると、マトリックス内にTiとCrを主成分とす
る析出相が出現し、もはやCrは粒界β相の形成には分
配されないためである。The composition range of the component system is such that the effect of adding Cr is T
If the i-excess side and the fourth additive element exceed a certain range, even if the grain boundary β phase is precipitated, the addition of Cr and the fourth additive element due to the lack of superplastic deformability due to the high strength of the matrix. All elements are added in the direction of substitution with Al, and the amount of added Cr is 1% or more (atomic fraction, hereinafter the same) in order to precipitate a β phase. If it is less than 1%, the amount of the grain boundary β phase is not sufficient to cause superplastic deformation,
Is exceeded, a precipitation phase mainly composed of Ti and Cr appears in the matrix, and Cr is no longer distributed to the formation of the grain boundary β phase.
【0010】第四添加元素の成分範囲の最も重要な点
は、第三添加元素であるCrの添加量を超えないことで
ある。特にMo(1/30/1990,第53回超塑性
研究会,於・大阪国際交流センター),W(Metal
l.Trans.A(1983)2170)等は公知例
にあるように、マトリックス内部でβ相の析出を可能に
し、折角形成された粒界β相が、マトリックスの強化に
よって、損なわれてしまうからである。即ち、β相の析
出サイトはマトリックスである必要はなく、β相の形成
は粒界に限定させる。これはβ相がマトリックスに析出
しても強度の向上化には寄与するが、変形能の確保には
寄与しないことが本発明者等によって示されたからであ
る。以上の点から、第四添加元素の量は常にCr添加量
よりも少ない範囲内において、0.5〜3%とする。
0.5%以下ではこれらの第四添加元素による固溶強化
が明確ではないためである。また3%以下としたのは、
粒界β相による高温変形能の確保のためにはマトリック
スの強化は必要以上にする必要がなく、仮に強化がそれ
ほどではなかったとしても、第二段階でその強化分を変
態熱処理によって十分補えるからである。The most important point of the component range of the fourth additive element is that the amount of Cr added as the third additive element should not be exceeded. In particular, Mo (1/30/1990, 53rd Superplasticity Study Group, Osaka International Exchange Center), W (Metal
l. Trans. A (1983) 2170) enables precipitation of the β phase inside the matrix, as is known in the art, and the angle-formed grain boundary β phase is impaired by the strengthening of the matrix. That is, the precipitation site of the β phase does not need to be a matrix, and the formation of the β phase is limited to the grain boundaries. This is because the present inventors have shown that even if the β phase precipitates in the matrix, it contributes to improvement in strength but does not contribute to securing deformability. From the above points, the amount of the fourth additive element is always 0.5 to 3% within a range smaller than the Cr addition amount.
This is because solid solution strengthening by these fourth addition elements is not clear at 0.5% or less. Also, the reason for setting it to 3% or less is that
It is not necessary to strengthen the matrix more than necessary to ensure high-temperature deformability due to the grain boundary β phase, and even if the strengthening is not so great, the strengthening can be sufficiently compensated for by the transformation heat treatment in the second stage. It is.
【0011】前記第4添加元素または第五添加元素とし
てのSi,Bは、もはや中間温度以下の強度の向上化を
目指して添加されており、微量添加による固溶強化及び
微細分散析出相による析出効果を目的としている。その
ため、本合金で重要な粒界β相の形成と、第四添加元素
によるマトリックスの固溶効果を損なうようなことがな
いように添加量は決定される。0.1%以下ではこれら
の強化効果が顕著ではなく、2%を超えると逆に析出相
によりマトリックス強化が強くなり、粒界β相の変形に
よっても蓄積歪の緩和を可能にしないからである。 The fourth or fifth additive element may be
All of Si and B are already added for the purpose of improving the strength at an intermediate temperature or lower, and are aimed at strengthening the solid solution by adding a small amount and precipitating the fine dispersed phase. Therefore, the addition amount is determined so as not to impair the formation of the important grain boundary β phase in the present alloy and the effect of the fourth additive element on the solid solution of the matrix. If it is 0.1% or less, these strengthening effects are not remarkable, and if it exceeds 2%, the matrix strengthening is conversely strengthened by the precipitated phase, and the relaxation of the accumulated strain is not possible even by the deformation of the grain boundary β phase. .
【0012】本発明のTiAl基金属間化合物成形品の
一貫製造方法は、前記の様にして決定された成分系に対
し、合金の原料を溶製後、非酸化性雰囲気または5×1
0 -3 Torrより高真空雰囲気下で、1173K〜固相線温
度の温度にて、初期歪速度が5×10 -5 〜5×10 -1 s
ec -1 、加工率60%以上の高温加工を施して、γ粒界に
析出したβ相の体積分率が2〜25%の粒界β相を含む
超塑性変形能を有するβ+γ二相合金とし、次いで10
K/minより速い冷却速度で最低873Kまで降温した
後、超塑性加工により製品成形体にまで加工し、非酸化
性雰囲気または5×10 -5 Torrより高真空中にて117
3K〜固相線温度の温度にて、2時間以上保持する変態
熱処理を施し、室温〜1073Kの温度範囲で400MP
a 以上の強度を有するα 2 +γ二相組織の加工成形品を
製造する高強度を有するTiAl基金属間化合物成形品
を一貫製造する。 TiAl基金属間化合物成形品の一貫
製造方法において、前記合金の原料を溶製後、非酸化性
雰囲気または5×10 -5 Torrより高真空雰囲気下で、1
173K〜固相線温度の温度にて、初期歪速度が5×1
0 -5 〜5×10 -1 sec -1 、加工率60%以上の高温加工
を施して、γ粒界に析出したβ相の体積分率が2〜25
%の粒界β相を含む超塑性変形能を有するβ+γ二相合
金とし、次いで10K/minより速い冷却速度で最低87
3Kまで降温した後、超塑性加工により製品成形体にま
で加工し、加工装置内で連続して1173K〜固相線温
度の温度にて、2〜24時間保持する変態熱処理を施
し、室温〜1073Kの温度範囲で400MPa以上の強
度を有するα 2 +γ二相組織の加工成形品を製造する高
強度を有するTiAl基金属間化合物成形品を一貫製造
するようにしてもよい。 上記TiAl基金属間化合物成
形品の製造方法において、高温加工処理によって粒界に
β相を析出したγ相をマトリックスとし、若干のα2 相
を含むγ+β微細二相組織とさせる。ただしこのα2 相
は加工再結晶で形成されたβ相に相変態しきれなかった
一部で、本発明において何等意味をなすことはなく、体
積分率も数%以下とごく微量である。高温加工条件の決
定には、初期の溶解鋳造後のγ+α2 二相組織を破壊し
てγ相を再結晶化させなければならない。γ相の再結晶
を引き起こすに必要な加工温度及び加工度では、熱的に
変態あるいは高温加工前に既に熱処理によって形成され
た析出β相が、十分変形に耐えることができ、最終的に
は再結晶γ相が粒成長過程で変形を受けたβ相を障壁と
して、γ相粒界にβ相の偏析した組織になったと考えら
れる。このようなメカニズムはこれまでの実験結果から
提言されたものであるが、この仮説に基づき、必要な高
温加工条件を検討する。まず温度であるが、Crを第三
添加元素にした場合、溶解熱処理の段階で既にβ相が、
初期ラメラー組織のα2 相に形成されることが発明者等
によって明らかになり、β相の形成に熱的な加工再結晶
が必ずしも必要条件ではないことが示されたことから、
加工温度はγ相の再結晶に必要な1173K以上とし
た。この温度より低い場合には、γ粒の再結晶が十分に
起こらず、β相をγ粒界に晶出させることは困難であ
る。また均一組織を得るためには加工度を60%以上と
した。この加工度より低いと未再結晶領域が形成され、
粒界β相を含有したβ+γ二相組織に十分にできず、γ
マトリックス内部にβ相を残存してしまい、超塑性変形
能の付与が困難であるためである。一方、初期歪速度に
ついては5×10-1 sec-1以上では、再結晶組織に加え
て加工変形組織が形成され、やはり粒界β相を得ること
ができないためである。また初期歪速度が5×10-5 s
ec-1よりも遅い場合には、微細再結晶γ粒が粒成長を起
こし、微細粒超塑性の効果を著しく低減して本発明のよ
うな超塑性の発現が不可能なためである。 The TiAl-based intermetallic compound molded article of the present invention
The integrated manufacturing method covers the component system determined as described above.
And after smelting the raw material of the alloy, a non-oxidizing atmosphere or 5 × 1
1173K to solidus temperature in a vacuum atmosphere higher than 0 -3 Torr
Temperature, the initial strain rate is 5 × 10 -5 to 5 × 10 -1 s
High temperature processing of ec -1 and processing rate of 60% or more
Includes grain boundary β phase with a volume fraction of 2 to 25% of precipitated β phase
Become a β + γ two-phase alloy with superplastic deformability, then 10
Cooled down to 873K at a cooling rate faster than K / min
After that, it is processed into a product molded body by superplastic processing,
117 in a neutral atmosphere or in a vacuum higher than 5 × 10 -5 Torr
Transformation maintained at 3K to solidus temperature for 2 hours or more
Heat treated, 400MP at room temperature to 1073K
a Processed molded products with α 2 + γ dual phase structure
High strength TiAl-based intermetallic compound moldings to be manufactured
To manufacture consistently. Consistency of molded products of TiAl-based intermetallic compounds
In the manufacturing method, after melting the raw material of the alloy, the non-oxidizing
In an atmosphere or a vacuum atmosphere higher than 5 × 10 −5 Torr
At a temperature of 173K to the solidus temperature, the initial strain rate is 5 × 1
High temperature processing of 0 -5 to 5 × 10 -1 sec -1 and processing rate of 60% or more
And the volume fraction of the β phase precipitated at the γ grain boundary is 2 to 25.
Β + γ dual phase with superplastic deformability containing 3% grain boundary β phase
Gold and then at least 87 at a cooling rate higher than 10K / min
After the temperature has dropped to 3K, the product is compacted by superplastic processing.
At 1173K to solidus temperature continuously in the processing equipment
Temperature for 2 to 24 hours.
At room temperature to 1073K
To produce processed products with α 2 + γ dual phase structure
Integrated production of TiAl-based intermetallic compound molded products with high strength
You may make it. The TiAl-based intermetallic compound composition
In the method of manufacturing a shaped article, a γ phase in which a β phase is precipitated at a grain boundary by high-temperature processing is used as a matrix to form a γ + β fine two-phase structure containing a slight α 2 phase. However, this α 2 phase is a part that could not be completely transformed into a β phase formed by working recrystallization, has no meaning in the present invention, and has a very small volume fraction of several percent or less. The determination of the high temperature processing conditions, must be recrystallized gamma phase to destroy gamma + alpha 2 dual phase structure after initial melting and casting. At the processing temperature and degree of processing required to cause recrystallization of the γ phase, the precipitated β phase already formed by heat treatment before thermal transformation or high-temperature processing can sufficiently withstand deformation, and finally It is considered that the crystal γ phase became a structure in which the β phase segregated at the γ phase grain boundary with the β phase deformed in the grain growth process as a barrier. Such a mechanism has been proposed based on the experimental results so far. Based on this hypothesis, necessary high-temperature processing conditions will be examined. First, temperature, but when Cr is the third additive element, the β phase has already been
Since being formed on the alpha 2 phase of the initial lamellar structure is revealed by the inventors, it thermal processing recrystallization in the formation of β phase is not necessarily required condition is indicated,
The processing temperature was set to 1173 K or more necessary for recrystallization of the γ phase. If the temperature is lower than this temperature, recrystallization of the γ grains does not sufficiently occur, and it is difficult to crystallize the β phase at the γ grain boundaries. Further, in order to obtain a uniform structure, the working ratio was set to 60% or more. If the working ratio is lower than this, an unrecrystallized region is formed,
Insufficient β + γ dual phase structure containing grain boundary β phase, γ
This is because the β phase remains inside the matrix and it is difficult to impart superplastic deformability. On the other hand, when the initial strain rate is 5 × 10 −1 sec −1 or more, a work deformation structure is formed in addition to a recrystallization structure, and a grain boundary β phase cannot be obtained. The initial strain rate is 5 × 10 −5 s
If it is slower than ec- 1 , fine recrystallized γ grains undergo grain growth, and the effect of fine-grain superplasticity is significantly reduced, making it impossible to achieve superplasticity as in the present invention.
【0013】一方、高温加工に於いて、非酸化性雰囲気
または真空度を5×10-3Torrより高真空とした理由
は、酸化性雰囲気またはこの真空度よりも低い真空度の
場合、TiAl基金属間化合物合金が酸化し、諸特性を
劣化させるためである。また冷却速度を10K/minより
速くした理由は、第一段階では、粒界β相を有したγ相
を高温での加工熱処理で得たのちは、そのβ相を用いて
超塑性加工を施さなければならないが、もし10K/min
より遅い冷却速度で冷却した場合、β相の一部はα2 相
とγ相に変態して超塑性変形能を損なうためである。ま
た、第二段階では超塑性加工を施した材料(β+γ)を
変態熱処理によって、α2 相とγ相にすることにより強
度を上げるものだが、この変態熱処理は温度と時間が重
要で、冷却速度はβ相を消失させるという意味では大き
な問題はない。すなわち、プロセス上の経済性を加味し
た場合、いたずらに冷却速度を遅くする必要はなく、1
0K/minより速ければ、その変態熱処理の目的は達成で
きるからである。さらに降温温度を873Kまでとした
理由は、冷却速度を遅くし、降温温度を低下させること
は、TTT図上でのラメラー組織を安定化させることと
同値であり、超塑性変形に必要なβ相をなるべく安定に
存在させておくためである。即ち、降温温度はなるべく
高温で設定し、その設定最大値を873Kとした。この
温度よりも低い場合ラメラー組織をより安定化させると
同時に引き続いて行う、変態熱処理に於いて再加熱の必
要性から、産業上の簡便性を確保したいがためである。On the other hand, in high-temperature processing, the reason why the non-oxidizing atmosphere or the degree of vacuum is higher than 5 × 10 −3 Torr is that, in the case of an oxidizing atmosphere or a vacuum lower than this vacuum, a TiAl-based atmosphere is used. This is because the intermetallic compound alloy is oxidized to deteriorate various properties. The reason why the cooling rate was faster than 10K / min is the first stage floor, after obtaining a γ-phase having a grain boundary β phase thermomechanical treatment at a high temperature, the superplastic forming using the β-phase Must be applied, if 10K / min
When it cooled at a slower cooling rate, a portion of the β-phase in order to impair the superplastic deformability and transformed into alpha 2 phase and γ-phase. Moreover, the transformation heat treatment of the material (beta + gamma) subjected to superplastic forming in a second stage, something that increases the strength by the alpha 2 phase and gamma-phase, the transformation heat treatment is critical temperature and time, cooling rate There is no major problem in that the β phase disappears. That is, in consideration of the economics of the process, it is not necessary to unnecessarily reduce the cooling rate, and
If the speed is higher than 0 K / min, the purpose of the transformation heat treatment can be achieved. Further, the reason for setting the cooling temperature to 873K is that lowering the cooling rate and lowering the cooling temperature has the same value as stabilizing the lamellar structure on the TTT diagram, and the β phase required for superplastic deformation. Is to be as stable as possible. That is, the cooling temperature was set as high as possible, and the set maximum value was 873K. When the temperature is lower than this temperature, the lamellar structure is further stabilized, and at the same time, it is necessary to reheat the transformation heat treatment to be performed subsequently.
【0014】第一段階で高温加工によって形成された超
塑性変形能に優れた組織を同時に成形品にまで加工し、
第二段階では変態熱処理によってβ相を消失させる行程
である。この時の変態熱処理条件は、β相の相安定性か
ら1173K以上固相線温度以下の温度範囲において、
2時間から24時間の熱処理でよい。温度範囲をこの様
にした理由は、第一段階で形成されたβ相は熱的に準安
定状態にあり、この設定条件で容易にγ+α2 二相組織
に変態させることが可能だからである。一方1173K
よりも低い場合、変態に要する時間は長くなり、非経済
的であるためである。さらに変態熱処理によって形成さ
れたα2 相の体積分率は、初期粒界β相の体積分率に依
存する。粒界β相は、γの強度を損なうこと無しに超塑
性変形を起こさせるためには2%から25%必要であ
る。このβ相を上記変態熱処理で消失することによっ
て、形成されるα2 相は、初期β相の量と変態熱処理条
件によって必然的に5%以上40%以下となる。もし5
%以下であるとしたら、初期β相の量は2%よりも低い
か、変態熱処理条件をβ相消失以下の相変態を起こさせ
ることになる。即ち一部β相を残したことになり、強度
の向上が達成されないことと同位義である。またα2 相
が40%以上であるとしたら、初期β相の量は25%よ
りも高いか、変態熱処理が上記条件よりも長時間・高温
側にシフトしていることになる。このことは更なる高強
度化が望めない以上、何等実用上意味のあることではな
い。その理由は高強度化のメカニズムが粒界β相の相変
態によるものであって、決して他の因子は作用していな
いからである。即ち粒界β相の量が25%以内である限
り、相変態によって形成されるα2 相の体積分率は40
%を超えることが必然的にできなくなる。At the same time, the structure having excellent superplastic deformability formed by high-temperature processing in the first stage is simultaneously processed into a molded product,
The second step is a step of eliminating the β phase by transformation heat treatment. The transformation heat treatment conditions at this time are as follows: from the phase stability of β phase, in the temperature range of 1173K or more and the solidus temperature or less,
A heat treatment for 2 to 24 hours is sufficient. The reason for setting the temperature range in this manner is that the β phase formed in the first stage is in a thermally metastable state, and can easily be transformed into a γ + α 2 two-phase structure under the set conditions. 1173K
If it is lower than this, the time required for the transformation becomes longer, which is uneconomical. Further, the volume fraction of the α 2 phase formed by the transformation heat treatment depends on the volume fraction of the initial grain boundary β phase. The grain boundary β phase requires 2% to 25% to cause superplastic deformation without impairing the strength of γ. When the β phase disappears by the transformation heat treatment, the α 2 phase formed necessarily becomes 5% or more and 40% or less depending on the amount of the initial β phase and transformation heat treatment conditions. If 5
% Or less, the amount of the initial β phase is lower than 2%, or the transformation heat treatment condition causes the phase transformation to be equal to or less than the disappearance of the β phase. That is, the β phase is partially left, which is synonymous with no improvement in strength. If the α 2 phase is 40% or more, the amount of the initial β phase is higher than 25%, or the transformation heat treatment is shifted to a longer time and higher temperature than the above conditions. This is not practically meaningful, since further increase in strength cannot be expected. The reason for this is that the mechanism for increasing the strength is due to the phase transformation of the grain boundary β phase, and no other factor acts on it. That is, as long as the amount of the grain boundary β phase is within 25%, the volume fraction of the α 2 phase formed by the phase transformation is 40%.
% Cannot be inevitably exceeded.
【0015】一方、恒温鍛造、熱間押し出し、圧延に於
いて試料をTi合金カプセルに挿入し、カプセル内部を
5×10-3Torrよりも高真空に脱気した理由は、引き続
いて行う各高温加工処理に於いて、大気雰囲気下でもで
きるように試料自体の酸化を防止する目的で、大気と接
しないようにするためである。On the other hand, the reason why the sample was inserted into a Ti alloy capsule in the isothermal forging, hot extrusion, and rolling, and the inside of the capsule was evacuated to a vacuum higher than 5 × 10 −3 Torr is that each of the subsequent high-temperature This is because, in the processing, the sample itself is prevented from being oxidized so that the sample is not brought into contact with the atmosphere so that the sample itself can be oxidized.
【0016】さらに、恒温鍛造、熱間押し出し、圧延に
於いて試料をTi合金でシースした理由は、引き続いて
行う各高温加工に於いて、Ti合金のシースによって加
工組織制御を行うに必要な最低限の酸化防止が可能で、
産業上の利用に於いて簡便性が認められるからである。Further, the reason why the sample was sheathed with the Ti alloy in the isothermal forging, hot extrusion, and rolling is that in each subsequent high-temperature working, the minimum necessary for controlling the working structure by the sheath of the Ti alloy. Possible to prevent oxidation
This is because simplicity is recognized in industrial use.
【0017】これらの処理に於いてカプセルあるいはケ
ースにTi合金を使用した理由は、本材料との接触界面
での反応性が低いこと、及び加工温度に於ける強度比が
加工に適していることによる。即ち、試料とこれらカプ
セルあるいはケースとの両者に於ける強度比において、
試料強度が著しく高い場合、カプセルあるいはケースが
加工歪を担い、静水圧に近い状態での加圧ができず、最
悪の場合、試料組織制御前に破壊してしまう。またカプ
セルあるいはケース強度が試料強度よりも高い場合、加
工歪はカプセルあるいはケースの変形に費やされ、試料
への負荷が低減すると同時に、加工再結晶が進行しない
と同時に最悪の場合、カプセルあるいはケースが破壊し
てしまうからである。上記高温加工において、超塑性加
工により製品成形体にまで加工し、加工装置内で連続し
て変態熱処理を施すようにしてもよい。また、前記試料
を挿入したTi合金ケースの内部を5×10 -3 Torrより
も高真空で脱気後、エレクトロンビーム溶接でTi合金
ケースを密閉するようにしてもよい。 The reason for using a Ti alloy for the capsule or the case in these treatments is that the reactivity at the contact interface with the material is low and the strength ratio at the processing temperature is suitable for processing. by. That is, in the strength ratio of both the sample and these capsules or case,
When the sample strength is extremely high, the capsule or case bears processing strain, and cannot be pressurized in a state close to the hydrostatic pressure. In the worst case, the capsule or the case is broken before controlling the sample structure. If the capsule or case strength is higher than the sample strength, the processing strain is spent on the deformation of the capsule or case, and the load on the sample is reduced. Is destroyed. In the above-mentioned high-temperature processing,
Process to a molded product, and continuously in the processing equipment
Alternatively, a transformation heat treatment may be performed. In addition, the sample
5 × 10 -3 Torr inside Ti alloy case
Also degassed in high vacuum, then electron beam welding Ti alloy
The case may be sealed.
【0018】[0018]
(実施例1) 原子%で50.6Ti−46.5Al−2.88Cr金
属間化合物 1473K(1200℃)で60%加工度、初期歪速度
5×10-4s-1の恒温鍛造材 高純度Ti(99.9wt.%)、Al(99.99wt.
%)とCr(99.3wt.%)を溶解原料とし、プラズ
マ溶解によって約80mmφ×300mmの標記合金成分系
Cr添加TiAl基金属間化合物を溶製した。1373
K(1050℃)で96時間真空中にて均質化熱処理を
施した結果、結晶粒径80μmの等軸粒組織となった。
表1は均質化熱処理後の化学分析値である。このインゴ
ットから放電加工によって、35mmφ×42mmの円柱状
インゴットを切り出し、恒温鍛造を行った。鍛造は真空
雰囲気中にて、初期歪速度5×10-4s-1、試料温度1
473K(1200℃)で60%圧下した。図1に本試
料の恒温鍛造後の組織写真を示す。平均粒径18μmの
等軸微細結晶粒からなる組織と共に、結晶粒界に数μm
以下の厚みを有する粒界析出相が観察された。この粒界
相は後にβ相と同定された。鍛造後のインゴット材よ
り、ワイヤーカットにてゲージ部寸法11.5×3×2
mm3 の引張試験片を切り出し、真空雰囲気中にて歪速度
及び試験温度を変化させて引張試験を行った。各試料に
ついて試験温度、歪速度を一定にして試料破断まで試験
を行い、真応力−真歪線図を求めた。超塑性を示した結
果の一例として、1473K(1200℃)の試験温
度、5×10-4s-1の歪速度で約480%もの伸び値が
得られた。超塑性を示す試料は、ネッキングを示すこと
なくゲージ部が一様に変形しているのが観察され、粒界
β相が引張後延伸しているのが観察された。また応力の
歪速度依存性から算出される歪速度感受性指数(以下m
値)は、真応力0.1の値を用いると1273K(10
00℃)では0.31、1473K(1200℃)では
0.49という数字が得られた。これらの真応力−真歪
線図からm値を算出し温度依存性を示したのが表2であ
る。この表から1273K(1000℃)以上におい
て、m値は超塑性発現の指標である0.3を超えている
ことが明らかである。(Example 1) 50.6Ti-46.5Al-2.88Cr intermetallic compound at 5% atomic%, 60% workability at 1473K (1200 ° C), and constant temperature forged material with an initial strain rate of 5 × 10 -4 s -1 High purity Ti (99.9 wt.%), Al (99.99 wt.%)
%) And Cr (99.3 wt.%) As melting raw materials, and a TiAl-based intermetallic compound containing Cr and about 80 mmφ × 300 mm was alloyed by plasma melting. 1373
As a result of performing a homogenizing heat treatment in vacuum at K (1050 ° C.) for 96 hours, an equiaxed grain structure having a crystal grain size of 80 μm was obtained.
Table 1 shows the chemical analysis values after the homogenization heat treatment. A cylindrical ingot of 35 mmφ × 42 mm was cut out from the ingot by electric discharge machining and subjected to constant temperature forging. Forging is performed in a vacuum atmosphere at an initial strain rate of 5 × 10 -4 s -1 and a sample temperature of 1
The pressure was reduced by 60% at 473K (1200 ° C). FIG. 1 shows a photograph of the structure of this sample after constant temperature forging. Along with the structure consisting of equiaxed fine crystal grains having an average grain size of 18 μm, several μm
A grain boundary precipitated phase having the following thickness was observed. This grain boundary phase was later identified as β phase. From ingot material after forging, gauge part size 11.5 × 3 × 2 by wire cutting
A tensile test piece of mm 3 was cut out, and a tensile test was performed in a vacuum atmosphere while changing a strain rate and a test temperature. The test was performed until the sample was broken at a constant test temperature and strain rate for each sample, and a true stress-true strain diagram was obtained. As an example of the result showing superplasticity, an elongation value of about 480% was obtained at a test temperature of 1473 K (1200 ° C.) and a strain rate of 5 × 10 −4 s −1 . In the sample showing superplasticity, it was observed that the gauge portion was uniformly deformed without showing necking, and it was observed that the grain boundary β phase was stretched after tension. Further, a strain rate sensitivity index (hereinafter referred to as m) calculated from the strain rate dependency of stress.
Value) is 1273K (10
At 00 ° C.), 0.31 was obtained, and at 1473 K (1200 ° C.), 0.49 was obtained. Table 2 shows m-values calculated from these true stress-true strain diagrams to show the temperature dependence. From this table, it is clear that at 1273 K (1000 ° C.) or more, the m value exceeds 0.3 which is an index of the appearance of superplasticity.
【0019】これらの高温引張試験結果として、伸び値
の温度依存性を表3に示す。表3から1273K(10
00℃)以上において、伸び値が著しく向上することが
わかる。こうして得られたβ+γ二相組織をさらに、1
323Kにて12時間熱処理を施す。熱処理後の組織が
図2である。粒界β相の形態が不鮮明になったが、γ粒
の粗大化が起こっておらず、初期粒径の18μm前後で
あることがわかる。この熱処理を施した試料の1473
K(1200℃),5×10-4s-1の歪速度での引張試
験結果を表4に示す。この表から粒界β相の消失にとも
なう伸び値の低下と強度の増加が明らかである。また表
13に画像解析処理により求めた熱処理前後のα2 相及
びβ相の体積分率変化を示す。熱処理によってβ相が消
失し、α2 相が形成されるのがわかる。Table 3 shows the temperature dependence of the elongation value as a result of these high-temperature tensile tests. From Table 3 1273K (10
It can be seen that the elongation value is significantly improved when the temperature is higher than (00 ° C.). The thus obtained β + γ biphasic structure was further
Heat treatment is performed at 323K for 12 hours. FIG. 2 shows the structure after the heat treatment. Although the form of the grain boundary β phase became unclear, the γ grains did not become coarse, indicating that the initial grain size was around 18 μm. 1473 of the sample subjected to this heat treatment
Table 4 shows the tensile test results at K (1200 ° C.) and a strain rate of 5 × 10 −4 s −1 . From this table, it is clear that the elongation value decreases and the strength increases with the disappearance of the grain boundary β phase. Table 13 shows changes in the volume fraction of the α 2 phase and the β phase before and after the heat treatment determined by the image analysis processing. It can be seen that the β phase disappears and the α 2 phase is formed by the heat treatment.
【0020】[0020]
【表1】 [Table 1]
【0021】[0021]
【表2】 [Table 2]
【0022】[0022]
【表3】 [Table 3]
【0023】[0023]
【表4】 [Table 4]
【0024】(実施例2) 原子%で51.6Ti−43.5Al−4.87Cr金
属間化合物 1473K(1200℃)で60%加工度、初期歪速度
5×10-4s-1の恒温鍛造材 標記成分を実施例1と同様のプラズマ溶解法で溶製し、
同一熱処理を施した試料を、真空雰囲気中にて、初期歪
速度5×10-4s-1、試料温度1473K(1200
℃)で60%圧下の恒温鍛造を行った。表5はプラズマ
溶製熱処理後の成分分析値である。組織制御により平均
粒径約25μmの等軸微細組織が得られ、粒界には数μ
m以下の厚みを有する相が観察された。この粒界相は後
に実施例1同様にβ相と同定された。実施例1と同一方
法により高温引張試験を行い、真応力−真歪線図を求め
た。超塑性を示した結果の一例として、1473K(1
200℃),5×10-4s-1の歪速度で約470%以
上,1273K(1000℃),5×10-4s-1の歪速
度でやはり約470%以上の伸び値が得られた。超塑性
を示す試料は、ネッキングを示すことなくゲージ部が一
様に変形しているのが観察され、粒界相が引張後延伸し
ているのがみられた。また応力の歪速度依存性から算出
される歪速度感受性指数(以下m値)は、真応力0.1
の値を用いると1273K(1000℃)では0.3
3、1473K(1200℃)では0.46という数字
が得られた。これらの真応力−真歪線図からm値を算出
し温度依存性を表2に併せて示す。この表から1273
K(1000℃)以上において、m値は超塑性発現の指
標である0.3を超えていることが明らかである。(Example 2) A constant temperature forging of 51.6 Ti-43.5 Al-4.87 Cr intermetallic compound in atomic% at 1473 K (1200 ° C.), 60% workability, and an initial strain rate of 5 × 10 -4 s -1 . The title components were melted by the same plasma melting method as in Example 1,
The sample subjected to the same heat treatment was subjected to an initial strain rate of 5 × 10 −4 s −1 and a sample temperature of 1473 K (1200) in a vacuum atmosphere.
C) at a constant pressure of 60%. Table 5 shows the component analysis values after the plasma melting heat treatment. An equiaxed microstructure with an average grain size of about 25 μm is obtained by microstructure control, and several μm
m or less was observed. This grain boundary phase was later identified as β phase as in Example 1. A high-temperature tensile test was performed in the same manner as in Example 1 to obtain a true stress-true strain diagram. As an example of the result showing superplasticity, 1473K (1
200 ℃), 5 × 10 at a strain rate of -4 s -1 to about 470% or more, 1273K (1000 ℃), 5 × 10 -4 s elongation still of greater than or equal to about 470% at a strain rate of -1 is obtained Was. In the sample exhibiting superplasticity, it was observed that the gauge portion was uniformly deformed without showing necking, and it was observed that the grain boundary phase was stretched after tension. The strain rate sensitivity index (hereinafter referred to as m value) calculated from the strain rate dependency of the stress is a true stress of 0.1.
Is 0.37 at 1273K (1000 ° C)
At 3,1473K (1200 ° C), a figure of 0.46 was obtained. The m value was calculated from the true stress-true strain diagram, and the temperature dependence is also shown in Table 2. From this table, 1273
At K (1000 ° C.) or higher, it is apparent that the m value exceeds 0.3 which is an index of the appearance of superplasticity.
【0025】これらの高温引張試験結果として、伸び値
の温度依存性を表3に併せて示す。表3から1273K
(1000℃)以上において、伸び値が著しく向上する
ことがわかる。こうして得られたβ+γ二相組織をさら
に、1323Kにて12時間熱処理を施す。粒界β相の
形態が不鮮明になったが、γ粒の粗大化が起こっておら
ず、初期粒径の25μm前後であった。この熱処理を施
した試料の1473K(1200℃)、5×10-4s-1
の歪速度での引張試験結果を表4に示す。この表から粒
界β相の消失に伴う伸び値の低下と強度の増加が明らか
になった。また表13に画像解析処理により求めた熱処
理前後のα2 相及びβ相の体積分率変化を示す。熱処理
によってβ相が消失し、α2 相が形成されるのがわか
る。As a result of the high temperature tensile test, the temperature dependence of the elongation value is also shown in Table 3. From Table 3 1273K
It is understood that the elongation value is significantly improved at (1000 ° C.) or higher. The β + γ two-phase structure thus obtained is further subjected to a heat treatment at 1323 K for 12 hours. Although the form of the grain boundary β phase became unclear, the γ grains were not coarsened, and the initial grain size was around 25 μm. 1473K (1200 ° C.), 5 × 10 −4 s −1 of the heat-treated sample
Table 4 shows the results of the tensile test at a strain rate of. From this table, it was clarified that the elongation value decreased and the strength increased with the disappearance of the grain boundary β phase. Table 13 shows changes in the volume fraction of the α 2 phase and the β phase before and after the heat treatment determined by the image analysis processing. It can be seen that the β phase disappears and the α 2 phase is formed by the heat treatment.
【0026】[0026]
【表5】 [Table 5]
【0027】(実施例3) 原子%で50.1Ti−46.6Al−2.80Cr−
0.57Si金属間化合物 1473K(1200℃)で60%加工度、初期歪速度
5×10-4s-1の恒温鍛造材 標記成分を実施例1と同様のプラズマ溶解法で溶製し、
同一熱処理を施した試料を、真空雰囲気中にて、初期歪
速度5×10-4s-1、試料温度1473K(1200
℃)で60%圧下の恒温鍛造を行った。表6はプラズマ
溶製熱処理後の成分分析値である。組織制御により平均
粒径約30μmの等軸微細組織が得られ、粒界には数μ
m以下の厚みを有する相が観察された。この粒界相は後
に実施例1同様にβ相と同定された。実施例1と同一方
法により高温引張試験を行い、真応力−真歪線図を求め
た。超塑性を示した結果の一例として、1473K(1
200℃),5×10-4s-1の歪速度で約470%以上
の伸び値が得られた。超塑性を示す試料は、ネッキング
を示すことなくゲージ部が一様に変形しているのが観察
され、粒界相が引張後延伸しているのがみられた。また
応力の歪速度依存性から算出される歪速度感受性指数
(以下m値)は、真応力0.1の値を用いると1273
K(1000℃)では0.30、1473K(1200
℃)では0.41という数字が得られた。これらの真応
力−真歪線図からm値を算出しその温度依存性を表2に
併せて示す。この表から1273K(1000℃)以上
において、m値は超塑性発現の指標である0.3を超え
ていることが明らかである。Example 3 50.1 Ti-46.6 Al-2.80 Cr-atomic%
0.57Si intermetallic compound A constant temperature forging material having a working ratio of 60% at 1473 K (1200 ° C.) and an initial strain rate of 5 × 10 −4 s −1 The title component was melted by the same plasma melting method as in Example 1,
The sample subjected to the same heat treatment was subjected to an initial strain rate of 5 × 10 −4 s −1 and a sample temperature of 1473 K (1200) in a vacuum atmosphere.
C) at a constant pressure of 60%. Table 6 shows the component analysis values after the plasma melting heat treatment. An equiaxed microstructure having an average particle size of about 30 μm is obtained by controlling the structure, and several μm
m or less was observed. This grain boundary phase was later identified as β phase as in Example 1. A high-temperature tensile test was performed in the same manner as in Example 1 to obtain a true stress-true strain diagram. As an example of the result showing superplasticity, 1473K (1
An elongation value of about 470% or more was obtained at a strain rate of 5 × 10 −4 s −1 at 200 ° C.). In the sample exhibiting superplasticity, it was observed that the gauge portion was uniformly deformed without showing necking, and it was observed that the grain boundary phase was stretched after tension. The strain rate sensitivity index (hereinafter referred to as m value) calculated from the strain rate dependency of the stress is 1273 when the value of the true stress 0.1 is used.
For K (1000 ° C), 0.30, 1473K (1200
° C) gave a number of 0.41. The m value was calculated from the true stress-true strain diagram, and the temperature dependence is shown in Table 2. From this table, it is clear that at 1273 K (1000 ° C.) or more, the m value exceeds 0.3 which is an index of the appearance of superplasticity.
【0028】これらの高温引張試験結果として、伸び値
の温度依存性を表3に併せて示す。表3から1273K
(1000℃)以上において、伸び値が著しく向上する
ことがわかる。こうして得られたβ+γ二相組織をさら
に、1323Kにて12時間熱処理を施す。粒界β相の
形態が不鮮明になったが、γ粒の粗大化が起こっておら
ず、初期粒径の30μm前後であった。この熱処理を施
した試料の1473K(1200℃),5×10-4s-1
の歪速度での引張試験結果を表4に示す。この表から粒
界β相の消失に伴う伸び値の低下と強度の増加が明らか
になった。また表13に画像解析処理により求めた熱処
理前後のα2 相及びβ相の体積分率変化を示す。熱処理
によってβ相が消失し、α2 相が形成されるのがわか
る。As a result of these high-temperature tensile tests, the temperature dependence of the elongation value is also shown in Table 3. From Table 3 1273K
It is understood that the elongation value is significantly improved at (1000 ° C.) or higher. The β + γ two-phase structure thus obtained is further subjected to a heat treatment at 1323 K for 12 hours. Although the form of the grain boundary β phase became unclear, the γ grains were not coarsened and the initial grain size was around 30 μm. 1473 K (1200 ° C.), 5 × 10 −4 s −1 of the heat-treated sample
Table 4 shows the results of the tensile test at a strain rate of. From this table, it was clarified that the elongation value decreased and the strength increased with the disappearance of the grain boundary β phase. Table 13 shows changes in the volume fraction of the α 2 phase and the β phase before and after the heat treatment determined by the image analysis processing. It can be seen that the β phase disappears and the α 2 phase is formed by the heat treatment.
【0029】[0029]
【表6】 [Table 6]
【0030】(実施例4) 原子%で48.9Ti−47.0Al−2.83Cr−
1.33B金属間化合物 1473K(1200℃)で60%加工度、初期歪速度
5×10-4s-1の恒温鍛造材 標記成分を実施例1と同様のプラズマ溶解法で溶製し、
同一熱処理を施した試料を、真空雰囲気中にて、初期歪
速度5×10-4s-1、試料温度1473K(1200
℃)で60%圧下の恒温鍛造を行った。表7はプラズマ
溶製熱処理後の成分分析値である。組織制御により平均
粒径約23μmの等軸微細組織が得られ、粒界には数μ
m以下の厚みを有する相が観察された。この粒界相は後
に実施例1同様にβ相と同定された。実施例1と同一方
法により高温引張試験を行い、真応力−真歪線図を求め
た。超塑性を示した結果の一例として、1473K(1
200℃),5×10-4s-1の歪速度で約440%以上
の伸び値が得られた。超塑性を示す試料は、ネッキング
を示すことなくゲージ部が一様に変形しているのが観察
され、粒界相が引張後延伸しているのがみられた。また
応力の歪速度依存性から算出される歪速度感受性指数
(以下m値)は、真応力0.1の値を用いると1273
K(1000℃)では0.28、1473K(1200
℃)では0.47という数字が得られた。これらの真応
力−真歪線図からm値を算出し温度依存性を表2に併せ
て示す。この表から1273K(1000℃)以上にお
いて、m値は超塑性発現の指標である0.3を超えてい
ることが明らかである。Example 4 48.9 Ti-47.0 Al-2.83 Cr-atomic%
1.33B intermetallic compound A constant temperature forged material having a working ratio of 60% at 1473 K (1200 ° C.) and an initial strain rate of 5 × 10 −4 s −1 The title component was melted by the same plasma melting method as in Example 1,
The sample subjected to the same heat treatment was subjected to an initial strain rate of 5 × 10 −4 s −1 and a sample temperature of 1473 K (1200) in a vacuum atmosphere.
C) at a constant pressure of 60%. Table 7 shows the component analysis values after the plasma melting heat treatment. An equiaxed microstructure having an average particle size of about 23 μm is obtained by microstructure control, and several μm
m or less was observed. This grain boundary phase was later identified as β phase as in Example 1. A high-temperature tensile test was performed in the same manner as in Example 1 to obtain a true stress-true strain diagram. As an example of the result showing superplasticity, 1473K (1
An elongation value of about 440% or more was obtained at a strain rate of 5 × 10 −4 s −1 at 200 ° C.). In the sample exhibiting superplasticity, it was observed that the gauge portion was uniformly deformed without showing necking, and it was observed that the grain boundary phase was stretched after tension. The strain rate sensitivity index (hereinafter referred to as m value) calculated from the strain rate dependency of the stress is 1273 when the value of the true stress 0.1 is used.
For K (1000 ° C.), 0.28, 1473 K (1200
° C) gave a number of 0.47. The m value was calculated from the true stress-true strain diagram, and the temperature dependence is also shown in Table 2. From this table, it is clear that at 1273 K (1000 ° C.) or more, the m value exceeds 0.3 which is an index of the appearance of superplasticity.
【0031】これらの高温引張試験結果として、伸び値
の温度依存性を表3に併せて示す。表3から1273K
(1000℃)以上において、伸び値が著しく向上する
ことがわかる。こうして得られたβ+γ二相組織をさら
に、1323Kにて12時間熱処理を施す。粒界β相の
形態が不鮮明になったが、γ粒の粗大化が起こっておら
ず、初期粒径の23μm前後であった。この熱処理を施
した試料の1473K(1200℃),5×10-4s-1
の歪速度での引張試験結果を表4に示す。この表から粒
界β相の消失に伴う伸び値の低下と強度の増加が明らか
になった。また表13に画像解析処理により求めた熱処
理前後のα2 相及びβ相の体積分率変化を示す。熱処理
によってβ相が消失し、α2 相が形成されるのがわか
る。As a result of these high-temperature tensile tests, the temperature dependence of the elongation value is also shown in Table 3. From Table 3 1273K
It is understood that the elongation value is significantly improved at (1000 ° C.) or higher. The β + γ two-phase structure thus obtained is further subjected to a heat treatment at 1323 K for 12 hours. Although the form of the grain boundary β phase became unclear, the γ grains were not coarsened, and the initial grain size was around 23 μm. 1473 K (1200 ° C.), 5 × 10 −4 s −1 of the heat-treated sample
Table 4 shows the results of the tensile test at a strain rate of. From this table, it was clarified that the elongation value decreased and the strength increased with the disappearance of the grain boundary β phase. Table 13 shows changes in the volume fraction of the α 2 phase and the β phase before and after the heat treatment determined by the image analysis processing. It can be seen that the β phase disappears and the α 2 phase is formed by the heat treatment.
【0032】[0032]
【表7】 [Table 7]
【0033】(実施例5) 原子%で49.2Ti−47.0Al−2.85Cr−
0.99Nb金属間化合物 1473K(1200℃)で60%加工度、初期歪速度
5×10-4s-1の恒温鍛造材 標記成分を実施例1と同様のプラズマ溶解法で溶製し、
同一熱処理を施した試料を、真空雰囲気中にて、初期歪
速度5×10-4s-1、試料温度1473K(1200
℃)で60%圧下の恒温鍛造を行った。表8はプラズマ
溶製熱処理後の成分分析値である。組織制御により平均
粒径約16μmの等軸微細組織が得られ、粒界には数μ
m以下の厚みを有する相が観察された。この粒界相は後
に実施例1同様にβ相と同定された。実施例1と同一方
法により高温引張試験を行い、真応力−真歪線図を求め
た。超塑性を示した結果の一例として、1473K(1
200℃),5×10-4s-1の歪速度で約380%以上
の伸び値が得られた。超塑性を示す試料は、ネッキング
を示すことなくゲージ部が一様に変形しているのが観察
され、粒界相が引張後延伸しているのがみられた。また
応力の歪速度依存性から算出される歪速度感受性指数
(以下m値)は、真応力0.1の値を用いると1273
K(1000℃)では0.30、1473K(1200
℃)では0.42という数字が得られた。これらの真応
力−真歪線図からm値を算出しその温度依存性を表2に
併せて示す。この表から1273K(1000℃)以上
において、m値は超塑性発現の指標である0.3を超え
ていることが明らかである。Example 5 49.2 Ti-47.0 Al-2.85 Cr-atomic%
0.99 Nb intermetallic compound A constant temperature forged material having a working ratio of 60% at 1473 K (1200 ° C.) and an initial strain rate of 5 × 10 −4 s −1 The title component was melted by the same plasma melting method as in Example 1,
The sample subjected to the same heat treatment was subjected to an initial strain rate of 5 × 10 −4 s −1 and a sample temperature of 1473 K (1200) in a vacuum atmosphere.
C) at a constant pressure of 60%. Table 8 shows the component analysis values after the plasma melting heat treatment. An equiaxed microstructure with an average grain size of about 16 μm was obtained by microstructure control, and several μm
m or less was observed. This grain boundary phase was later identified as β phase as in Example 1. A high-temperature tensile test was performed in the same manner as in Example 1 to obtain a true stress-true strain diagram. As an example of the result showing superplasticity, 1473K (1
An elongation value of about 380% or more was obtained at a strain rate of 5 × 10 −4 s −1 at 200 ° C.). In the sample exhibiting superplasticity, it was observed that the gauge portion was uniformly deformed without showing necking, and it was observed that the grain boundary phase was stretched after tension. The strain rate sensitivity index (hereinafter referred to as m value) calculated from the strain rate dependency of the stress is 1273 when the value of the true stress 0.1 is used.
For K (1000 ° C), 0.30, 1473K (1200
° C) gave a value of 0.42. The m value was calculated from the true stress-true strain diagram, and the temperature dependence is shown in Table 2. From this table, it is clear that at 1273 K (1000 ° C.) or more, the m value exceeds 0.3 which is an index of the appearance of superplasticity.
【0034】これらの高温引張試験結果として、伸び値
の温度依存性を表3に併せて示す。表3から1273K
(1000℃)以上において、伸び値が著しく向上する
ことがわかる。こうして得られたβ+γ二相組織をさら
に、1323Kにて12時間熱処理を施す。粒界β相の
形態が不鮮明になったが、γ粒の粗大化が起こっておら
ず、初期粒径の16μm前後であった。この熱処理を施
した試料の1473K(1200℃),5×10-4s-1
の歪速度での引張試験結果を表4に示す。この表から粒
界β相の消失に伴う伸び値の低下と強度の増加が明らか
になった。また表13に画像解析処理により求めた熱処
理前後のα2 相及びβ相の体積分率変化を示す。熱処理
によってβ相が消失し、α2 相が形成されるのがわか
る。As a result of these high-temperature tensile tests, the temperature dependence of the elongation value is also shown in Table 3. From Table 3 1273K
It is understood that the elongation value is significantly improved at (1000 ° C.) or higher. The β + γ two-phase structure thus obtained is further subjected to a heat treatment at 1323 K for 12 hours. Although the form of the grain boundary β phase became unclear, the γ grains were not coarsened, and the initial grain size was around 16 μm. 1473 K (1200 ° C.), 5 × 10 −4 s −1 of the heat-treated sample
Table 4 shows the results of the tensile test at a strain rate of. From this table, it was clarified that the elongation value decreased and the strength increased with the disappearance of the grain boundary β phase. Table 13 shows changes in the volume fraction of the α 2 phase and the β phase before and after the heat treatment determined by the image analysis processing. It can be seen that the β phase disappears and the α 2 phase is formed by the heat treatment.
【0035】[0035]
【表8】 [Table 8]
【0036】(実施例6) 原子%で48.8Ti−46.8Al−2.60Cr−
1.05Nb−0.75Si金属間化合物 1473K(1200℃)で60%加工度、初期歪速度
5×10-4s-1の恒温鍛造材 標記成分を実施例1と同様のプラズマ溶解法で溶製し、
同一熱処理を施した試料を、真空雰囲気中にて、初期歪
速度5×10-4s-1、試料温度1473K(1200
℃)で60%圧下の恒温鍛造を行った。表9はプラズマ
溶製熱処理後の成分分析値である。組織制御により平均
粒径約20μmの等軸微細組織が得られ、粒界には数μ
m以下の厚みを有する相が観察された。この粒界相は後
に実施例1同様にβ相と同定された。実施例1と同一方
法により高温引張試験を行い、真応力−真歪線図を求め
た。超塑性を示した結果の一例として、1473K(1
200℃),5×10-4s-1の歪速度で約350%以上
の伸び値が得られた。超塑性を示す試料は、ネッキング
を示すことなくゲージ部が一様に変形しているのが観察
され、粒界相が引張後延伸しているのがみられた。また
応力の歪速度依存性から算出される歪速度感受性指数
(以下m値)は、真応力0.1の値を用いると1273
K(1000℃)では0.29、1473K(1200
℃)では0.40という数字が得られた。これらの真応
力−真歪線図からm値を算出し温度依存性を表2に併せ
て示す。この表から1273K(1000℃)以上にお
いて、m値は超塑性発現の指標である0.3を超えてい
ることが明らかである。Example 6 48.8 Ti-46.8 Al-2.60 Cr-atomic%
1.05 Nb-0.75 Si intermetallic compound Isothermal forging with 60% workability at 1473 K (1200 ° C.) and initial strain rate of 5 × 10 −4 s −1 The title component was melted by the same plasma melting method as in Example 1. Made
The sample subjected to the same heat treatment was subjected to an initial strain rate of 5 × 10 −4 s −1 and a sample temperature of 1473 K (1200) in a vacuum atmosphere.
C) at a constant pressure of 60%. Table 9 shows the component analysis values after the plasma melting heat treatment. An equiaxed microstructure with an average particle size of about 20 μm is obtained by microstructure control, and several μm
m or less was observed. This grain boundary phase was later identified as β phase as in Example 1. A high-temperature tensile test was performed in the same manner as in Example 1 to obtain a true stress-true strain diagram. As an example of the result showing superplasticity, 1473K (1
An elongation value of about 350% or more was obtained at a strain rate of 5 × 10 −4 s −1 at 200 ° C.). In the sample exhibiting superplasticity, it was observed that the gauge portion was uniformly deformed without showing necking, and it was observed that the grain boundary phase was stretched after tension. The strain rate sensitivity index (hereinafter referred to as m value) calculated from the strain rate dependency of the stress is 1273 when the value of the true stress 0.1 is used.
For K (1000 ° C.), 0.29, 1473 K (1200
° C) gave a number of 0.40. The m value was calculated from the true stress-true strain diagram, and the temperature dependence is also shown in Table 2. From this table, it is clear that at 1273 K (1000 ° C.) or more, the m value exceeds 0.3 which is an index of the appearance of superplasticity.
【0037】これらの高温引張試験結果として、伸び値
の温度依存性を表3に併せて示す。表3から1273K
(1000℃)以上において、伸び値が著しく向上する
ことがわかる。こうして得られたβ+γ二相組織をさら
に、1323Kにて12時間熱処理を施す。粒界β相の
形態が不鮮明になったが、γ粒の粗大化が起こっておら
ず、初期粒径の20μm前後であった。この熱処理を施
した試料の1473K(1200℃),5×10-4s-1
の歪速度での引張試験結果を表4に示す。この表から粒
界β相の消失に伴う伸び値の低下と強度の増加が明らか
になった。また表13に画像解析処理により求めた熱処
理前後のα2 相及びβ相の体積分率変化を示す。熱処理
によってβ相が消失し、α2 相が形成されるのがわか
る。As a result of these high-temperature tensile tests, the temperature dependence of the elongation value is also shown in Table 3. From Table 3 1273K
It is understood that the elongation value is significantly improved at (1000 ° C.) or higher. The β + γ two-phase structure thus obtained is further subjected to a heat treatment at 1323 K for 12 hours. Although the form of the grain boundary β phase became unclear, the γ grains were not coarsened and the initial grain size was around 20 μm. 1473 K (1200 ° C.), 5 × 10 −4 s −1 of the heat-treated sample
Table 4 shows the results of the tensile test at a strain rate of. From this table, it was clarified that the elongation value decreased and the strength increased with the disappearance of the grain boundary β phase. Table 13 shows changes in the volume fraction of the α 2 phase and the β phase before and after the heat treatment determined by the image analysis processing. It can be seen that the β phase disappears and the α 2 phase is formed by the heat treatment.
【0038】[0038]
【表9】 [Table 9]
【0039】(比較例1) 原子%で48.2Ti−48.6Al−3.2V金属間
化合物 1473K(1200℃)で60%加工度、初期歪速度
5×10-4s-1の恒温鍛造材 標記成分を実施例1と同様のプラズマ溶解法で溶製し、
同一熱処理を施した試料を、真空雰囲気中にて、初期歪
速度5×10-4s-1、試料温度1473K(1200
℃)で60%圧下の恒温鍛造を行った。図3に本試料の
恒温鍛造後の組織写真を示す。平均粒径25μmの等軸
微細結晶粒からなる組織が観察されたが、実施例に観察
されたような粒界相はみられなかった。表10はプラズ
マ溶製熱処理後の成分分析値である。実施例1と同一方
法により高温引張試験を行い、真応力−真歪線図を求め
た。実施例で超塑性伸びの得られた試験条件の1473
K(1200℃),5×10-4s-1の歪速度で約170
%の伸び値が得られた。引張試験片は、ネッキングを示
していた。また応力の歪速度依存性から算出される歪速
度感受性指数(以下m値)は、真応力0.1の値を用い
ると1473K(1200℃)では0.20という値が
得られた。これらの真応力−真歪線図からm値を算出し
その温度依存性を表2に併せて示す。この表から本試料
は超塑性を示さないことが明らかになった。(Comparative Example 1) Isothermal forging of 48.2Ti-48.6Al-3.2V intermetallic compound in atomic% at 1473K (1200 ° C), 60% workability, and initial strain rate of 5 × 10 -4 s -1 The title components were melted by the same plasma melting method as in Example 1,
The sample subjected to the same heat treatment was subjected to an initial strain rate of 5 × 10 −4 s −1 and a sample temperature of 1473 K (1200) in a vacuum atmosphere.
C) at a constant pressure of 60%. FIG. 3 shows a micrograph of the structure of this sample after constant temperature forging. A structure composed of equiaxed fine crystal grains having an average particle size of 25 μm was observed, but no grain boundary phase as observed in the examples was observed. Table 10 shows the component analysis values after the plasma melting heat treatment. A high-temperature tensile test was performed in the same manner as in Example 1 to obtain a true stress-true strain diagram. 1473 of the test conditions under which the superplastic elongation was obtained in the examples.
K (1200 ° C.), about 170 at a strain rate of 5 × 10 -4 s -1
% Elongation was obtained. The tensile specimen showed necking. The strain rate sensitivity index (hereinafter referred to as m value) calculated from the strain rate dependency of the stress was 0.20 at 1473 K (1200 ° C.) when the true stress value of 0.1 was used. The m value was calculated from the true stress-true strain diagram, and the temperature dependence is shown in Table 2. From this table, it became clear that this sample did not show superplasticity.
【0040】これらの高温引張試験結果として、伸び値
の温度依存性を表3に実施例1と併せて示す。この表か
ら高温に於いても実施例でみられたような塑性伸びが得
られていないことが明らかである。こうして得られた組
織をさらに1323Kにて12時間熱処理を施す。熱処
理後の組織が図4である。熱処理によってγ粒の粗大化
が起こっていることがわかる。この熱処理を施した試料
の1473K(1200℃),5×10-4s-1の歪速度
での引張試験結果を表4に示す。この表からγ粒の粗大
化に伴う伸び値の低下と強度の低下が明らかである。ま
た表13に画像解析処理により求めた熱処理前後のα2
相及びβ相の体積分率変化を示す。α2 相は熱処理に依
存しないで存在し、β相の体積分率はごく微量であるこ
とがわかる。As a result of these high-temperature tensile tests, the temperature dependence of the elongation value is shown in Table 3 together with Example 1. From this table, it is clear that even at a high temperature, the plastic elongation as in the examples was not obtained. The structure thus obtained is further subjected to a heat treatment at 1323 K for 12 hours. FIG. 4 shows the structure after the heat treatment. It can be seen that the γ grains are coarsened by the heat treatment. Table 4 shows the results of a tensile test of the heat-treated sample at 1473 K (1200 ° C.) and a strain rate of 5 × 10 −4 s −1 . From this table, it is clear that the elongation value decreases and the strength decreases due to the coarsening of the γ grains. Table 13 shows α 2 before and after the heat treatment determined by the image analysis processing.
2 shows a change in volume fraction of the phase and the β phase. It can be seen that the α 2 phase exists independently of the heat treatment, and the volume fraction of the β phase is very small.
【0041】[0041]
【表10】 [Table 10]
【0042】(比較例2) 原子%で50.2Ti−48.6Al−1.2Mn金属
間化合物 1473K(1200℃)で60%加工度、初期歪速度
5×10-4s-1の恒温鍛造材 標記成分を実施例1と同様のプラズマ溶解法で溶製し、
同一熱処理を施した試料を、真空雰囲気中にて、初期歪
速度5×10-4s-1、試料温度1473K(1200
℃)で60%圧下の恒温鍛造を行った。約32μmの等
軸微細粒組織が得られた。表11はプラズマ溶製熱処理
後の成分分析値である。実施例1と同一方法により高温
引張試験を行い、真応力−真歪線図を求めた。実施例で
超塑性伸びの得られた試験条件の1473K(1200
℃),5×10-4s-1の歪速度で約120%の伸び値が
得られ、引張試験片はネッキングを示していた。また応
力の歪速度依存性から算出される歪速度感受性指数(以
下m値)は、真応力0.1の値を用いると1473K
(1200℃)では0.20という値が得られた。これ
らの真応力−真歪線図からm値を算出しその温度依存性
を表2に併せて示す。この表から本試料は超塑性を示さ
ないことが明らかになった。(Comparative Example 2) Isothermal forging of 50.2Ti-48.6Al-1.2Mn intermetallic compound in atomic% at 1473K (1200 ° C) with 60% workability and initial strain rate of 5 × 10 -4 s -1 The title components were melted by the same plasma melting method as in Example 1,
The sample subjected to the same heat treatment was subjected to an initial strain rate of 5 × 10 −4 s −1 and a sample temperature of 1473 K (1200) in a vacuum atmosphere.
C) at a constant pressure of 60%. An equiaxed fine grain structure of about 32 μm was obtained. Table 11 shows the component analysis values after the plasma melting heat treatment. A high-temperature tensile test was performed in the same manner as in Example 1 to obtain a true stress-true strain diagram. In the example, 1473K (1200
° C), an elongation value of about 120% was obtained at a strain rate of 5 × 10 -4 s -1 , and the tensile test piece showed necking. The strain rate sensitivity index (hereinafter referred to as m value) calculated from the strain rate dependency of the stress is 1473K when the true stress value of 0.1 is used.
At (1200 ° C.), a value of 0.20 was obtained. The m value was calculated from the true stress-true strain diagram, and the temperature dependence is shown in Table 2. From this table, it became clear that this sample did not show superplasticity.
【0043】これらの高温引張試験結果として、伸び値
の温度依存性を表3に実施例1と併せて示す。この表3
から高温に於いても実施例でみられたような塑性伸びが
得られていないことが明らかである。こうして得られた
組織をさらに1323Kにて12時間熱処理を施す。熱
処理によってγ粒の粗大化が起こっていた。この熱処理
を施した試料の1473K(1200℃),5×10-4
s-1の歪速度での引張試験結果を表4に示す。この表か
らγ粒の粗大化に伴う伸び値の低下と強度の低下が明ら
かである。また表13に画像解析処理により求めた熱処
理前後のα2 相及びβ相の体積分率変化を示す。α2 相
は熱処理に依存しないで存在し、β相の体積分率はごく
微量であることがわかる。As a result of these high-temperature tensile tests, the temperature dependence of the elongation value is shown in Table 3 together with Example 1. This Table 3
From this, it is clear that even at a high temperature, the plastic elongation as observed in the examples was not obtained. The structure thus obtained is further subjected to a heat treatment at 1323 K for 12 hours. The γ grains were coarsened by the heat treatment. 1473K (1200 ° C.), 5 × 10 −4 of the heat-treated sample
Table 4 shows the tensile test results at a strain rate of s -1 . From this table, it is clear that the elongation value decreases and the strength decreases due to the coarsening of the γ grains. Table 13 shows changes in the volume fraction of the α 2 phase and the β phase before and after the heat treatment determined by the image analysis processing. It can be seen that the α 2 phase exists independently of the heat treatment, and the volume fraction of the β phase is very small.
【0044】[0044]
【表11】 [Table 11]
【0045】(比較例3) 原子%で50.5Ti−49.5Al金属間化合物 1473K(1200℃)で74%加工度、初期歪速度
5×10-4s-1の恒温鍛造材 標記成分を実施例1と同様のプラズマ溶解法で溶製し、
同一熱処理を施した試料を、真空雰囲気中にて、初期歪
速度5×10-4s-1、試料温度1473K(1200)
℃で60%圧下の恒温鍛造を行った。約26μmの等軸
微細粒組織が得られた。表12はプラズマ溶製熱処理後
の成分分析値である。実施例1と同一方法により高温引
張試験を行い、真応力−真歪線図を求めた。実施例で超
塑性伸びの得られた試験条件の1473K(1200
℃),5×10-4s-1の歪速度で約120%の伸び値が
得られ、引張試験片はネッキングを示していた。また応
力の歪速度依存性から算出される歪速度感受性指数(以
下m値)は、真応力0.1の値を用いると1473K
(1200℃)は0.20という値が得られた。これら
の真応力−真歪線図からm値を算出しその温度依存性を
表2に併せて示す。この表から本試料は超塑性を示さな
いことが明らかになった。(Comparative Example 3) 50.5 Ti-49.5 Al intermetallic compound in atomic%, 74% workability at 1473 K (1200 ° C.), and constant temperature forging material with an initial strain rate of 5 × 10 −4 s −1. Melted by the same plasma melting method as in Example 1,
A sample subjected to the same heat treatment was subjected to an initial strain rate of 5 × 10 −4 s −1 and a sample temperature of 1473 K (1200) in a vacuum atmosphere.
Constant temperature forging was performed at 60 ° C. under a pressure of 60%. An equiaxed fine grain structure of about 26 μm was obtained. Table 12 shows the component analysis values after the plasma melting heat treatment. A high-temperature tensile test was performed in the same manner as in Example 1 to obtain a true stress-true strain diagram. In the example, 1473K (1200
° C), an elongation value of about 120% was obtained at a strain rate of 5 × 10 -4 s -1 , and the tensile test piece showed necking. The strain rate sensitivity index (hereinafter referred to as m value) calculated from the strain rate dependency of the stress is 1473K when the true stress value of 0.1 is used.
(1200 ° C.) gave a value of 0.20. The m value was calculated from the true stress-true strain diagram, and the temperature dependence is shown in Table 2. From this table, it became clear that this sample did not show superplasticity.
【0046】これらの高温引張試験結果として、伸び値
の温度依存性を表3に実施例1と併せて示す。この表3
から高温に於いても実施例でみられたような塑性伸びが
得られていないことが明らかである。こうして得られた
組織をさらに1323Kにて12時間熱処理を施す。熱
処理によってγ粒の粗大化が起こっていた。この熱処理
を施した試料の1473K、5×10-4s-1の歪速度で
の引張試験結果を表4に示す。この表からγ粒の粗大化
に伴う伸び値の低下と強度の低下が明らかである。また
表13に画像解析処理により求めた熱処理前後のα2 相
及びβ相の体積分率変化を示す。α2 相は熱処理に依存
しないで存在し、β相の体積分率はごく微量であること
がわかる。As a result of these high-temperature tensile tests, the temperature dependence of the elongation value is shown in Table 3 together with Example 1. This Table 3
From this, it is clear that even at a high temperature, the plastic elongation as observed in the examples was not obtained. The structure thus obtained is further subjected to a heat treatment at 1323 K for 12 hours. The γ grains were coarsened by the heat treatment. Table 4 shows the results of a tensile test of the heat-treated sample at 1473 K and a strain rate of 5 × 10 −4 s −1 . From this table, it is clear that the elongation value decreases and the strength decreases due to the coarsening of the γ grains. Table 13 shows changes in the volume fraction of the α 2 phase and the β phase before and after the heat treatment determined by the image analysis processing. It can be seen that the α 2 phase exists independently of the heat treatment, and the volume fraction of the β phase is very small.
【0047】[0047]
【表12】 [Table 12]
【0048】[0048]
【表13】 [Table 13]
【0049】以上は成分系に関する実施例、比較例であ
るが、以下に成分系に関するその他の比較例及び変態熱
処理の際の雰囲気、温度、時間、冷却速度に関する実施
例、比較例を表14に示す。また表14中には全ての実
施例、比較例の変態熱処理後の1073Kでの引張強度
も併せて掲載する。The above are examples and comparative examples relating to the component systems. Table 14 shows other comparative examples relating to the component systems and examples and comparative examples relating to the atmosphere, temperature, time and cooling rate during the transformation heat treatment. Show. Table 14 also shows the tensile strength at 1073K after the transformation heat treatment of all Examples and Comparative Examples.
【0050】[0050]
【表14】 [Table 14]
【表15】 [Table 15]
【表16】 [Table 16]
【表17】 表14から明らかなように、本発明例では高い強度およ
び伸びの優れた材料特性を示している。これに対して、
比較例では、強度または伸びのいずれかのみが高く、構
造材料として不適当である。[Table 17] As is clear from Table 14, the examples of the present invention show excellent material properties with high strength and elongation. On the contrary,
In the comparative example, only one of the strength and the elongation was high, and was not suitable as a structural material.
【0051】[0051]
【発明の効果】本発明のTiAl基金属間化合物合金
は、高い超塑性変形能を有し、更に高比強度、耐熱性を
備えている。The TiAl-based intermetallic compound alloy of the present invention has a high superplasticity, a high specific strength and a high heat resistance.
【図1】本発明の実施例1において得られた試料の恒温
鍛造後の金属組織写真。FIG. 1 is a photograph of a metallographic structure of a sample obtained in Example 1 of the present invention after isothermal forging.
【図2】図1に示す試料の熱処理後の金属組織写真。FIG. 2 is a photograph of the metal structure of the sample shown in FIG. 1 after heat treatment.
【図3】比較例1において得られた試料の恒温鍛造後の
金属組織写真。FIG. 3 is a photograph of a metal structure of a sample obtained in Comparative Example 1 after isothermal forging.
【図4】図3に示す試料の熱処理後の金属組織写真。FIG. 4 is a metallographic photograph of the sample shown in FIG. 3 after heat treatment.
Claims (11)
γ粒界に析出したβ相の体積分率が2〜25%であり、
超塑性変形能を有するβ+γTiAl基金属間化合物を
変態熱処理して作製された合金であって、室温〜107
3Kの温度範囲で400MPa 以上の強度を有するα2 +
γ二相組織から成る高強度を有するTiAl基金属間化
合物合金。 Tia Al100-a-b-c Crb Xc X:Nb,Mo,Hf,Ta,Wの一種または二種以上 但し 47.5≦a≦52 1≦b≦5 0.5≦c≦3 b≧c 2a+b+c≧1001. The composition is represented by the following formula in atomic fraction,
the volume fraction of the β phase precipitated at the γ grain boundary is 2 to 25%,
An alloy produced by subjecting a β + γ TiAl-based intermetallic compound having superplastic deformability to a transformation heat treatment,
Α 2 + having a strength of 400 MPa or more in a temperature range of 3K
A high-strength TiAl-based intermetallic alloy having a gamma two-phase structure. Ti a Al 100-abc Cr b X c X: Nb, Mo, Hf, Ta, one or two or more of W, however 47.5 ≦ a ≦ 52 1 ≦ b ≦ 5 0.5 ≦ c ≦ 3 b ≧ c 2a + b + c ≧ 100
γ粒界に析出したβ相の体積分率が2〜25%であり、
超塑性変形能を有するβ+γTiAl基金属間化合物を
変態熱処理して作製された合金であって、室温〜107
3Kの温度範囲で400MPa 以上の強度を有するα2 +
γ二相組織から成る高強度を有するTiAl基金属間化
合物合金。 Tia Al100-a-b-d Crb Yd Y:Si,Bの一種または二種 但し 47.5≦a≦52 1≦b≦5 0.1≦d≦2 2a+b+d≧1002. The composition is represented by the following formula in atomic fraction,
the volume fraction of the β phase precipitated at the γ grain boundary is 2 to 25%,
An alloy produced by subjecting a β + γ TiAl-based intermetallic compound having superplastic deformability to a transformation heat treatment,
Α 2 + having a strength of 400 MPa or more in a temperature range of 3K
A high-strength TiAl-based intermetallic alloy having a gamma two-phase structure. Ti a Al 100-abd Cr b Y d Y: Si, B of one, two or where 47.5 ≦ a ≦ 52 1 ≦ b ≦ 5 0.1 ≦ d ≦ 2 2a + b + d ≧ 100
γ粒界に析出したβ相の体積分率が2〜25%であり、
超塑性変形能を有するβ+γTiAl基金属間化合物を
変態熱処理して作製された合金であって、室温〜107
3Kの温度範囲で400MPa 以上の強度を有するα2 +
γ二相組織から成る高強度を有するTiAl基金属間化
合物合金。 Tia Al100-a-b-c-d Crb Xc Yd X:Nb,Mo,Hf,Ta,W,Vの一種または二種以上 Y:Si,Bの一種または二種 但し 47.5≦a≦52 1≦b≦5 0.5≦c≦3 b≧c 0.1≦d≦2 2a+b+c+d≧1003. The composition is represented by the following formula in atomic fraction,
the volume fraction of the β phase precipitated at the γ grain boundary is 2 to 25%,
An alloy produced by subjecting a β + γ TiAl-based intermetallic compound having superplastic deformability to a transformation heat treatment,
Α 2 + having a strength of 400 MPa or more in a temperature range of 3K
A high-strength TiAl-based intermetallic alloy having a gamma two-phase structure. Ti a Al 100-abcd Cr b X c Y d X: Nb, Mo, Hf, Ta, W, one of V or two or more Y: Si, one or two provided that 47.5 ≦ a ≦ 52 1 of B ≦ b ≦ 5 0.5 ≦ c ≦ 3 b ≧ c 0.1 ≦ d ≦ 2 2a + b + c + d ≧ 100
求項1〜3のいずれか1項に記載のTiAl基金属間化
合物合金。4. The TiAl-based intermetallic alloy according to claim 1, wherein the volume fraction of the α 2 phase is 5 to 40%.
金の原料を溶製後、非酸化性雰囲気または5×10-3To
rrより高真空雰囲気下で、1173K〜固相線温度の温
度にて、初期歪速度が5×10 -5 〜5×10-1 sec -1 、
加工率60%以上の高温加工を施して、γ粒界に析出し
たβ相の体積分率が2〜25%の粒界β相を含む超塑性
変形能を有するβ+γ二相合金とし、次いで10K/min
より速い冷却速度で最低873Kまで降温した後、超塑
性加工により製品成形体にまで加工し、非酸化性雰囲気
または5×10-5Torrより高真空中にて1173K〜固
相線温度の温度にて、2時間以上保持する変態熱処理を
施し、室温〜1073Kの温度範囲で400MPa 以上の
強度を有するα2 +γ二相組織の加工成形品を製造する
高強度を有するTiAl基金属間化合物成形品の一貫製
造方法。5. The combination according to claim 1, wherein
After smelting the gold material , use a non-oxidizing atmosphere or 5 × 10 -3 To
rr, in a high vacuum atmosphere, at a temperature of 1173 K to the solidus temperature, the initial strain rate is 5 × 10 −5 to 5 × 10 −1 sec −1 ,
Perform high temperature processing at a processing rate of 60% or more and precipitate at the γ grain boundary.
Β + γ two-phase alloy having superplastic deformability including a grain boundary β phase having a volume fraction of 2 to 25% of the β phase, and then 10 K / min.
After lowering the temperature to at least 873K at a faster cooling rate, ultra-塑
The product is processed to a product molded body by a hot working process, and subjected to a transformation heat treatment for 2 hours or more at a temperature of 1173 K to a solidus temperature in a non-oxidizing atmosphere or in a vacuum higher than 5 × 10 −5 Torr, An integrated production method of a high-strength TiAl-based intermetallic compound molded product for producing a processed molded product having an α 2 + γ two-phase structure having a strength of 400 MPa or more in a temperature range of room temperature to 1073 K.
Ti合金ケースに挿入し、恒温鍛造を大気中で行う請求
項5記載のTiAl基金属間化合物成形品の一貫製造方
法。6. The method according to claim 5, wherein the high-temperature processing is isothermal forging, the sample is inserted into a Ti alloy case, and isothermal forging is performed in the atmosphere.
部を5×10-3Torrよりも高真空で脱気後、エレクトロ
ンビーム溶接でTi合金ケースを密閉して恒温鍛造を行
う請求項6記載のTiAl基金属間化合物成形品の一貫
製造方法。7. The constant temperature forging is performed by degassing the inside of the Ti alloy case into which the sample is inserted under a vacuum higher than 5 × 10 −3 Torr, and then sealing the Ti alloy case by electron beam welding. Integrated production method of a TiAl-based intermetallic compound molded article of the present invention.
合金ケースに挿入し、圧延を大気中で行う請求項5記載
のTiAl基金属間化合物成形品の一貫製造方法。8. The method according to claim 1, wherein the high-temperature processing is rolling, and the specimen is made of Ti.
6. The integrated production method of a TiAl-based intermetallic compound molded product according to claim 5, wherein the product is inserted into an alloy case and rolling is performed in the atmosphere.
部を5×10-3Torrよりも高真空で脱気後、エレクトロ
ンビーム溶接でTi合金ケースを密閉して圧延する請求
項8記載のTiAl基金属間化合物成形品の一貫製造方
法。9. The TiAl according to claim 8, wherein the inside of the Ti alloy case into which the sample is inserted is evacuated with a vacuum higher than 5 × 10 −3 Torr, and the Ti alloy case is hermetically sealed by electron beam welding and rolled. An integrated production method for molded products of base intermetallic compounds.
料をTi合金ケースに挿入し、熱間押出しを大気中で行
う請求項5記載のTiAl基金属間化合物成形品の一貫
製造方法。10. The integrated production method of a TiAl-based intermetallic compound molded product according to claim 5, wherein the high-temperature processing is hot extrusion, the sample is inserted into a Ti alloy case, and the hot extrusion is performed in the atmosphere.
内部を5×10-3Torrよりも高真空で脱気後、エレクト
ロンビーム溶接でTi合金ケースを密閉して熱間押出し
を行う請求項10記載のTiAl基金属間化合物成形品
の一貫製造方法。11. The hot extruding is performed by degassing the inside of the Ti alloy case into which the sample is inserted under a vacuum higher than 5 × 10 −3 Torr and then sealing the Ti alloy case by electron beam welding. An integrated production method of the TiAl-based intermetallic compound molded article according to the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4177158A JP2729011B2 (en) | 1991-07-05 | 1992-07-03 | TiAl-based intermetallic compound alloy having high strength and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3-165404 | 1991-07-05 | ||
JP16540491 | 1991-07-05 | ||
JP4177158A JP2729011B2 (en) | 1991-07-05 | 1992-07-03 | TiAl-based intermetallic compound alloy having high strength and method for producing the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24665397A Division JP3328557B2 (en) | 1997-09-11 | 1997-09-11 | TiAl-based intermetallic compound alloy having high strength and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05186842A JPH05186842A (en) | 1993-07-27 |
JP2729011B2 true JP2729011B2 (en) | 1998-03-18 |
Family
ID=26490156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4177158A Expired - Fee Related JP2729011B2 (en) | 1991-07-05 | 1992-07-03 | TiAl-based intermetallic compound alloy having high strength and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2729011B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003064434A (en) * | 2001-08-21 | 2003-03-05 | Daido Steel Co Ltd | Ti BASED HEAT RESISTANT MATERIAL |
US7923127B2 (en) | 2005-11-09 | 2011-04-12 | United Technologies Corporation | Direct rolling of cast gamma titanium aluminide alloys |
US10597756B2 (en) | 2012-03-24 | 2020-03-24 | General Electric Company | Titanium aluminide intermetallic compositions |
JP2021080547A (en) * | 2019-11-22 | 2021-05-27 | 国立大学法人島根大学 | Lightweight heat resistant alloy |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02277736A (en) * | 1989-04-19 | 1990-11-14 | Mitsubishi Heavy Ind Ltd | Ti-al base heat-resistant alloy |
JPH03197631A (en) * | 1989-12-25 | 1991-08-29 | Nippon Steel Corp | Intermetallic compound tial-cr base alloy |
-
1992
- 1992-07-03 JP JP4177158A patent/JP2729011B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05186842A (en) | 1993-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0521516B1 (en) | TiAl-based intermetallic compound alloys and processes for preparing the same | |
US5316598A (en) | Superplastically formed product from rolled magnesium base metal alloy sheet | |
US5442847A (en) | Method for thermomechanical processing of ingot metallurgy near gamma titanium aluminides to refine grain size and optimize mechanical properties | |
US5226985A (en) | Method to produce gamma titanium aluminide articles having improved properties | |
US4889170A (en) | High strength Ti alloy material having improved workability and process for producing the same | |
US4916028A (en) | Gamma titanium aluminum alloys modified by carbon, chromium and niobium | |
US5232661A (en) | γ and β dual phase TiAl based intermetallic compound alloy having superplasticity | |
US5076858A (en) | Method of processing titanium aluminum alloys modified by chromium and niobium | |
JPH08295969A (en) | High strength titanium alloy suitable for superplastic forming and production of alloy sheet thereof | |
JPS63171862A (en) | Manufacture of heat resistant ti-al alloy | |
JP2729011B2 (en) | TiAl-based intermetallic compound alloy having high strength and method for producing the same | |
US5129960A (en) | Method for superplastic forming of rapidly solidified magnesium base alloy sheet | |
JP2932918B2 (en) | Manufacturing method of α + β type titanium alloy extruded material | |
US3230119A (en) | Method of treating columbium-base alloy | |
JP3328557B2 (en) | TiAl-based intermetallic compound alloy having high strength and method for producing the same | |
US5200004A (en) | High strength, light weight Ti-Y composites and method of making same | |
US4148671A (en) | High ductility, high strength aluminum conductor | |
JP2734794B2 (en) | Method for producing Ti-Al-based intermetallic compound-based alloy | |
JP2686020B2 (en) | Superplastically deformable β + γTiAl-based intermetallic alloy and method for producing the same | |
JPH04235262A (en) | Manufacture of ti-al intermetallic compound-series ti alloy excellent in strength and ductility | |
JPH03193851A (en) | Production of tial-base alloy having extremely superfine structure | |
JP3056541B2 (en) | TiAl-based intermetallic compound and method for producing the same | |
US4036642A (en) | Copper base alloy containing titanium, antimony and chromium | |
JPH0819503B2 (en) | Titanium alloy excellent in superplastic workability, method for producing the same, and superplastic workability method for titanium alloy | |
JPH09249926A (en) | Titanium-aluminum base intermetallic compound alloy containing w and excellent in superplastic characteristic and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19970715 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19971125 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081212 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081212 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091212 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101212 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101212 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |