JPH0819503B2 - Titanium alloy excellent in superplastic workability, method for producing the same, and superplastic workability method for titanium alloy - Google Patents

Titanium alloy excellent in superplastic workability, method for producing the same, and superplastic workability method for titanium alloy

Info

Publication number
JPH0819503B2
JPH0819503B2 JP3742190A JP3742190A JPH0819503B2 JP H0819503 B2 JPH0819503 B2 JP H0819503B2 JP 3742190 A JP3742190 A JP 3742190A JP 3742190 A JP3742190 A JP 3742190A JP H0819503 B2 JPH0819503 B2 JP H0819503B2
Authority
JP
Japan
Prior art keywords
superplastic
titanium alloy
temperature
transformation point
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3742190A
Other languages
Japanese (ja)
Other versions
JPH03243740A (en
Inventor
厚 小川
和秀 高橋
邦典 皆川
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP3742190A priority Critical patent/JPH0819503B2/en
Publication of JPH03243740A publication Critical patent/JPH03243740A/en
Publication of JPH0819503B2 publication Critical patent/JPH0819503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、高強度の超塑性加工性に優れたチタン合
金、及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to a titanium alloy having high strength and excellent superplastic workability, and a method for producing the same.

[従来の技術] チタン合金は、軽量でかつ強靭なことから、近時、飛
行機、ロケット等の航空宇宙機器用材料として盛んに用
いられつつある。しかしながら、チタン合金は難加工性
材料であり、複雑形上部材を製造する場合には製品歩留
りが著しく低く、製造コストが著しく高くなってしまう
という問題点がある。
[Prior Art] Titanium alloys are lightweight and tough, and have recently been actively used as materials for aerospace equipment such as airplanes and rockets. However, the titanium alloy is a difficult-to-work material, and there are problems that the product yield is extremely low and the manufacturing cost is significantly high when manufacturing a complicated upper member.

このような問題点を解消するために有効な加工法とし
て超塑性加工が知られている。超塑性加工は超塑性現象
を利用した加工方法であり、特に微細結晶粒で見られる
微細粒超塑性を利用したものが工業的に重要である。チ
タン合金の中で最も広く用いられているTi−6Al−4V合
金においても、5〜10μmの微細粒組織を有した材料は
超塑性加工が行われているが、その加工温度は875乃至9
50℃と高く、加工治具の寿命が短い、治具として高温強
度を有する高価な材料を用いざるを得ない等、設備上及
び操業上の多くの問題点を含んでいる。
Superplastic working is known as a working method effective for solving such a problem. Superplasticity is a processing method utilizing superplasticity phenomenon, and it is industrially important especially to utilize the superfine grain plasticity found in fine crystal grains. Even in the Ti-6Al-4V alloy, which is the most widely used titanium alloy, a material having a fine grain structure of 5 to 10 μm is superplastically worked, but the working temperature is 875 to 9
It has many problems in terms of equipment and operation, such as high temperature of 50 ° C, short life of processing jig, and use of expensive material having high temperature strength as a jig.

そこで、Ti−6Al−4V合金以上に優れた超塑性特性を
有すること、及び、超塑性加工温度を下げることを目的
として、Ti−6Al−4V合金にFe、Co、又はFe、Co、Niを
添加した合金が開発されている(米国特許4,299,626
号)。
Therefore, having excellent superplasticity characteristics than Ti-6Al-4V alloy, and, for the purpose of lowering the superplastic working temperature, Fe, Co, or Fe, Co, Ni in Ti-6Al-4V alloy Added alloys have been developed (US Pat. No. 4,299,626).
issue).

[発明が解決しようとする課題] しかしながら、このようなTi−6Al−4V−Fe−Co−Ni
合金においても、超塑性加工温度がTi−6Al−4Vよりも5
0乃至80℃低下しているにすぎず、未だ充分とはいえな
い。また、超塑性伸びも充分でない。
[Problems to be Solved by the Invention] However, such Ti-6Al-4V-Fe-Co-Ni
Even in alloys, the superplastic working temperature is 5% higher than that of Ti-6Al-4V.
It is only 0 to 80 ° C lower, which is not enough. Also, the superplastic elongation is not sufficient.

一方、たとえ超塑性加工温度を十分に低下させること
ができたとしても、超塑性加工時の変形抵抗が大きけれ
ば加工が困難になってしまう。
On the other hand, even if the superplastic working temperature can be lowered sufficiently, if the deformation resistance during superplastic working is large, the working becomes difficult.

この発明はかかる事情に鑑みてなされたものであっ
て、超塑性加工温度が低く、超塑性加工時の変形抵抗が
小さく、従来のチタン合金よりも超塑性延びが大きい超
塑性加工性に優れたチタン合金及びその製造方法、並び
にこのようなチタン合金の超塑性加工方法を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, the superplastic working temperature is low, the deformation resistance during superplastic working is small, and the superplastic elongation is greater than that of the conventional titanium alloy. An object of the present invention is to provide a titanium alloy, a method for producing the same, and a superplastic working method for such a titanium alloy.

[課題を解決するための手段及び作用] この発明に係る超塑性加工性に優れたチタン合金は、
重量%で、Al:5.5〜6.75%、V:3.5〜4.5%、O:0.2%以
下、Cr:0.85〜3.15%、Mo:0.85〜3.15%を含有し、か
つ、 3%≦{1.8×(Cr%)+(Mo%)}≦8% の条件を満足し、残部がTi及び不可避不純物からなり、
α晶の平均粒径が6μm以下であることを特徴とする。
[Means and Actions for Solving the Problems] The titanium alloy excellent in superplastic workability according to the present invention is
% By weight, Al: 5.5 to 6.75%, V: 3.5 to 4.5%, O: 0.2% or less, Cr: 0.85 to 3.15%, Mo: 0.85 to 3.15%, and 3% ≦ {1.8 × ( Cr%) + (Mo%)} ≦ 8%, the balance consists of Ti and unavoidable impurities,
It is characterized in that the average grain size of α crystals is 6 μm or less.

この発明に係る超塑性加工性に優れたチタン合金の製
造方法は、重量%で、Al:5.5〜6.75%、V:3.5〜4.5%、
O:0.2%以下、Cr:0.85〜3.15%、Mo:0.85〜3.15%、を
含有し、かつ、 3%≦{1.8×(Cr%)+(Mo%)}≦8% の条件を満足し、残部がTi及び不可避不純物からなるチ
タン合金を、(β変態点−200℃)以上、β変態点未満
の温度で加熱し、引き続き、β変態点未満の温度で圧下
比を3以上とする圧下を施すことを特徴とする。
The method for producing a titanium alloy excellent in superplastic workability according to the present invention is, by weight%, Al: 5.5 to 6.75%, V: 3.5 to 4.5%,
O: 0.2% or less, Cr: 0.85 to 3.15%, Mo: 0.85 to 3.15%, and satisfy the condition of 3% ≦ {1.8 × (Cr%) + (Mo%)} ≦ 8% , A titanium alloy, the balance of which is Ti and unavoidable impurities, is heated at a temperature of (β transformation point −200 ° C.) or higher and lower than the β transformation point, and then rolled down to a rolling ratio of 3 or higher at a temperature lower than the β transformation point. It is characterized by applying.

この発明に係るチタン合金の超塑性加工方法は、重量
%で、Al:5.5〜6.75%、V:3.5〜4.5%、O:0.2%以下、C
r:0.85〜3.15%、Mo:0.85〜3.15%を含有し、かつ、 3%≦{1.8×(Cr%)+(Mo%)}≦8% の条件を満足し、残部がTi及び不可避不純物からなるチ
タン合金を、(β変態点−200℃)以上、β変態点未満
の温度で加熱し、引き続き、β変態点未満の温度で圧下
比を3以上とする圧下を施し、(β変態点−200℃)以
上、β変態点未満の温度で再結晶熱処理を施し、超塑性
加工を施すことを特徴とする。
The superplastic working method of the titanium alloy according to the present invention, by weight%, Al: 5.5 to 6.75%, V: 3.5 to 4.5%, O: 0.2% or less, C
Contains r: 0.85 to 3.15%, Mo: 0.85 to 3.15%, and satisfies the condition of 3% ≦ {1.8 × (Cr%) + (Mo%)} ≦ 8% with the balance Ti and unavoidable impurities. The titanium alloy consisting of (β transformation point −200 ° C.) or higher is heated at a temperature lower than the β transformation point, and subsequently subjected to reduction at a reduction ratio of 3 or more at a temperature lower than the β transformation point, The recrystallization heat treatment is performed at a temperature of −200 ° C. or higher and lower than the β transformation point to perform superplastic working.

本願発明者らは、上述のような特性を有するチタン合
金を開発すべく以下に示す観点から種々検討した結果、
上記構成を有する本発明を完成させるに至った。
The present inventors have conducted various studies from the viewpoints described below to develop a titanium alloy having the above-mentioned characteristics,
The present invention having the above structure has been completed.

高強度であり、かつ超塑性加工が可能であるチタン合
金を得るためには、そのミクロ組織を微細な等軸α晶を
有する組織にしなければならない。また、チタン合金の
超塑性現象が発現するためには、そのミクロ組織におい
て、α相の体積率が40〜60%であることが必要である。
従って、Ti−6Al−4V合金よりも超塑性加工温度を低下
させるためには、β変態点を低下させる元素、すなわち
Cr、Moを添加すればよい。
In order to obtain a titanium alloy having high strength and capable of superplastic working, its microstructure must be a structure having fine equiaxed α-crystals. Further, in order for the superplastic phenomenon of the titanium alloy to appear, it is necessary that the volume fraction of the α phase in the microstructure is 40 to 60%.
Therefore, in order to lower the superplastic working temperature than the Ti-6Al-4V alloy, an element that lowers the β transformation point, that is,
Cr and Mo may be added.

しかし、Crは強度上昇に大きく寄与するものの、これ
らの含有量が多すぎると、Tiとの間に脆化相である金属
間化合物を形成したり、溶解時にβフレックと称される
偏析相を生成し、その結果機械的性質を劣化させるため
好ましくない。Moも同様に強度上昇に寄与するが、添加
量が多すぎると、チタン合金の比重を増大させ、高比強
度材料であるチタン合金の特色を損なうと共に、β相中
での拡散速度が小さい元素であるため、超塑性加工時の
変形抵抗を増大させ、好ましくない。従って、これらの
含有量をこれら不都合が生じない一定範囲に規定する必
要がある。
However, although Cr contributes greatly to the increase in strength, if the content of these is too large, an intermetallic compound that is an embrittlement phase is formed with Ti, and a segregation phase called β-flec during melting is formed. It is not preferable because it is generated and, as a result, mechanical properties are deteriorated. Mo similarly contributes to the strength increase, but if the addition amount is too large, the specific gravity of the titanium alloy is increased, the characteristics of the titanium alloy as a high specific strength material are impaired, and the diffusion rate in the β phase is small. Therefore, the deformation resistance during superplastic working is increased, which is not preferable. Therefore, it is necessary to regulate the content of these in a certain range where these disadvantages do not occur.

これらの元素によるチタン合金のβ相安定度は、1.8
×(Cr%)+(Mo%)で示され、この値が小さいとβ変
態点が高く、逆に大きいとβ変態点が低くなる。チタン
合金の最適超塑性温度、すなわち超塑性現象が発現し得
る温度は、上述したようにα相の体積率が40〜60%にな
る温度であり、この温度はβ変態点と密接な関係があ
る。すなわち、この値が小さ過ぎると超塑性発現温度が
低いという利点を得ることができず、大き過ぎるとα相
の体積率が40〜60%になる温度が低くなり過ぎ、その温
度では原子拡散が不十分となり、十分な超塑性伸びが得
られない。従って、優れた超塑性加工性を得るために
は、この値を適切な範囲に規定する必要がある。
The β phase stability of titanium alloy with these elements is 1.8
It is shown by x (Cr%) + (Mo%). If this value is small, the β transformation point is high, and conversely, if it is large, the β transformation point is low. The optimum superplasticity temperature of the titanium alloy, that is, the temperature at which the superplasticity phenomenon can be expressed is the temperature at which the volume fraction of the α phase becomes 40 to 60% as described above, and this temperature has a close relationship with the β transformation point. is there. That is, if this value is too small, the advantage that the superplasticity development temperature is low cannot be obtained, and if it is too large, the temperature at which the volume fraction of the α phase becomes 40 to 60% becomes too low, and at that temperature atomic diffusion occurs. It becomes insufficient and sufficient superplastic elongation cannot be obtained. Therefore, in order to obtain excellent superplastic workability, it is necessary to define this value in an appropriate range.

また、微細粒超塑性特性はその結晶粒径に大きく依存
し、粒径が小さい程良好な特性を得ることができる。従
って、結晶粒径の上限を超塑性特性を損なわない程度に
規定する必要がある。このような結晶粒の微細化は、最
終熱間加工を、その後の再結晶熱処理により等軸α晶の
微細再結晶組織が得られるような条件で施すことにより
達成される。すなわち、最終熱間加工条件が適切でなけ
れば、その後の再結晶熱処理によって等軸α晶の微細再
結晶組織を得ることができない。
Also, the fine-grain superplasticity depends largely on the crystal grain size, and the smaller the grain size, the better the properties can be obtained. Therefore, it is necessary to specify the upper limit of the crystal grain size to such an extent that the superplastic property is not impaired. Such refinement of crystal grains is achieved by performing the final hot working under the condition that a fine recrystallized structure of equiaxed α crystal can be obtained by the subsequent recrystallization heat treatment. That is, if the final hot working conditions are not appropriate, a fine recrystallized structure of equiaxed α crystal cannot be obtained by the subsequent recrystallization heat treatment.

更に、最終熱間圧延後の再結晶熱処理は、超塑性加工
を行う上での前提であり、この処理を適切に行うことに
より、その後の超塑性加工を良好に行うことができる。
Furthermore, the recrystallization heat treatment after the final hot rolling is a prerequisite for performing superplastic working, and by appropriately performing this treatment, subsequent superplastic working can be favorably performed.

次に、本発明においてこの発明に係るチタン合金の各
成分を上記範囲に限定した理由について説明する。
Next, the reason why each component of the titanium alloy according to the present invention is limited to the above range in the present invention will be described.

Al:Alはα+β組織を得るためのα相安定化元素とし
て添加され、強度上昇に寄与する。しかし、その含有量
が5.5%未満では、目的とする強度を得るのに不十分で
ある。また、含有量が6.75%を超えると、脆化相である
α相(Ti3Al)が析出し、機械的性質を劣化させるた
め好ましくない。従って、Al量を5.5〜6.75%の範囲に
規定する。
Al: Al is added as an α-phase stabilizing element for obtaining an α + β structure and contributes to an increase in strength. However, if its content is less than 5.5%, it is insufficient to obtain the desired strength. On the other hand, if the content exceeds 6.75%, the embrittlement phase α 2 phase (Ti 3 Al) precipitates and mechanical properties deteriorate, which is not preferable. Therefore, the amount of Al is specified in the range of 5.5 to 6.75%.

V:Vはα+β組織を得るためのβ相安定化元素として
添加され、Tiとの間に脆化相である金属間化合物を形成
することなく強度上昇に寄与する。しかし、含有量が3.
5%未満では目的とする強度を得るのに不十分であり、
また、含有量が4.5%を超えると超塑性伸びを低減させ
ると共に超塑性加工時の変形抵抗を増大させる。従っ
て、V量を3.5〜4.5%に規定した。
V: V is added as a β-phase stabilizing element for obtaining an α + β structure, and contributes to the strength increase without forming an intermetallic compound which is an embrittlement phase with Ti. However, the content is 3.
If it is less than 5%, it is insufficient to obtain the desired strength,
Further, if the content exceeds 4.5%, the superplastic elongation is reduced and the deformation resistance during superplastic working is increased. Therefore, the V amount is specified to be 3.5 to 4.5%.

O:Oはα相に固溶して強度上昇に寄与する。しかし、
その含有量が0.2%を超えるとβ変態点を上昇させ、ま
た、室温での機械的性質、特に延性を劣化させる。従っ
て、O量を0.2%以下に規定する。
O: O forms a solid solution in the α phase and contributes to the strength increase. But,
If its content exceeds 0.2%, the β transformation point is raised, and the mechanical properties at room temperature, especially the ductility are deteriorated. Therefore, the O content is specified to be 0.2% or less.

Cr:Crはβ相安定化元素として添加され、β変態点を
低下させることにより超塑性特性の向上(超塑性伸びの
増大及び変形抵抗の低減)に寄与すると共に、主にβ相
に固溶し、室温の強度上昇に寄与する。しかし、その含
有量が0.85%未満ではこれら超塑性特性の向上及び室温
強度上昇への寄与が不十分である。また、3.15%を超え
るとTiとの間に脆化相である金属間化合物を形成したり
溶解時にβフレックを生成し、その結果延性を劣化させ
てしまう。従って、Cr量を0.85〜3.15%の範囲に規定す
る。
Cr: Cr is added as a β-phase stabilizing element and contributes to the improvement of superplastic properties (increased superplastic elongation and reduced deformation resistance) by lowering the β-transformation point, and mainly forms a solid solution in the β-phase. And contributes to the increase in strength at room temperature. However, if the content is less than 0.85%, the contribution to the improvement of these superplastic properties and the increase of room temperature strength is insufficient. On the other hand, if it exceeds 3.15%, an intermetallic compound, which is an embrittlement phase, is formed between Ti and β-fleck is generated during melting, and as a result, ductility is deteriorated. Therefore, the Cr content is specified in the range of 0.85 to 3.15%.

Mo:Moもβ相安定化元素として添加され、β変態点を
低下させることにより超塑性特性の向上(超塑性発現温
度の低下)に寄与すると共に、主にβ相に固溶して強度
上昇に寄与する。しかし、含有量が0.85%未満ではこれ
ら効果が不十分である。また、3.15%を超えると、Moが
重い金属であることから合金の密度を増大させ、高比強
度であるというチタン合金の特徴を損なうと共に、Moは
チタン中での拡散速度が小さいために超塑性成形時の変
形応力を増大させてしまう。従って、Mo量を0.85〜3.15
%の範囲に規定する。
Mo: Mo is also added as a β-phase stabilizing element, which contributes to the improvement of superplasticity characteristics (reduction of superplasticity development temperature) by lowering the β transformation point, and mainly solid solution in β phase to increase the strength. Contribute to. However, if the content is less than 0.85%, these effects are insufficient. Further, if it exceeds 3.15%, since Mo is a heavy metal, the density of the alloy is increased and the characteristic of the titanium alloy having high specific strength is impaired. This will increase the deformation stress during plastic forming. Therefore, the amount of Mo is 0.85 to 3.15.
%.

1.8×(Cr%)+(Mo%)は、チタン合金のβ相安定
度を示し、前述したように、これらの値が小さいとβ変
態点が高く、逆に大きいとβ変態点が低くなる。チタン
合金の最適超塑性温度、すなわち超塑性現象が発現し得
る温度は、上述したようにα相の体積率が40〜60%にな
る温度であり、この温度はβ変態点と密接な関係があ
る。この値が3%未満であると超塑性発現温度が低いと
いう本発明の特徴を損ない、また、8%を超えるとα相
の体積率が40〜60%になる温度が低くなり過ぎ、その温
度では原子拡散が不十分となり、十分な超塑性伸びが得
られない。
1.8 × (Cr%) + (Mo%) indicates the β phase stability of the titanium alloy. As mentioned above, the smaller the value, the higher the β transformation point, and the larger the value, the lower the β transformation point. . The optimum superplasticity temperature of the titanium alloy, that is, the temperature at which the superplasticity phenomenon can be expressed is the temperature at which the volume fraction of the α phase becomes 40 to 60% as described above, and this temperature has a close relationship with the β transformation point. is there. If this value is less than 3%, the characteristic of the present invention that the superplasticity development temperature is low is impaired, and if it exceeds 8%, the temperature at which the volume fraction of the α phase becomes 40 to 60% becomes too low, and the temperature becomes too low. In that case, atomic diffusion becomes insufficient and sufficient superplastic elongation cannot be obtained.

従って、この値を、3%≦{1.8×(Cr%)+(Mo
%)}≦8%に規定する。
Therefore, set this value to 3% ≤ {1.8 x (Cr%) + (Mo
%)} ≦ 8%.

次に、α相粒径の限定理由について説明する。 Next, the reason for limiting the α-phase grain size will be described.

α晶粒径は超塑性特性と密接な関係があり、これが小
さい程優れた超塑性特性を示す。この発明に係るチタン
合金においては、α晶の平均粒径が6μmを超えると超
塑性伸びが小さくなるばかりでなく、変形応力が大きく
なり好ましくない。従って、α晶粒径を6μm以下に規
定する。
The α-crystal grain size is closely related to the superplastic property, and the smaller the grain size, the better the superplastic property. In the titanium alloy according to the present invention, if the average grain size of α crystals exceeds 6 μm, not only the superplastic elongation decreases but also the deformation stress increases, which is not preferable. Therefore, the α crystal grain size is specified to be 6 μm or less.

α晶粒径を6μ以下にするためには以下に示す方法が
採用される。
The following method is employed to reduce the α crystal grain size to 6 μm or less.

先ず、熱間鍛造、又は熱間圧延、又はこの両方によ
り、チタン合金インゴットを加工製造してスラブとし、
次いで、このスラブを再加熱して熱間加工を施し最終寸
法とする。最終熱間加工においては、以下の3つの条件
を満足させる必要がある。その加熱温度を(β変態温
度−200℃)以上、β変態点未満とする。加工中に被
加工材の温度がβ変態点以上にならないようにする。
加工の際の圧下比を3以上とする。
First, hot forging, or hot rolling, or both, to process and manufacture a titanium alloy ingot into a slab,
The slab is then reheated and hot worked to final dimensions. In the final hot working, it is necessary to satisfy the following three conditions. The heating temperature is set to (β transformation temperature −200 ° C.) or higher and lower than the β transformation point. Make sure that the temperature of the work piece does not exceed the β transformation point during processing.
The reduction ratio during processing is set to 3 or more.

このように条件を規定した理由は以下の通りである。 The reason for defining the conditions in this way is as follows.

については、加熱温度がβ変態点以上であると、加
工後に再結晶焼鈍を行っても、超塑性成形に適した等軸
組織ではなく、棒状のα晶組織となり、しかも旧β粒界
にα晶が生成し、超塑性特性及び室温での延性を劣化さ
せる。また、加熱温度がβ変態点−200℃未満である
と、温度が低すぎて加工中に割れ等の結果が発生する。
With respect to the above, when the heating temperature is at or above the β transformation point, even if recrystallization annealing is performed after working, a rod-shaped α crystal structure is formed instead of an equiaxed structure suitable for superplastic forming, and α Crystals are formed, deteriorating superplastic properties and ductility at room temperature. Further, if the heating temperature is less than the β transformation point −200 ° C., the temperature is too low and results such as cracking occur during processing.

については、加工中に被加工物の温度がβ変態点以
上になると、と同様棒状のα組織となってしまう。
With regard to the above, if the temperature of the work piece becomes equal to or higher than the β transformation point during processing, a rod-shaped α structure will be formed as in the case of.

については、圧下比が3未満と小さいと、α晶に再
結晶に十分な歪みが蓄えられず、再結晶熱処理を行って
も、超塑性成形に適した微細粒等軸組織ではなく、棒状
のα晶組織や粗大なα組織となり好ましくない。
With respect to the above, when the reduction ratio is as small as less than 3, sufficient strain cannot be accumulated in the recrystallization of the α crystal, and even if the recrystallization heat treatment is performed, it is not a fine grain equiaxed structure suitable for superplastic forming, but a rod-shaped one. An α crystal structure or a coarse α structure is not preferable.

次に、超塑性加工に先立って行われる再結晶熱処理条
件の限定理由について説明する。
Next, the reasons for limiting the recrystallization heat treatment conditions performed prior to superplastic working will be described.

再結晶熱処理が(β変態点−200℃)未満では、温度
が低すぎて再結晶が十分に行われないため等軸粒が得ら
れず好ましくない。また、熱処理温度がβ変態点以上に
なると、等軸α晶が消失してβ単相となり、超塑性が得
られないので好ましくない。従って、再結晶熱処理温度
を(β変態点−200℃)以上、β変態点未満と規定し
た。
If the recrystallization heat treatment is less than (β transformation point −200 ° C.), the temperature is too low to perform recrystallization sufficiently, and equiaxed grains cannot be obtained, which is not preferable. Further, if the heat treatment temperature is equal to or higher than the β transformation point, the equiaxed α crystal disappears to become a β single phase, and superplasticity cannot be obtained, which is not preferable. Therefore, the recrystallization heat treatment temperature is defined as (β transformation point −200 ° C.) or higher and lower than the β transformation point.

なお、超塑性加工は、再結晶熱処理に引き続いて行っ
てもよいし、再結晶熱処理と同時に行ってもよい。
The superplastic working may be performed subsequent to the recrystallization heat treatment, or may be performed simultaneously with the recrystallization heat treatment.

[実施例] 以下、この発明の実施例について詳細に説明する。[Examples] Examples of the present invention will be described in detail below.

第1表に示す組成を有する合金について、アルゴン雰
囲気のアーク炉にてインゴットを溶製し、熱間鍛造によ
り各種厚みのスラブを製造した。
For alloys having the compositions shown in Table 1, ingots were melted in an arc furnace in an argon atmosphere and hot forged to manufacture slabs having various thicknesses.

次いで、これらのスラブを夫々第1表に示す温度に再
加熱し、引続き、これらスラブに対し夫々第1表に示す
圧下比で圧延加工を施して厚さ5mmの板材に仕上げた。
そして、このようにして仕上げた板材に対し再結晶熱処
理を施した。この再結晶熱処理は、実験番号C15以外
は、(β変態点−200℃)以上、β変態点未満の温度域
で行った。この再結晶熱処理に引き続いて超塑性引張試
験を行った。また、再結晶熱処理を施した各板材につい
てα晶粒径(平均粒径)の測定、及び室温引張試験を合
わせて行った。α結晶粒の測定は線分法により行い、ア
スペクト比(長軸と短軸との比)が3以上の棒状組織の
ものについては粒径の測定を行わなかった。
Then, each of these slabs was reheated to the temperature shown in Table 1, and subsequently, each of these slabs was rolled at the rolling reduction ratio shown in Table 1 to finish a plate material having a thickness of 5 mm.
Then, the plate material thus finished was subjected to a recrystallization heat treatment. This recrystallization heat treatment was performed in a temperature range of (β transformation point −200 ° C.) or more and less than β transformation point except for Experiment No. C15. Following this recrystallization heat treatment, a superplastic tensile test was performed. Further, the α crystal grain size (average grain size) of each plate material subjected to the recrystallization heat treatment and the room temperature tensile test were performed together. The α crystal grains were measured by the line segment method, and the grain size was not measured for those having a rod-shaped structure with an aspect ratio (ratio of major axis and minor axis) of 3 or more.

各板材の再結晶熱処理の温度及びα結晶粒径を合わせ
て第1表に示し、室温引張試験及び超塑性引張試験の結
果を第2表に示す。
The temperature of the recrystallization heat treatment and the α crystal grain size of each plate material are shown together in Table 1, and the results of the room temperature tensile test and the superplastic tensile test are shown in Table 2.

なお、第1表中、実験番号A1〜A7は本発明の範囲内で
ある実施例を示し、B1〜B4は従来例(従来例中(1)は
Ti−6Al−4V合金、(2)はTi−6Al−4V−Co−(Ni)合
金)、C1〜C15は本発明の範囲から外れる比較例であ
る。また、各実験番号の組成におけるβ変態点も合わせ
て第1表に記した。
In Table 1, experimental numbers A1 to A7 represent examples within the scope of the present invention, and B1 to B4 represent conventional examples ((1) in the conventional example is
Ti-6Al-4V alloy, (2) is Ti-6Al-4V-Co- (Ni) alloy, and C1 to C15 are comparative examples outside the scope of the present invention. In addition, the β transformation points in the compositions of the respective experiment numbers are also shown in Table 1.

なお、超塑性引張試験は、平行部が5mm幅、5mm長さ、
4mm厚さの試験片を用いて、5×10-6Torr以下の真空中
で行った。また、最大変形応力は、最大加重を初期断面
積で除して求めた。
In the superplastic tensile test, the parallel part is 5 mm wide, 5 mm long,
The test piece having a thickness of 4 mm was used and the test was performed in a vacuum of 5 × 10 −6 Torr or less. Further, the maximum deformation stress was obtained by dividing the maximum load by the initial cross-sectional area.

これら第1表及び第2表に示すように、実施例である
実験番号A1〜A7は、合金組成が本発明の範囲内であり、
しかも、製造条件が本発明に係る方法に沿っているた
め、α晶粒径が極めて微細であり、6μm以下を十分に
満足している。また、室温引張特性においても引張強さ
が105kgf/mm2以上で、伸びが17%以上であり、Ti−6Al
−4V合金よりも良好な値を示すことが確認された。
As shown in Table 1 and Table 2, the experiment numbers A1 to A7, which are examples, have alloy compositions within the scope of the present invention.
Moreover, since the production conditions are in accordance with the method according to the present invention, the α-crystal grain size is extremely fine and sufficiently satisfies 6 μm or less. As for room temperature tensile properties, the tensile strength is 105 kgf / mm 2 or more and the elongation is 17% or more.
It was confirmed that the value was better than that of the −4V alloy.

次に、第2表に示す超塑性引張特性について、第1図
乃至第6図を参照しながら説明する。
Next, the superplastic tensile properties shown in Table 2 will be described with reference to FIGS. 1 to 6.

第1図は、1.8×(Cr%)+(Mo%)の値と超塑性伸
びとの関係を示すグラフである。この図から明らかなよ
うに、この値が本発明の範囲内である3〜8%の範囲で
1500%以上の大きな伸びが得られることが確認された。
FIG. 1 is a graph showing the relationship between the value of 1.8 × (Cr%) + (Mo%) and the superplastic elongation. As is clear from this figure, this value is within the range of 3 to 8%, which is within the range of the present invention.
It was confirmed that a large elongation of 1500% or more could be obtained.

第2図は、Crの含有量と超塑性伸びとの関係を示すグ
ラフである。この図から明らかなように、この値が本発
明の範囲内である0.85〜3.15%の範囲で1500%以上の大
きな伸びが得られることが確認された。
FIG. 2 is a graph showing the relationship between the Cr content and the superplastic elongation. As is clear from this figure, it was confirmed that a large elongation of 1500% or more can be obtained in the range of 0.85 to 3.15%, which is within the range of the present invention.

第3図は、Moの含有量と超塑性伸びとの関係を示すグ
ラフである。この図から明らかなように、この値が本発
明の範囲内である0.85〜3.15%の範囲で1500%以上の大
きな伸びが得られることが確認された。
FIG. 3 is a graph showing the relationship between the Mo content and superplastic elongation. As is clear from this figure, it was confirmed that a large elongation of 1500% or more can be obtained in the range of 0.85 to 3.15%, which is within the range of the present invention.

第4図は、α晶粒径と超塑性伸びとの関係を示すグラ
フである。この図から明らかなように、この値が本発明
の範囲内である6μm以下であれば1500%以上の大きな
伸びが得られることが確認された。
FIG. 4 is a graph showing the relationship between α crystal grain size and superplastic elongation. As is clear from this figure, it was confirmed that a large elongation of 1500% or more can be obtained if this value is 6 μm or less, which is within the range of the present invention.

以上のように、本発明で規定された組成範囲及び粒径
範囲で優れた超塑性特性が得られることが確認された。
As described above, it was confirmed that excellent superplasticity characteristics can be obtained in the composition range and the grain size range defined in the present invention.

本発明の範囲内である試験番号A1〜A7は上述のように
超塑性伸びが1500%以上と良好であるのみならず、最大
超塑性伸びを示す温度が800℃以下とTi−6Al−4V合金よ
りも75〜100℃も低く、更にその温度が極めて低いのに
もかかわらず、その温度における変形応力が1.41kgf/mm
2以下と小さいことが確認された。
The test numbers A1 to A7 which are within the scope of the present invention are not only good in that the superplastic elongation is 1500% or more as described above, but the temperature at which the maximum superplastic elongation is 800 ° C. or lower and Ti-6Al-4V alloy 75 to 100 ℃ lower than that, and despite its extremely low temperature, the deformation stress at that temperature is 1.41 kgf / mm
It was confirmed to be as small as 2 or less.

これに対し、比較例であるC1〜C14は全て超塑性伸び
の値が実施例よりも低いことが確認された。
On the other hand, it was confirmed that C1 to C14, which are comparative examples, all had lower superplastic elongation values than the examples.

比較例の中でC1〜C10は組成が本発明の範囲から外れ
るものであり、これらのうちC3、C5及びC9は1320%以上
と比較的大きな伸びを示すが、最大超塑性伸びが得られ
た温度が825℃以上と実施例のものよりも25〜50℃高
く、超塑性特性が実施例のものよりも明らかに劣ってい
ることが確認された。C7、C10は最大超塑性伸びが得ら
れた温度が750℃と極めて低いが、超塑性伸びが夫々130
0%、780%に止まり、変形応力が夫々2.85kgf/mm2、2.8
0kgf/mm2と極めて大きい値となった。C1、C2、C4、C6に
おいても、超塑性伸びが1000%前後と不十分であった。
なお、C8は常温での伸びが6%と小さく実用に耐えない
ため、超塑性引張り試験を行わなかった。
Among the comparative examples, C1 to C10 have a composition outside the scope of the present invention, and among them, C3, C5 and C9 show a relatively large elongation of 1320% or more, but the maximum superplastic elongation was obtained. It was confirmed that the temperature was 825 ° C. or higher, which was 25 to 50 ° C. higher than that of the example, and the superplastic property was obviously inferior to that of the example. The temperatures at which the maximum superplastic elongations were obtained for C7 and C10 were extremely low at 750 ° C, but the superplastic elongations were 130% each.
It remains at 0% and 780%, and the deformation stress is 2.85 kgf / mm 2 and 2.8, respectively.
It was an extremely large value of 0 kgf / mm 2 . Also in C1, C2, C4 and C6, the superplastic elongation was insufficient at around 1000%.
Since C8 has a small elongation at room temperature of 6% and cannot withstand practical use, a superplastic tensile test was not performed.

C11〜C15は製造条件及びα晶粒径が本発明の範囲から
外れるものであり、C11〜C13は圧下比が本発明の範囲か
ら外れ、C14は最終熱間圧延加熱温度が本発明の範囲か
ら外れ、C15は再結晶熱処理温度が本発明の範囲から外
れるものであるため、微細粒等軸組織とならず、塑性伸
びが550〜1380%と実施例の値よりも劣っていることが
確認された。なお、C12、C14及びC15はα晶が等軸粒に
ならずアスペクト比が3以上の粗大な棒状晶となったた
め粒径を測定しなかった。
C11 to C15 are those whose manufacturing conditions and α crystal grain size are out of the range of the present invention, C11 to C13 are reduction ratios outside the range of the present invention, and C14 is the final hot rolling heating temperature from the range of the present invention. Deviated, C15 is because the recrystallization heat treatment temperature is out of the range of the present invention, does not become a fine grain equiaxed structure, plastic elongation is confirmed to be inferior to the value of the example of 550 to 1380%. It was The grain size of C12, C14 and C15 was not measured because the α crystals did not become equiaxed grains but became coarse rod-shaped crystals with an aspect ratio of 3 or more.

[発明の効果] この発明によれば、優れた強度を維持しつつ、超塑性
加工温度が低く、超塑性加工時の変形抵抗が小さく、従
来のチタン合金よりも超塑性延びが大きいといった超塑
性加工性に優れたチタン合金及びその製造方法を提供す
ることができる。
EFFECTS OF THE INVENTION According to the present invention, the superplasticity such that the superplasticity processing temperature is low, the deformation resistance during superplasticity processing is small, and the superplastic elongation is larger than that of the conventional titanium alloy while maintaining excellent strength. A titanium alloy excellent in workability and a method for producing the same can be provided.

また、この発明に係るチタン合金は、これら優れた特
性を生かして、航空宇宙機器用材料を始めとして、超塑
性加工性に優れた高強度チタン合金として広く用いるこ
とが可能である。
Further, the titanium alloy according to the present invention can be widely used as a high-strength titanium alloy excellent in superplastic workability, including materials for aerospace equipment, by utilizing these excellent properties.

更に、この発明に係るチタン合金は、変型抵抗が小さ
いという特長から、超塑性を利用した加工法だけでな
く、恒温鍛造や通常の熱間鍛造、あるいは温間鍛造等の
加工法においても優れた加工性を有することは明らかで
あり、極めて広範な適用が可能である。
Further, the titanium alloy according to the present invention is excellent not only in the processing method utilizing superplasticity but also in the processing method such as isothermal forging, normal hot forging, or warm forging because of the characteristic that the deformation resistance is small. It is obvious that it has workability and can be applied in a very wide range of applications.

【図面の簡単な説明】[Brief description of drawings]

第1図は1.8×(Cr%)+(Mo%)の値と超塑性伸びと
の関係を示すグラフ、第2図はCr含有量と超塑性伸びと
の関係を示すグラフ、第3図はMoの含有量と超塑性伸び
との関係を示すグラフ、第4図はα晶粒径と超塑性伸び
との関係を示すグラフである。
Fig. 1 is a graph showing the relationship between the value of 1.8 x (Cr%) + (Mo%) and superplastic elongation, Fig. 2 is a graph showing the relationship between Cr content and superplastic elongation, and Fig. 3 is FIG. 4 is a graph showing the relationship between the Mo content and superplastic elongation, and FIG. 4 is a graph showing the relationship between α crystal grain size and superplastic elongation.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重量%で、 Al:5.5〜6.75% V:3.5〜4.5% O:0.2%以下 Cr:0.85〜3.15% Mo:0.85〜3.15% を含有し、かつ、 3%≦{1.8×(Cr%)+(Mo%)}≦8% の条件を満足し、残部がTi及び不可避不純物からなり、
α晶の平均粒径が6μm以下であることを特徴とする超
塑性加工性に優れたチタン合金。
1. By weight%, Al: 5.5 to 6.75% V: 3.5 to 4.5% O: 0.2% or less Cr: 0.85 to 3.15% Mo: 0.85 to 3.15% and 3% ≦ {1.8 × (Cr%) + (Mo%)} ≦ 8%, the balance consists of Ti and unavoidable impurities,
A titanium alloy excellent in superplastic workability, characterized in that the average grain size of α crystals is 6 μm or less.
【請求項2】重量%で、 Al:5.5〜6.75% V:3.5〜4.5% O:0.2%以下 Cr:0.85〜3.15% Mo:0.85〜3.15% を含有し、かつ、 3%≦{1.8×(Cr%)+(Mo%)}≦8% の条件を満足し、残部がTi及び不可避不純物からなるチ
タン合金を、(β変態点−200℃)以上、β変態点未満
の温度で加熱し、引き続き、β変態点未満の温度で圧下
比を3以上とする圧下を施すことを特徴とする超塑性加
工性に優れたチタン合金の製造方法。
2. In weight%, Al: 5.5 to 6.75% V: 3.5 to 4.5% O: 0.2% or less Cr: 0.85 to 3.15% Mo: 0.85 to 3.15% and 3% ≦ {1.8 × A titanium alloy satisfying the condition of (Cr%) + (Mo%) ≤ 8% and the balance of Ti and unavoidable impurities is heated at a temperature of (β transformation point -200 ° C) or more and less than β transformation point. Next, a method for producing a titanium alloy having excellent superplastic workability, which is characterized by continuously performing a reduction at a reduction ratio of 3 or more at a temperature below the β transformation point.
【請求項3】重量%で、 Al:5.5〜6.75% V:3.5〜4.5% O:0.2%以下 Cr:0.85〜3.15% Mo:0.85〜3.15% を含有し、かつ、 3%≦{1.8×(Cr%)+(Mo%)}≦8% の条件を満足し、残部がTi及び不可避不純物からなるチ
タン合金を、(β変態点−200℃)以上、β変態点未満
の温度で加熱し、引き続き、β変態点未満の温度で圧下
比を3以上とする圧下を施し、(β変態点−200℃)以
上、β変態点未満の温度で再結晶熱処理を施し、超塑性
加工を施すことを特徴とするチタン合金の超塑性加工方
法。
3. In weight%, Al: 5.5 to 6.75% V: 3.5 to 4.5% O: 0.2% or less Cr: 0.85 to 3.15% Mo: 0.85 to 3.15% and 3% ≦ {1.8 × A titanium alloy satisfying the condition of (Cr%) + (Mo%) ≤ 8% and the balance of Ti and unavoidable impurities is heated at a temperature of (β transformation point -200 ° C) or more and less than β transformation point. Continuously, reduction at a reduction ratio of 3 or more at a temperature lower than the β transformation point is performed, and recrystallization heat treatment is performed at a temperature of (β transformation point −200 ° C.) or higher and lower than the β transformation point to perform superplastic working. A superplastic working method for a titanium alloy, characterized by:
JP3742190A 1990-02-20 1990-02-20 Titanium alloy excellent in superplastic workability, method for producing the same, and superplastic workability method for titanium alloy Expired - Fee Related JPH0819503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3742190A JPH0819503B2 (en) 1990-02-20 1990-02-20 Titanium alloy excellent in superplastic workability, method for producing the same, and superplastic workability method for titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3742190A JPH0819503B2 (en) 1990-02-20 1990-02-20 Titanium alloy excellent in superplastic workability, method for producing the same, and superplastic workability method for titanium alloy

Publications (2)

Publication Number Publication Date
JPH03243740A JPH03243740A (en) 1991-10-30
JPH0819503B2 true JPH0819503B2 (en) 1996-02-28

Family

ID=12497059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3742190A Expired - Fee Related JPH0819503B2 (en) 1990-02-20 1990-02-20 Titanium alloy excellent in superplastic workability, method for producing the same, and superplastic workability method for titanium alloy

Country Status (1)

Country Link
JP (1) JPH0819503B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202212378D0 (en) * 2022-08-25 2022-10-12 Rolls Royce Plc Titanium alloy and methods of manufacture

Also Published As

Publication number Publication date
JPH03243740A (en) 1991-10-30

Similar Documents

Publication Publication Date Title
US5124121A (en) Titanium base alloy for excellent formability
US5861070A (en) Titanium-aluminum-vanadium alloys and products made using such alloys
US5226985A (en) Method to produce gamma titanium aluminide articles having improved properties
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JPH10306335A (en) Alpha plus beta titanium alloy bar and wire rod, and its production
US5256369A (en) Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof
JPH0823053B2 (en) High-strength titanium alloy with excellent workability, method for producing the alloy material, and superplastic forming method
US5417781A (en) Method to produce gamma titanium aluminide articles having improved properties
JPH01252747A (en) High strength titanium material having excellent ductility and its manufacture
US5362441A (en) Ti-Al-V-Mo-O alloys with an iron group element
JPS63171862A (en) Manufacture of heat resistant ti-al alloy
JP7144840B2 (en) Titanium alloy, method for producing the same, and engine parts using the same
JPH0663049B2 (en) Titanium alloy with excellent superplastic workability
JP2932918B2 (en) Manufacturing method of α + β type titanium alloy extruded material
US5417779A (en) High ductility processing for alpha-two titanium materials
JPH05255827A (en) Production of alloy based on tial intermetallic compound
JP3374553B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
JPH0819502B2 (en) Titanium alloy excellent in superplastic workability, its manufacturing method, and superplastic working method of titanium alloy
JPH0819503B2 (en) Titanium alloy excellent in superplastic workability, method for producing the same, and superplastic workability method for titanium alloy
JP2729011B2 (en) TiAl-based intermetallic compound alloy having high strength and method for producing the same
JP2686020B2 (en) Superplastically deformable β + γTiAl-based intermetallic alloy and method for producing the same
RU2694098C1 (en) Method of producing semi-finished products from high-strength nickel alloys
JP3328557B2 (en) TiAl-based intermetallic compound alloy having high strength and method for producing the same
JPH08337832A (en) Titanium-aluminium intermetallic compound-base alloy and its production
JP3065782B2 (en) Hydrogen treatment method for titanium alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees