JPS62107041A - Highly corrosion resistant titanium alloy - Google Patents

Highly corrosion resistant titanium alloy

Info

Publication number
JPS62107041A
JPS62107041A JP24780985A JP24780985A JPS62107041A JP S62107041 A JPS62107041 A JP S62107041A JP 24780985 A JP24780985 A JP 24780985A JP 24780985 A JP24780985 A JP 24780985A JP S62107041 A JPS62107041 A JP S62107041A
Authority
JP
Japan
Prior art keywords
corrosion resistance
alloy
titanium alloy
platinum group
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24780985A
Other languages
Japanese (ja)
Other versions
JPH0689423B2 (en
Inventor
Yoshiaki Shida
志田 善明
Shiro Kitayama
北山 司郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP60247809A priority Critical patent/JPH0689423B2/en
Publication of JPS62107041A publication Critical patent/JPS62107041A/en
Publication of JPH0689423B2 publication Critical patent/JPH0689423B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve workability as well as corrosion resistance by incorporating prescribed percentage of platinum group elements, Ni, Co, Mo, W and V. CONSTITUTION:The titled titanium alloy has a composition consisting of, by weight, 0.01-0.12%, in total, of one or more kinds among platinum group elements, 0.05-2% Ni and/or Co and the balance Ti, or further containing besides the above, 0.05-2%, in total, of one or more elements among Mo, W and V. This alloy is excellent in corrosion resistance and workability, so that performance and reliability of facilities and equipments used under a corrosive environment can be improved on application of this alloy.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、着れた組下き開脚食性を耳するのはもちろ
んのこと、耐酸性等の一般耐食性にも潰れ、かつ純チタ
ンと同等に良好な加工性を示すコストの安いチタン合金
に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> This invention not only has good corrosion resistance when worn, but also has general corrosion resistance such as acid resistance, and is equivalent to pure titanium. This invention relates to a low-cost titanium alloy that exhibits good workability.

く背景技術〉 工業規模での生産がなされはじめた当初は軽くて強い特
性が生かされ、航空産業等が活躍の中心舞台であったチ
タンは、一方で優れた耐食性を有していることから、最
近では、1ヒ学工業設備用材料、火力・原子力発電設備
材料、或いは海水淡水1ヒ設備材料等としても広範囲(
1便用されるようになってきた。しかし、一般的にチタ
ンが優れた耐食性を有するとは言っても、その高耐食性
を発揮する場は硝酸等の酸化性酸環境や海水等の中性塩
化物環境においてであり、fヒ学工業で比較的多く認め
られる非酸化性酸(塩酸、硫酸等)環境における耐食性
や、高温塩化物環境Fでの耐すき開脚食性は極めて不満
足なものでしかなかった。
Background technology When titanium first began to be produced on an industrial scale, its light and strong characteristics were utilized, and titanium was mainly used in the aeronautical industry. Recently, it has been widely used as materials for industrial equipment, thermal and nuclear power generation equipment, and materials for seawater and freshwater equipment.
It has come to be used once. However, although titanium generally has excellent corrosion resistance, it exhibits its high corrosion resistance only in oxidizing acid environments such as nitric acid or neutral chloride environments such as seawater. Corrosion resistance in a non-oxidizing acid environment (hydrochloric acid, sulfuric acid, etc.), which is relatively common in the environment, and plow-spread corrosion resistance in a high-temperature chloride environment F were extremely unsatisfactory.

そこで、このような非酸(ヒ性酸環境や丁き開脚食が懸
念される環境での使用を目的CTi−Pd合金が開発さ
れ、特に塩酸が含まれる環境にて多用されるようになっ
てきた。これは、チタンに少置(約0.2重量111程
度)のPdを添加するとその水素過成田が著しく低下し
、自然電位を不働愈域に維持するとの現象を利用したも
のである。
Therefore, CTi-Pd alloy was developed for use in such non-acid (arsenic acid environments and environments where splitting is a concern), and has come to be used particularly in environments containing hydrochloric acid. This is based on the phenomenon that when a small amount (approximately 0.2 weight 111) of Pd is added to titanium, its hydrogen supernatant decreases significantly and the natural potential is maintained in the passive region. be.

しかしながら、耐食性(:定評のある前記Ti −Pd
合金は、貴金属を比較的多動に含有するため高価であり
、従ってその使用が制限されざるを得ないと言う問題点
があった。
However, corrosion resistance (: the well-established Ti-Pd
Alloys are expensive because they contain precious metals that are relatively hyperactive, and there is a problem in that their use must be restricted.

一方、これとは別に、耐すき開脚食性の同上を主目的と
して少雪のNiとMoとを複合添加したチタン合金も提
案されている(特開昭50−130614号公報)が、
この合金は耐酸特性に乏しく、また加工性にも劣ること
から、やはり広範囲な採用が躊躇されるものであった。
On the other hand, apart from this, a titanium alloy with a small amount of combined addition of Ni and Mo has also been proposed (Japanese Patent Application Laid-Open No. 130614/1983), with the main purpose of improving the same resistance to plow corrosion.
This alloy has poor acid resistance and poor workability, so its widespread adoption has been discouraged.

〈問題点を解決するための手段〉 本発明者等は、上述のような観点から、優れた組下き開
脚食性を有することはもちろん、非酸fヒ性酸穣境での
耐酸性等、一般耐食性にも潰れ、かつ工業用純テダンと
同程度の良好な加工性を示す廉価なチタン合金を提供T
べく研究を恵ねたところ、以下に示すような知見が得ら
れたのである。
<Means for Solving the Problems> From the above-mentioned viewpoints, the present inventors have developed not only excellent leg-leg eating properties, but also acid resistance in non-acid and arsenic acid environments. , provides an inexpensive titanium alloy that is resistant to general corrosion and exhibits good workability comparable to that of industrially pure Tedan.
As a result of extensive research, the following findings were obtained.

即ち、 a)加工性を損うことなくチタンの耐食性を顕著(:改
善するためには白金族元素(Ru * Rh * Pd
 *Os、Ir及びPt)の微’ejkfls加が欠か
せないが、これら白金族元素に加えて微看のNi及びC
oの1種又はh種を複合添加した場合には、白金族元素
が有する水素過電王低下作用CNi或い′!嘘Coの水
素過電田降丁作用が重畳され、高価な白金族元素の含有
着を低減したとしても該チタン合金に極めて唆れた耐食
性が維持されるようになり、シカ為もNi又はCoの添
加による加工性劣化現象もそれほど顕著1ヒしないこと
、 b)微量の白金族元素と微敞のNi又はCoを含有せし
めた上記チタン合金C二、更にMo 、 W及びVの1
種以上を複合添加した場合には、白金族元素とNi或い
はcoとの複合作用C;よって得られる顕著な水素過電
圧低丁効巣と、上記Mo * W又はVが環境液中に溶
解して生じるモリブデン酸イオン、タングステン酸イオ
ン或いはバナジン酸イオンによる1チタン表面(:形成
された不働態皮膜を安定化し、耐食性、殊に丁き開脚食
に対する抵抗性をより一層向上する“と言う効果とが複
合され、核チダン合金の組下き開脚食を中心とした耐食
性が加工性劣化を伴うことなく一層向上すること。
That is, a) In order to significantly improve the corrosion resistance of titanium without impairing its workability, platinum group elements (Ru*Rh*Pd
*Os, Ir and Pt) are indispensable, but in addition to these platinum group elements, slight addition of Ni and C is essential.
When one type of o or type h is added in combination, the hydrogen overpower reduction effect of platinum group elements CNi or '! The corrosion resistance of the titanium alloy is maintained even if the content of expensive platinum group elements is reduced due to the superimposed hydrogen overvoltage reduction effect of Co. b) The above titanium alloy C2 containing a trace amount of platinum group elements and a small amount of Ni or Co, as well as Mo, W and V,
When more than one species is added in combination, the combined effect of the platinum group element and Ni or Co; resulting in a remarkable hydrogen overvoltage reduction effect, and the above-mentioned Mo*W or V being dissolved in the environmental liquid. The resulting molybdate ions, tungstate ions, or vanadate ions stabilize the formed passive film on the titanium surface and further improve corrosion resistance, especially resistance to splitting corrosion. is combined, and the corrosion resistance of the core titanium alloy, mainly in the case of assembling spread corrosion, is further improved without deterioration of workability.

この発明は、上記知見(二基づいてなされたものであり
、 チタン合金を。
This invention was made based on the above findings (2).Titanium alloy.

白金族元素(Ru、Rh5Pd*0s−Ir及びPt)
のうちの1棟以上: 合計で0.01〜0.12 ’fb sNi及びCoの
うちの1種以上: 合計で0.05〜2.00憾 を含有するか、必要により更に Mo + W及びVのうちの1種以上:合計で0.05
〜2.004 をも含むかし、残部が実質的にTiであるfヒ学成分組
成に構成することで、耐すき開脚食性及び耐酸性等の耐
食性全般に曖れることはもちろん、良好な加工性をも確
保せしめた点、 に特徴を有するものである。
Platinum group elements (Ru, Rh5Pd*0s-Ir and Pt)
One or more of: 0.01 to 0.12'fb in total One or more of sNi and Co: 0.05 to 2.00 in total, or if necessary further Mo + W and One or more types of V: 0.05 in total
2.004 and the remainder is substantially Ti, it not only improves general corrosion resistance such as plow corrosion resistance and acid resistance, but also provides good corrosion resistance. It is characterized by the fact that it also ensures workability.

ここで、この発明のチタン合金において、その成分割合
を上記の如くC二数値限定した理由を説明する。
Here, in the titanium alloy of the present invention, the reason why the component ratio is limited to two numerical values of C as described above will be explained.

(al  白金族元素(Ru * Rh @ Pd 、
 Os 、 Ir及びPt)これらの成分、にはチタン
合金の耐食性(組下き開脚食性や耐酸性等を含む)を改
善する均等な作用があり、その耐食性改善効果は白金族
元素の1種以上が合計で0.014以上含有された場合
(−現われて多くなるほど顕著1ヒするが、Ni又はC
oとの共存下では、白金族元素の合計含有晴が0.12
%を越えると前記効果に飽和部間がみられる上、合金価
格の高騰をもたら丁ことη為ら、白金族元素は1種以上
の合計含有量で0.01〜0.12%と定めた。
(al platinum group element (Ru * Rh @ Pd,
(Os, Ir, and Pt) These components have the same effect of improving the corrosion resistance of titanium alloys (including the spread corrosion resistance and acid resistance, etc.), and their corrosion resistance improvement effect is similar to that of one of the platinum group elements. If 0.014 or more of the above are contained in total (-The more they appear, the more pronounced the problem becomes, but Ni or C
In coexistence with o, the total content of platinum group elements is 0.12
If the content exceeds 0.9%, the above effect will be saturated, and the price of the alloy will rise. Therefore, the total content of one or more platinum group elements is set at 0.01 to 0.12%. Ta.

(bl  Ni、及びC。(bl Ni, and C.

これらの成分は、いずれも白金族元素と同様に合金の水
素過電圧を小さくする均等な作用を有しており、従って
チタン合金の耐食性を改善する効果を発揮するが、その
効果は微けの白金族元素と共存させることで一層顕著1
ヒする。そして、上記耐食性改善効果は、Ni及びCo
の1種以上が合計で0、05 %以上含有された場合に
認められるようC;なるが、2.00 ’1を越えて含
有させると白金族金属との共存ド1:おいても加工性劣
化が目立つようになることから、Ni及びCoのうちの
1種以上の含有けは0.05〜2.001と定めた。な
お、冷間仕上げ品を想定した場合には0.1〜0.5憾
程度に調整することが好ましい。
All of these components, like the platinum group elements, have the same effect of reducing the hydrogen overvoltage of the alloy, and therefore have the effect of improving the corrosion resistance of titanium alloys, but this effect is weaker than that of platinum. Even more noticeable when coexisting with group elements 1
Hi. The above-mentioned corrosion resistance improvement effect is caused by Ni and Co
If one or more of the above is contained in a total of 0.05% or more, it will be recognized as C; however, if it is contained in excess of 2.00'1, the coexistence with platinum group metals will result in poor processability. Since deterioration becomes noticeable, the content of one or more of Ni and Co was determined to be 0.05 to 2.001. In addition, when assuming a cold-finished product, it is preferable to adjust it to about 0.1 to 0.5.

fcJ  Mo 、 W 、及びV これらの成分は、合金の使用環境溶液中に溶解して酸1
ヒ作用を有するモリブデン酸イオン、ダングヌテン酸イ
オン又はバナジン酸イオン等を生成し、チタン合金表面
に形1戊される不働態皮膜を安定1ヒすることにより腐
食、特に丁き間g&に対下る抵抗性を同上させる均等な
作用を頁しているので、耐食性、中でも1丁き間膜食性
を史に回りさセる必要がある場合に1種以上添加される
ものである。しかしながら、Mo 、 W及びVのうち
の1種以上の合計含有量が0.054未満では上記作用
による耐すき間膜食性を中心とした耐食性改善効果が不
十分であり、一方、その含有1を多くすると耐酸性向上
効果までもがより顕著1ヒするが、加工性に悪影響がで
てくることから、 Mo + W及びVのうちの1種以
上の含有量は0.05〜2.00壬と定めた。
fcJ Mo, W, and V These components are dissolved in the environmental solution of the alloy and added to the acid 1
It generates molybdate ions, dangunutate ions, vanadate ions, etc., which have an arsenic effect, and stabilizes the passive film formed on the surface of the titanium alloy, thereby increasing its resistance to corrosion, especially between gaps. Since it has the same effect as improving the properties, one or more of them are added when it is necessary to improve corrosion resistance, especially interlayer corrosion. However, if the total content of one or more of Mo, W, and V is less than 0.054, the effect of improving corrosion resistance centered on crevice corrosion resistance due to the above action is insufficient. In this case, the effect of improving acid resistance will be more pronounced, but since it will have a negative effect on workability, the content of one or more of Mo + W and V should be 0.05 to 2.00 mm. Established.

以上のようCユ、チタン中に微喰の白金族元素を含有さ
せるとともに、Ni及びCoのうちの1種以上を添加す
るか、或いは更にMo + W及びVのうちの1種以上
をも添加してTi合金を構成すると、該合金は比較的安
価(ニして、加工性を損うことなく劇すき間膜食性や耐
酸性を中心とする耐食性全般に優れた効果を発揮するよ
う(二なるが、耐食性−IPI7D工性の観点からは、
F’e、0.C,N、H等の不純物は少ない方が良く、
特にFe及びO含有量には注意を装丁る。しかしながら
、この発明のチタン合金では、それぞれ0.3壬以丁に
抑えられていれば格別な問題を生じることがない。
As mentioned above, in addition to containing a small amount of platinum group elements in C and titanium, one or more of Ni and Co is added, or one or more of Mo + W and V is also added. When a Ti alloy is constructed, the alloy is relatively inexpensive (secondly, it exhibits excellent overall corrosion resistance, including deep crevice corrosion resistance and acid resistance, without impairing workability). However, from the perspective of corrosion resistance and IPI7D workability,
F'e, 0. The less impurities such as C, N, and H, the better.
Particular attention should be paid to the Fe and O contents. However, with the titanium alloy of the present invention, no particular problem will occur if each amount is suppressed to 0.3 mm or less.

次に、この発明を、実施例により比較例と対比しながら
説明する。
Next, the present invention will be explained using examples and comparing with comparative examples.

〈実施例〉 まず、市販の工業用紳チタン板(JI82種)及びTi
−0,2%Pd合金数(A S TM  Grade 
7 )を用意し、更に第1表で示されるような成分l!
4成のチタン合金板材を準備した。なお、該チタン合金
板材は、ヌボンジチタンと合金成分たる純金属粉末とを
配合し、アルゴンアーク炉装置を用いたボタン溶解にで
溶製した小インゴットに、熱間鍛造、熱間圧延、スケー
ル除去処理(サンドブラヌト+酸洗)及び冷間圧延を旌
して4燗厚とし、続いて熱処理(真空中にて700℃で
30分保持後放?@)を旋したものである。
<Example> First, commercially available industrial titanium plates (JI 82 type) and Ti
-0.2% Pd alloy number (A S TM Grade
7), and further add the ingredients l! as shown in Table 1!
A four-component titanium alloy plate material was prepared. The titanium alloy plate material is a small ingot made by blending titanium with pure metal powder as an alloy component and melting it by button melting using an argon arc furnace, followed by hot forging, hot rolling, and scale removal treatment. (sand branut + pickling) and cold rolling to a thickness of 4 mm, followed by heat treatment (holding in vacuum at 700° C. for 30 minutes and then releasing).

次いで、これらの各材料から試験片を採取し、“耐酸性
試験”及び”1丁き開脚食試験“に供した。
Next, test pieces were taken from each of these materials and subjected to an "acid resistance test" and a "single leg eating test".

なお、耐酸性試験は、採取した3m厚×10M幅X40
mm長の短冊型腐食試験片を600番エメリー紙にて研
磨仕上げした後、沸@ 54 IC/水溶液中に6時間
浸漬し、その際の全面腐食量を測定する方法を採用した
。そして、耐酸性の評価は、各2枚の試験片について腐
食着から腐食速度を算出し、その平均値を比較する方法
によ一″)だ。
In addition, the acid resistance test was conducted using the sampled 3m thickness x 10M width x 40
After polishing a mm-long rectangular corrosion test piece with No. 600 emery paper, it was immersed in a boiling@54 IC/aqueous solution for 6 hours, and the amount of corrosion on the entire surface was measured. Acid resistance is evaluated by calculating the corrosion rate from the corrosion deposits for each two test pieces and comparing the average values.

また、耐すき開脚食性試験は、採取した3調厚×30闇
幅×30#長(中央に7mmφの穴を付設)の試験片を
600番エメリー紙にて研磨仕上げした後、2枚の該試
験片の間にジメタクリレート系樹脂(嫌気性接看剤)を
塗布した後、テフロンブツシュを介してチタン製ボルト
・ナツトで締め付けること1;より”丁き聞騙食試験対
”の組立てを完了し、続いて材質毎に3組ずつ用意した
前記試験片対を沸騰10壬NaCA水M夜中C100時
間浸漬して丁き開脚食状況を調べると言う方法を採用し
た。
In addition, for the plow-spread eating test, the sample specimens of 3 thickness x 30 width x 30 length (with a hole of 7 mm diameter in the center) were polished with No. 600 emery paper, and then two sheets of After applying dimethacrylate resin (anaerobic adhesive) between the test pieces, tighten them with titanium bolts and nuts through Teflon bushings. After completing the test, three pairs of test pieces for each material were immersed in boiling NaCA water for 100 hours in the middle of the night, and the condition of the test pieces was examined.

このようにして実施された試験結果を第1表(二併せて
示す。
The test results conducted in this manner are shown in Table 1 (Table 2).

第1表に示される結果からも明らかなように、本発明合
金は廉価(二もかかわらず、価洛の高いTi−〇2冬P
d合金と1自様に曖れた耐酸性、耐Tき間膜食性を備え
ていることがわ刀1す、その身れた耐食性は特筆に値す
ることが明瞭である。
As is clear from the results shown in Table 1, the alloy of the present invention has a low price (despite the high price of Ti-〇2 winter P).
It is known that it has acid resistance and interstitial corrosion resistance that are different from that of D alloy, and it is clear that its corrosion resistance is worthy of special mention.

また、これとは別に実姉された〃v工性試袋においても
、本発明合金は実用ヒ何ら格別な支障のない艮好な加工
性を示すことが確認された。
In addition, in a workability test bag conducted separately from this, it was confirmed that the alloy of the present invention exhibits excellent workability without any particular problems in practical use.

〈総括的な効果〉 以上に、脱明した如く、この5と明(二よハ、ば、屡れ
た1−I食性と加工性とを兼備したチタン合金をコスト
安く提供することかでき、腐食性環境で使用される設備
・鏡器類の性能や信頼性をより一層高めることが可能と
なるなど、tb業上極めて有1月な効果がもたらされる
のである。
<Overall Effects> As described above, it is possible to provide titanium alloys that have both the 5 and 1-I eating properties and workability at a low cost. This will bring about significant benefits to the TB industry, such as making it possible to further improve the performance and reliability of equipment and mirrors used in corrosive environments.

Claims (2)

【特許請求の範囲】[Claims] (1)重量割合にて、 白金族元素のうちの1種以上: 合計で0.01〜0.12%、 Ni及びCoのうちの1種以上: 合計で0.05〜2.00% を含むとともに、残部が実質的にTiより成ることを特
徴とする、耐食性の優れたチタン合金。
(1) In terms of weight percentage, one or more of the platinum group elements: 0.01 to 0.12% in total, one or more of Ni and Co: 0.05 to 2.00% in total A titanium alloy with excellent corrosion resistance, characterized in that the remainder is substantially composed of Ti.
(2)重着割合にて、 白金族元素のうちの1種以上: 合計で0.01〜0.12%、 Ni及びCoのうちの1種以上: 合計で0.05〜2.00%、 Mo、W及びVのうちの1種以上: 合計で0.05〜2.00% を含むとともに、残部が実質的にTiより成ることを特
徴とする、耐食性の優れたチタン合金。
(2) In terms of superposition ratio, one or more of the platinum group elements: 0.01 to 0.12% in total; one or more of Ni and Co: 0.05 to 2.00% in total , Mo, W, and V: a total of 0.05 to 2.00%, and the remainder substantially consists of Ti. A titanium alloy having excellent corrosion resistance.
JP60247809A 1985-11-05 1985-11-05 Titanium alloy with excellent corrosion resistance Expired - Lifetime JPH0689423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60247809A JPH0689423B2 (en) 1985-11-05 1985-11-05 Titanium alloy with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60247809A JPH0689423B2 (en) 1985-11-05 1985-11-05 Titanium alloy with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JPS62107041A true JPS62107041A (en) 1987-05-18
JPH0689423B2 JPH0689423B2 (en) 1994-11-09

Family

ID=17168981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60247809A Expired - Lifetime JPH0689423B2 (en) 1985-11-05 1985-11-05 Titanium alloy with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JPH0689423B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421030A (en) * 1987-07-16 1989-01-24 Nippon Mining Co Titanium-base alloy material excellent in corrosion resistance
JPS6421040A (en) * 1987-07-16 1989-01-24 Nippon Mining Co Manufacture of titanium-base alloy material excellent in corrosion resistance and workability
US5141566A (en) * 1990-05-31 1992-08-25 Sumitomo Metal Industries, Ltd. Process for manufacturing corrosion-resistant seamless titanium alloy tubes and pipes
US6334913B1 (en) 1998-12-28 2002-01-01 Kobe Steel, Ltd. Corrosion-resistant titanium alloy
WO2007077645A1 (en) * 2005-12-28 2007-07-12 Sumitomo Metal Industries, Ltd. Titanium alloy for corrosion-resistant material
JP2010270360A (en) * 2009-05-20 2010-12-02 Kobe Steel Ltd Titanium alloy material, structural member, and vessel for radioactive waste
US8741217B2 (en) 2005-12-28 2014-06-03 Nippon Steel & Sumitomo Metal Corporation Titanium alloy for corrosion-resistant materials
EP2738271A1 (en) * 2011-07-26 2014-06-04 Nippon Steel & Sumitomo Metal Corporation Titanium alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127844A (en) * 1984-11-22 1986-06-16 Nippon Mining Co Ltd Titanium alloy having superior corrosion resistance
JPS61194142A (en) * 1985-02-21 1986-08-28 Nippon Mining Co Ltd Titanium alloy having superior corrosion resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127844A (en) * 1984-11-22 1986-06-16 Nippon Mining Co Ltd Titanium alloy having superior corrosion resistance
JPS61194142A (en) * 1985-02-21 1986-08-28 Nippon Mining Co Ltd Titanium alloy having superior corrosion resistance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421030A (en) * 1987-07-16 1989-01-24 Nippon Mining Co Titanium-base alloy material excellent in corrosion resistance
JPS6421040A (en) * 1987-07-16 1989-01-24 Nippon Mining Co Manufacture of titanium-base alloy material excellent in corrosion resistance and workability
US5141566A (en) * 1990-05-31 1992-08-25 Sumitomo Metal Industries, Ltd. Process for manufacturing corrosion-resistant seamless titanium alloy tubes and pipes
US6334913B1 (en) 1998-12-28 2002-01-01 Kobe Steel, Ltd. Corrosion-resistant titanium alloy
WO2007077645A1 (en) * 2005-12-28 2007-07-12 Sumitomo Metal Industries, Ltd. Titanium alloy for corrosion-resistant material
US8741217B2 (en) 2005-12-28 2014-06-03 Nippon Steel & Sumitomo Metal Corporation Titanium alloy for corrosion-resistant materials
JP2010270360A (en) * 2009-05-20 2010-12-02 Kobe Steel Ltd Titanium alloy material, structural member, and vessel for radioactive waste
EP2738271A1 (en) * 2011-07-26 2014-06-04 Nippon Steel & Sumitomo Metal Corporation Titanium alloy
EP2738271A4 (en) * 2011-07-26 2015-04-01 Nippon Steel & Sumitomo Metal Corp Titanium alloy
US10227677B2 (en) 2011-07-26 2019-03-12 Nippon Steel & Sumitomo Metal Corporation Titanium alloy

Also Published As

Publication number Publication date
JPH0689423B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
JPS62107041A (en) Highly corrosion resistant titanium alloy
JPS62274036A (en) Copper alloy having superior wear and corrosion resistance
JPS62107040A (en) Titanium alloy excellent in crevice corrosion resistance
JPS60184655A (en) High-strength copper alloy having high electric conductivity
JPS62199744A (en) Titanium alloy having superior crevice corrosion resistance
JPH05195166A (en) Corrosion-resistant austenitic stainless steel with high silicon content, corrosion-resistant product and semiprocessed product
JPS62278242A (en) Copper alloy excellent in machinability and corrosion resistance
JPS61127844A (en) Titanium alloy having superior corrosion resistance
JPS63213628A (en) Copper alloy for fuse
JPH0535212B2 (en)
JPS619543A (en) Titanium alloy having superior crevice corrosion resistance
JPS61221348A (en) Titanium alloy excelling in crevice corrosion resistance
JP2936899B2 (en) Titanium alloy with excellent corrosion resistance and workability to non-oxidizing acids
JPS6086227A (en) Conductive high strength copper alloy
JPS62130247A (en) Copper alloy for electronic appliance
CA1043133A (en) Titanium alloy
US1398918A (en) Acid-resisting iron
JPH04224647A (en) Titanium alloy excellent in corrosion resistance
JPS62205239A (en) Corrosion-resisting ti alloy
JPH01252746A (en) High corrosion-resistant titanium-based alloy
JPH03197636A (en) Titanium alloy having excellent corrosion resistance
JPH03193836A (en) Titanium alloy having excellent corrosion resistance
JPH0119457B2 (en)
JPS60204855A (en) Aluminum alloy having superior resistance to pitting corrosion
Kato et al. Corrosion Behaviour of Pure Chromium in HCl Solutions

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term