JP2010270360A - Titanium alloy material, structural member, and vessel for radioactive waste - Google Patents

Titanium alloy material, structural member, and vessel for radioactive waste Download PDF

Info

Publication number
JP2010270360A
JP2010270360A JP2009122409A JP2009122409A JP2010270360A JP 2010270360 A JP2010270360 A JP 2010270360A JP 2009122409 A JP2009122409 A JP 2009122409A JP 2009122409 A JP2009122409 A JP 2009122409A JP 2010270360 A JP2010270360 A JP 2010270360A
Authority
JP
Japan
Prior art keywords
mass
titanium alloy
alloy material
environment
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009122409A
Other languages
Japanese (ja)
Other versions
JP5390934B2 (en
Inventor
Shinji Sakashita
真司 阪下
Kyosuke Fujisawa
匡介 藤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009122409A priority Critical patent/JP5390934B2/en
Priority to US12/771,147 priority patent/US20100322817A1/en
Priority to FR1053699A priority patent/FR2945822B1/en
Priority to CN201010180682.0A priority patent/CN101892402B/en
Priority to RU2010120135/02A priority patent/RU2452785C2/en
Priority to KR1020100046701A priority patent/KR101218858B1/en
Publication of JP2010270360A publication Critical patent/JP2010270360A/en
Application granted granted Critical
Publication of JP5390934B2 publication Critical patent/JP5390934B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Processing Of Solid Wastes (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost titanium alloy material which exhibits excellent corrosion resistance in non-oxidizing environments such as a sulfuric acid environment, a high temperature neutral chloride environment and a fluoride-containing high temperature neutral chloride environment, to provide a structural member using the titanium alloy material, and to provide a vessel for radioactive waste using the titanium alloy material. <P>SOLUTION: The titanium alloy material comprises, by mass, 0.005 to 0.10% Ru, 0.005 to 0.10% Pd, 0.01 to 2.0% Ni, 0.01 to 2.0% Cr, 0.01 to 2.0% V and the balance Ti with inevitable impurities. Further, the structural member and the vessel for radioactive waste are obtained by using the titanium alloy material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、低コストで耐食性に優れるチタン合金材に関するものであり、特に、硫酸環境、高温中性塩化物環境、あるいはフッ化物を含有する高温中性塩化物環境等の非酸化性環境において使用するのに好適なチタン合金材、および、このチタン合金材を用いた構造部材、ならびに、このチタン合金材を用いた放射性廃棄物用容器に関するものである。   The present invention relates to a titanium alloy material that is low in cost and excellent in corrosion resistance, and particularly used in a non-oxidizing environment such as a sulfuric acid environment, a high-temperature neutral chloride environment, or a high-temperature neutral chloride environment containing fluoride. The present invention relates to a titanium alloy material suitable for this, a structural member using the titanium alloy material, and a radioactive waste container using the titanium alloy material.

チタンは耐食性に優れることから、化学プラント、海洋構造物、建材等、様々な分野で使用されている。チタンの耐食性は、使用環境において表面に形成される不働態皮膜の安定性に大きく依存する。チタンは、硝酸等の酸化性酸や海水等の常温塩化物環境では、表面に安定な不働態皮膜を形成して優れた耐食性を発揮する。しかしながら、非酸化性の環境(硫酸、高濃度塩水等)は酸化力が小さいため、チタン酸化物を主体とする安定な不働態皮膜の形成が不十分となって、耐食性がそれほど良好ではなくなる場合がある。   Titanium has excellent corrosion resistance and is used in various fields such as chemical plants, offshore structures, and building materials. The corrosion resistance of titanium greatly depends on the stability of the passive film formed on the surface in the use environment. Titanium exhibits excellent corrosion resistance by forming a stable passive film on the surface in an oxidizing acid such as nitric acid and a room temperature chloride environment such as seawater. However, when non-oxidizing environment (sulfuric acid, high-concentration salt water, etc.) has low oxidizing power, the formation of a stable passive film mainly composed of titanium oxide is insufficient and the corrosion resistance is not so good. There is.

このような非酸化性環境での耐食性の問題に対応するため、チタンに種々の合金元素を添加して耐食性をさらに高めた合金が開発されている。例えば、Ti−Pd合金は、非酸化性環境でも耐食性が優れる合金であるが、これはPdがチタンの電位を貴化して、不働態皮膜がより安定な状態になるためである。工業的には、Ti−0.15質量%Pd合金が、ASTMのGrade7あるいはGrade11として規格化されており、極めて高い耐食性が要求される石油精製や石油化学プラント等の分野で使用されている。しかしながら、Ti−0.15質量%Pd合金は、高価なPdを比較的多量に添加していることから、材料コストの上昇を招くという問題点を有している。   In order to cope with the problem of corrosion resistance in such a non-oxidizing environment, alloys having further improved corrosion resistance by adding various alloy elements to titanium have been developed. For example, a Ti—Pd alloy is an alloy having excellent corrosion resistance even in a non-oxidizing environment, because Pd makes the potential of titanium noble and the passive film becomes more stable. Industrially, Ti-0.15 mass% Pd alloy is standardized as ASTM Grade 7 or Grade 11, and is used in fields such as petroleum refining and petrochemical plants that require extremely high corrosion resistance. However, the Ti-0.15 mass% Pd alloy has a problem in that the material cost is increased because a relatively large amount of expensive Pd is added.

より安価で優れた耐食性を発揮するチタン合金としては、Pdと同じく、電位貴化による耐食性向上効果を発揮する白金族元素の少量を複合添加し、さらに、他の合金元素も添加したTi合金が開発されている。例えば、Ti−0.05質量%Pd−0.3質量%Co合金が開発されており、ASTMのGrade30、Grade31として規格化されている。また、特許文献1には、白金族元素、Cr、Niを添加したチタン合金が、特許文献2には、PdとPd以外の白金族元素との比を適正化することによって耐食性を高めたチタン合金が開示されている。   As a titanium alloy that is cheaper and exhibits excellent corrosion resistance, a Ti alloy in which a small amount of a platinum group element that exhibits an effect of improving corrosion resistance due to potential nobleness is added in combination with Pd, and further, other alloy elements are added. Has been developed. For example, a Ti-0.05 mass% Pd-0.3 mass% Co alloy has been developed and standardized as ASTM Grade 30 and Grade 31. Patent Document 1 discloses a titanium alloy to which platinum group elements, Cr and Ni are added. Patent Document 2 discloses titanium whose corrosion resistance has been improved by optimizing the ratio of Pd and platinum group elements other than Pd. An alloy is disclosed.

特開平4−308051号公報Japanese Patent Laid-Open No. 4-308051 特開2000−248324号公報JP 2000-248324 A

しかしながら、従来のチタン合金材では、以下に示すような問題がある。
通常、大気環境での建材としてチタン合金を用いた場合には、顕著な孔食や隙間腐食などの問題はないものの、腐食による表面変色が景観上の問題点として取り上げられる場合があり、硫酸酸性に曝される工業地帯等での酸性雨環境への対応としても、低コストでのさらなる耐食性向上が求められている。
However, the conventional titanium alloy material has the following problems.
Normally, when titanium alloys are used as building materials in the atmospheric environment, there are no problems such as significant pitting corrosion or crevice corrosion, but surface discoloration due to corrosion may be taken up as a problem in the landscape, and sulfuric acid acidity In order to cope with an acid rain environment in an industrial area or the like that is exposed to water, further improvement in corrosion resistance is required at a low cost.

また、チタン合金は、火力・原子力発電所の復水器や海水淡水化プラントの伝熱管等、高温の中性塩化物環境でのニーズが高いが、その使用環境は厳しくなっており、さらなる耐食性向上が求められている。特に、構造的な隙間形成部やチタン合金表面への付着物下で塩化物濃縮が起こることで隙間腐食が発生する場合が多く、耐隙間腐食性の向上が求められている。   Titanium alloys have high needs in high-temperature neutral chloride environments, such as condensers for thermal and nuclear power plants and heat transfer tubes for seawater desalination plants. There is a need for improvement. In particular, crevice corrosion often occurs due to chloride concentration under the structural gap forming portion or the deposit on the titanium alloy surface, and improvement in crevice corrosion resistance is required.

さらに、核燃料製造施設、原子力発電所、核燃料再処理施設等の原子力関連施設から発生する放射性廃棄物を輸送または処分するための容器においては、放射性廃棄物の発熱により、容器の金属表面温度は100℃以上にまで高くなる場合がある。従って、輸送または処分の際に、容器表面は水分蒸発に伴って、腐食促進因子である塩化物やフッ化物等が濃縮した高濃度溶液が形成され、厳しい腐食環境になることが想定される。また、フッ化物は、pHが6以下の酸性領域において、チタンを腐食させることが知られており、フッ化物を含有する酸性塩化物環境での耐食性にも課題がある。   Furthermore, in a container for transporting or disposing of radioactive waste generated from nuclear facilities such as nuclear fuel manufacturing facilities, nuclear power plants, nuclear fuel reprocessing facilities, the metal surface temperature of the container is 100 due to heat generation of the radioactive waste. May rise to over ℃. Therefore, during transportation or disposal, it is assumed that a highly concentrated solution in which chloride, fluoride, or the like, which is a corrosion promoting factor, is concentrated on the surface of the container as the moisture evaporates, resulting in a severe corrosive environment. In addition, fluoride is known to corrode titanium in an acidic region having a pH of 6 or less, and there is a problem in corrosion resistance in an acidic chloride environment containing fluoride.

本発明は、前記問題点に鑑みてなされたものであり、その目的は、硫酸環境、高温中性塩化物環境、あるいはフッ化物を含有する高温中性塩化物環境等の非酸化性環境において、低コストで優れた耐食性を発揮するチタン合金材、および、このチタン合金材を用いた構造部材、ならびに、このチタン合金材を用いた放射性廃棄物用容器を提供することにある。   The present invention has been made in view of the above problems, and its purpose is in a non-oxidizing environment such as a sulfuric acid environment, a high temperature neutral chloride environment, or a high temperature neutral chloride environment containing fluoride. An object of the present invention is to provide a titanium alloy material exhibiting excellent corrosion resistance at a low cost, a structural member using the titanium alloy material, and a radioactive waste container using the titanium alloy material.

本発明者らは、非酸化性環境での耐食性向上について検討した結果、白金族元素としては、RuとPdとの複合添加が最も効果的であり、これらに加えてNi、Cr、Vを複合添加することで、耐食性が最良となることを見出した。具体的には、以下のとおりである。   As a result of examining the corrosion resistance improvement in a non-oxidizing environment, the present inventors have found that the combined addition of Ru and Pd is the most effective as a platinum group element, and in addition to these, Ni, Cr, and V are combined. It has been found that the corrosion resistance is the best when added. Specifically, it is as follows.

RuとPdとの複合添加は、前記のように、チタンの電位を貴化して、チタン酸化物を主体とする安定な不働態皮膜を表面に形成する効果を有する。このとき、Ru、Pdと同時に、Ni、Cr、Vを複合添加することで、非酸化性環境におけるチタン合金表面のRuおよびPdの表面濃縮が促進されて、RuおよびPdが少ない場合にも安定な不働態皮膜の形成効果が顕著に発揮されるようになる。なお、Niは非酸化性環境でも安定な酸化物を形成して耐食性向上に寄与する元素である。さらに、Ni、Cr、Vは、フッ化物を含む環境において、チタン合金表面に安定な複合フッ化物の保護皮膜を形成して、耐食性向上に寄与する。以上のような各添加元素の相乗効果により、優れた耐食性が発現されると考えられる。   The combined addition of Ru and Pd has the effect of making the potential of titanium noble and forming a stable passive film mainly composed of titanium oxide on the surface as described above. At this time, by adding Ni, Cr, and V simultaneously with Ru and Pd, the surface concentration of Ru and Pd on the titanium alloy surface in a non-oxidizing environment is promoted, and stable even when there is little Ru and Pd. The effect of forming a passive film becomes remarkable. Note that Ni is an element that contributes to improving corrosion resistance by forming a stable oxide even in a non-oxidizing environment. Furthermore, Ni, Cr, and V contribute to improving corrosion resistance by forming a stable composite fluoride protective film on the titanium alloy surface in an environment containing fluoride. It is considered that excellent corrosion resistance is expressed by the synergistic effect of each additive element as described above.

また、前記の元素に加えて、Al、Si、Feを適量添加することがフッ化物に対する耐食性向上に有効であり、さらに、Os、Rh、Ir、Ptを適量添加することによって、一層優れた耐食性が得られることも見出した。   In addition to the above elements, addition of appropriate amounts of Al, Si, and Fe is effective in improving corrosion resistance against fluorides, and by adding appropriate amounts of Os, Rh, Ir, and Pt, even better corrosion resistance is achieved. It has also been found that can be obtained.

すなわち、本発明に係るチタン合金材は、Ru:0.005〜0.10質量%、Pd:0.005〜0.10質量%、Ni:0.01〜2.0質量%、Cr:0.01〜2.0質量%、V:0.01〜2.0質量%を含有し、残部がTiおよび不可避的不純物からなることを特徴とする。   That is, the titanium alloy material according to the present invention has Ru: 0.005 to 0.10% by mass, Pd: 0.005 to 0.10% by mass, Ni: 0.01 to 2.0% by mass, Cr: 0. .01-2.0 mass%, V: 0.01-2.0 mass% is contained, The remainder consists of Ti and an unavoidable impurity, It is characterized by the above-mentioned.

このような構成によれば、チタン合金材がRuおよびPbを所定量含有することで、チタンの電位が貴化し、チタン酸化物を主体とする安定な不働態皮膜が表面に形成される。さらに、Ni、Cr、Vを所定量含有することで、非酸化性環境において、チタン合金表面のRuおよびPdの表面濃縮が促進されて、安定な不働態皮膜の形成が促進され、また、フッ化物を含む環境において、チタン合金表面に安定な複合フッ化物の保護皮膜が形成される。また、Niを所定量含有することで、非酸化性環境においてチタン合金表面に安定な酸化物が形成される。   According to such a configuration, when the titanium alloy material contains a predetermined amount of Ru and Pb, the potential of titanium becomes noble and a stable passive film mainly composed of titanium oxide is formed on the surface. Furthermore, by containing a predetermined amount of Ni, Cr, and V, the surface concentration of Ru and Pd on the surface of the titanium alloy is promoted in a non-oxidizing environment, and the formation of a stable passive film is promoted. In an environment containing a fluoride, a stable composite fluoride protective film is formed on the surface of the titanium alloy. In addition, by containing a predetermined amount of Ni, a stable oxide is formed on the titanium alloy surface in a non-oxidizing environment.

本発明に係るチタン合金材は、さらに、Al:0.005〜2.0質量%、Si:0.005〜2.0質量%、および、Fe:0.005〜2.0質量%から選ばれる少なくとも1種を含有することが好ましい。   The titanium alloy material according to the present invention is further selected from Al: 0.005-2.0 mass%, Si: 0.005-2.0 mass%, and Fe: 0.005-2.0 mass%. It is preferable to contain at least one selected from the above.

このような構成によれば、チタン合金材が、さらにAl、Si、Feを選択的に所定量含有することで、フッ化物に対する耐食性がさらに向上し、また、強度も向上する。   According to such a configuration, the titanium alloy material further contains Al, Si, and Fe in a predetermined amount, whereby the corrosion resistance to fluoride is further improved and the strength is also improved.

本発明に係るチタン合金材は、さらに、Os:0.005〜0.10質量%、Rh:0.005〜0.10質量%、Ir:0.005〜0.10質量%、および、Pt:0.005〜0.10質量%から選ばれる少なくとも1種を含有することが好ましい。   The titanium alloy material according to the present invention further includes Os: 0.005 to 0.10% by mass, Rh: 0.005 to 0.10% by mass, Ir: 0.005 to 0.10% by mass, and Pt. : It is preferable to contain at least 1 sort (s) chosen from 0.005-0.10 mass%.

このような構成によれば、チタン合金材が、さらにOs、Rh、Ir、Ptを選択的に所定量含有することで、チタンの電位が貴化し、チタン酸化物を主体とする安定な不働態皮膜が表面に形成される。これにより、非酸化性環境における耐食性がさらに向上する。   According to such a configuration, the titanium alloy material further contains a predetermined amount of Os, Rh, Ir, and Pt, so that the potential of titanium becomes noble and a stable passive state mainly composed of titanium oxide. A film is formed on the surface. Thereby, the corrosion resistance in a non-oxidizing environment further improves.

本発明に係る構造部材は、前記記載のチタン合金材を用いたことを特徴とする。
このような構成によれば、硫酸環境、高温中性塩化物環境、あるいはフッ化物を含有する高温中性塩化物環境等の非酸化性環境における耐食性に優れたチタン合金材を使用するため、非酸化性環境における耐食性に優れた構造部材となる。
The structural member according to the present invention is characterized by using the above-described titanium alloy material.
According to such a configuration, since the titanium alloy material having excellent corrosion resistance in a non-oxidizing environment such as a sulfuric acid environment, a high-temperature neutral chloride environment, or a high-temperature neutral chloride environment containing fluoride is used, The structural member has excellent corrosion resistance in an oxidizing environment.

本発明に係る放射性廃棄物用容器は、前記記載のチタン合金材を用いたことを特徴とする。
このような構成によれば、硫酸環境、高温中性塩化物環境、あるいはフッ化物を含有する高温中性塩化物環境等の非酸化性環境における耐食性に優れたチタン合金材を使用するため、放射性廃棄物による厳しい腐食環境においても適応することができる放射性廃棄物用容器となる。
The radioactive waste container according to the present invention is characterized by using the titanium alloy material described above.
According to such a configuration, the titanium alloy material having excellent corrosion resistance in a non-oxidizing environment such as a sulfuric acid environment, a high temperature neutral chloride environment, or a high temperature neutral chloride environment containing fluoride is used. It becomes a container for radioactive waste that can be adapted even in a severe corrosive environment caused by waste.

本発明に係るチタン合金材は、硫酸環境、高温中性塩化物環境、あるいはフッ化物を含有する高温中性塩化物環境等の非酸化性環境においても優れた耐食性を発揮する。さらに、コストが低く、経済性にも優れる。   The titanium alloy material according to the present invention exhibits excellent corrosion resistance even in a non-oxidizing environment such as a sulfuric acid environment, a high temperature neutral chloride environment, or a high temperature neutral chloride environment containing fluoride. Furthermore, the cost is low and the economy is excellent.

本発明に係る構造部材は、非酸化性環境に曝される石油精製や石油化学プラント、海洋構造物、建材等の部材、例えば、火力・原子力発電所の復水器や海水淡水化プラントの伝熱管等に、好適に使用することができる。   The structural member according to the present invention is a member of a petroleum refining or petrochemical plant, offshore structure, building material, etc. exposed to a non-oxidizing environment, such as a condenser of a thermal power / nuclear power plant or a desalination plant. It can be suitably used for a heat pipe or the like.

本発明に係る放射性廃棄物用容器は、放射性廃棄物による厳しい腐食環境においても適応することができるため、放射性廃棄物を輸送または処分するための容器として好適なものとなる。   Since the radioactive waste container according to the present invention can be adapted even in a severe corrosive environment due to the radioactive waste, it is suitable as a container for transporting or disposing of the radioactive waste.

(a)〜(c)は、実施例に用いる試験片を示す模式図である。(A)-(c) is a schematic diagram which shows the test piece used for an Example.

次に、本発明に係るチタン合金材および構造部材ならびに放射性廃棄物用容器について詳細に説明する。   Next, the titanium alloy material, the structural member, and the radioactive waste container according to the present invention will be described in detail.

≪チタン合金材≫
本発明に係るチタン合金材は、Ru:0.005〜0.10質量%、Pd:0.005〜0.10質量%、Ni:0.01〜2.0質量%、Cr:0.01〜2.0質量%、V:0.01〜2.0質量%を含有し、残部がTiおよび不可避的不純物からなる。
チタン合金材は、さらに、Al、Si、および、Feから選ばれる少なくとも1種を所定量含有してもよいし、これらに加え、さらに、Os、Rh、Ir、および、Ptから選ばれる少なくとも1種を所定量含有してもよい。
以下、成分の限定理由について説明する。
≪Titanium alloy material≫
The titanium alloy material according to the present invention has Ru: 0.005 to 0.10% by mass, Pd: 0.005 to 0.10% by mass, Ni: 0.01 to 2.0% by mass, Cr: 0.01 -2.0 mass%, V: 0.01-2.0 mass% is contained, remainder consists of Ti and an unavoidable impurity.
The titanium alloy material may further contain a predetermined amount of at least one selected from Al, Si, and Fe, and in addition to these, at least one selected from Os, Rh, Ir, and Pt. A predetermined amount of seed may be contained.
Hereinafter, the reasons for limiting the components will be described.

<Ru:0.005〜0.10質量%>
Ruは、非酸化性環境において、チタンの電位を貴化し、チタン合金表面にチタン酸化物を主体とする安定な不働態皮膜を形成するのに有効な添加元素である。このような効果を発揮させるためには、0.005質量%以上含有させることが必要である。一方、Ru含有量が0.10質量%を超えると、このような効果が飽和し、Ruは高価な元素であることから、コストの点で好ましくない。したがって、Ru含有量は、0.005〜0.10質量%とする。なお、Ru含有量は、0.008質量%以上が好ましく、0.010質量%以上がより好ましい。また、0.095質量%以下が好ましく、0.090質量%以下がより好ましい。
<Ru: 0.005 to 0.10% by mass>
Ru is an additive element effective for making the potential of titanium noble in a non-oxidizing environment and forming a stable passive film mainly composed of titanium oxide on the surface of the titanium alloy. In order to exhibit such an effect, it is necessary to contain 0.005 mass% or more. On the other hand, when the Ru content exceeds 0.10% by mass, such an effect is saturated and Ru is an expensive element, which is not preferable in terms of cost. Therefore, the Ru content is set to 0.005 to 0.10% by mass. In addition, 0.008 mass% or more is preferable and, as for Ru content, 0.010 mass% or more is more preferable. Moreover, 0.095 mass% or less is preferable, and 0.090 mass% or less is more preferable.

<Pd:0.005〜0.10質量%>
Pdは、非酸化性環境において、チタンの電位を貴化し、チタン合金表面にチタン酸化物を主体とする安定な不働態皮膜を形成するのに有効な添加元素であり、特にRuと共存させることにより、その効果は顕著となる。このようなPdの効果を発揮させるためには、0.005質量%以上含有させることが必要である。一方、Pd含有量が0.10質量%を超えると、このような効果が飽和し、Pdは高価な元素であることから、コストの点で好ましくない。したがって、Pd含有量は、0.005〜0.10質量%とする。なお、Pd含有量は、0.008質量%以上が好ましく、0.010質量%以上がより好ましい。また、0.095質量%以下が好ましく、0.090質量%以下がより好ましい。
<Pd: 0.005 to 0.10% by mass>
Pd is an additive element that is effective for making the potential of titanium noble and forming a stable passive film mainly composed of titanium oxide on the surface of the titanium alloy in a non-oxidizing environment, and in particular coexist with Ru. Therefore, the effect becomes remarkable. In order to exhibit the effect of such Pd, it is necessary to contain 0.005 mass% or more. On the other hand, when the Pd content exceeds 0.10% by mass, such an effect is saturated, and Pd is an expensive element, which is not preferable in terms of cost. Therefore, Pd content shall be 0.005-0.10 mass%. In addition, 0.008 mass% or more is preferable and, as for Pd content, 0.010 mass% or more is more preferable. Moreover, 0.095 mass% or less is preferable, and 0.090 mass% or less is more preferable.

<Ni:0.01〜2.0質量%>
Niは、CrおよびVとの共存により、非酸化性環境においてRuおよびPdの表面濃縮を促進する元素である。また、Niは非酸化性環境においてチタン合金表面に安定な酸化物を形成する元素であり、さらに、フッ化物を含む環境では、チタン合金表面に安定な複合フッ化物の保護皮膜を形成して、耐食性向上に寄与する元素である。こうした効果を発揮させるためには、0.01質量%以上含有させることが必要である。しかしながら、添加量が過剰になると、溶接性や熱間加工性が劣化することから、Ni含有量は、2.0質量%以下とする。したがって、Ni含有量は、0.01〜2.0質量%とする。なお、Ni含有量は、0.03質量%以上が好ましく、0.05質量%以上がより好ましい。また、1.95質量%以下が好ましく、1.90質量%以下がより好ましい。
<Ni: 0.01 to 2.0% by mass>
Ni is an element that promotes surface concentration of Ru and Pd in a non-oxidizing environment by coexistence with Cr and V. In addition, Ni is an element that forms a stable oxide on the titanium alloy surface in a non-oxidizing environment, and further, in an environment containing fluoride, a stable composite fluoride protective film is formed on the titanium alloy surface, It is an element that contributes to improving corrosion resistance. In order to exert such effects, it is necessary to contain 0.01% by mass or more. However, if the added amount is excessive, weldability and hot workability deteriorate, so the Ni content is 2.0% by mass or less. Therefore, the Ni content is 0.01 to 2.0 mass%. The Ni content is preferably 0.03% by mass or more, and more preferably 0.05% by mass or more. Moreover, 1.95 mass% or less is preferable and 1.90 mass% or less is more preferable.

<Cr:0.01〜2.0質量%>
Crは、NiおよびVとの共存により、非酸化性環境においてRuおよびPdの表面濃縮を促進する元素である。さらに、フッ化物を含む環境では、チタン合金表面に安定な複合フッ化物の保護皮膜を形成して、耐食性向上に寄与する元素である。こうした効果を発揮させるためには、0.01質量%以上含有させることが必要である。しかしながら、添加量が過剰になると、溶接性や熱間加工性が劣化することから、Cr含有量は、2.0質量%以下とする。したがって、Cr含有量は、0.01〜2.0質量%とする。なお、Cr含有量は、0.03質量%以上が好ましく、0.05質量%以上がより好ましい。また、1.95質量%以下が好ましく、1.90質量%以下がより好ましい。
<Cr: 0.01 to 2.0% by mass>
Cr is an element that promotes surface concentration of Ru and Pd in a non-oxidizing environment by coexistence with Ni and V. Furthermore, in an environment containing fluoride, it is an element that contributes to improving corrosion resistance by forming a stable protective film of composite fluoride on the titanium alloy surface. In order to exert such effects, it is necessary to contain 0.01% by mass or more. However, if the addition amount is excessive, weldability and hot workability deteriorate, so the Cr content is set to 2.0 mass% or less. Therefore, Cr content shall be 0.01-2.0 mass%. The Cr content is preferably 0.03% by mass or more, and more preferably 0.05% by mass or more. Moreover, 1.95 mass% or less is preferable and 1.90 mass% or less is more preferable.

<V:0.01〜2.0質量%>
Vは、NiおよびCrとの共存により、非酸化性環境においてRuおよびPdの表面濃縮を促進する元素である。さらに、フッ化物を含む環境では、チタン合金表面に安定な複合フッ化物の保護皮膜を形成して、耐食性向上に寄与する元素である。こうした効果を発揮させるためには、0.01質量%以上含有させることが必要である。しかしながら、添加量が過剰になると、溶接性や熱間加工性が劣化することから、V含有量は、2.0質量%以下とする。したがって、V含有量は、0.01〜2.0質量%とする。なお、V含有量は、0.03質量%以上が好ましく、0.05質量%以上がより好ましい。また、1.95質量%以下が好ましく、1.90質量%以下がより好ましい。
<V: 0.01 to 2.0% by mass>
V is an element that promotes surface concentration of Ru and Pd in a non-oxidizing environment by coexistence with Ni and Cr. Furthermore, in an environment containing fluoride, it is an element that contributes to improving corrosion resistance by forming a stable protective film of composite fluoride on the titanium alloy surface. In order to exert such effects, it is necessary to contain 0.01% by mass or more. However, if the addition amount is excessive, weldability and hot workability deteriorate, so the V content is set to 2.0 mass% or less. Therefore, V content shall be 0.01-2.0 mass%. In addition, 0.03 mass% or more is preferable and, as for V content, 0.05 mass% or more is more preferable. Moreover, 1.95 mass% or less is preferable and 1.90 mass% or less is more preferable.

<Al:0.005〜2.0質量%、Si:0.005〜2.0質量%、および、Fe:0.005〜2.0質量%から選ばれる少なくとも1種>
Al、SiおよびFeは、塩酸や硫酸に対する耐食性には有効な元素ではないが、微量添加することで、フッ化物に対する耐食性向上に有効となる元素であり、強度向上にも有効となる元素である。このような効果を発揮させるためには、それぞれ0.005質量%以上含有させることが必要である。しかし、過度に添加した場合には、酸性環境での耐食性を大きく劣化させることに加えて、加工性も大きく劣化させるため、これらの含有量は、2.0質量%を上限とする。したがって、Al、SiおよびFeを添加する場合には、それぞれ0.005〜2.0質量%とする。なお、Al、SiおよびFe含有量は、それぞれ0.008質量%以上が好ましく、0.010質量%以上がより好ましい。また、それぞれ1.95質量%以下が好ましく、1.90質量%以下がより好ましい。
<At least one selected from Al: 0.005-2.0 mass%, Si: 0.005-2.0 mass%, and Fe: 0.005-2.0 mass%>
Al, Si, and Fe are not effective elements for corrosion resistance against hydrochloric acid and sulfuric acid, but are elements that are effective for improving corrosion resistance to fluoride when added in a small amount, and are also effective for improving strength. . In order to exhibit such an effect, it is necessary to contain 0.005 mass% or more, respectively. However, when added excessively, in addition to greatly deteriorating the corrosion resistance in an acidic environment, the workability is also greatly degraded. Therefore, the upper limit of these contents is 2.0% by mass. Therefore, when adding Al, Si, and Fe, it is set as 0.005-2.0 mass%, respectively. In addition, Al, Si, and Fe content are each preferably 0.008 mass% or more, and more preferably 0.010 mass% or more. Moreover, 1.95 mass% or less is preferable respectively, and 1.90 mass% or less is more preferable.

<Os:0.005〜0.10質量%、Rh:0.005〜0.10質量%、Ir:0.005〜0.10質量%、および、Pt:0.005〜0.10質量%から選ばれる少なくとも1種>
Os、Rh、IrおよびPtは、チタンの電位を貴化して安定な不働態皮膜形成を促進し、耐食性向上に寄与する元素である。このような効果を発揮させるためには、それぞれ0.005質量%以上含有させることが必要である。しかし、過度に添加した場合には、加工性を大きく劣化させるため、これらの含有量は、0.10質量%を上限とする。したがって、Os、Rh、IrおよびPtを添加する場合には、それぞれ0.005〜0.10質量%とする。なお、Os、Rh、IrおよびPt含有量は、それぞれ0.008質量%以上が好ましく、0.010質量%以上がより好ましい。また、Os、Rh、IrおよびPt含有量は、それぞれ0.095質量%以下が好ましく、0.090質量%以下がより好ましい。
<Os: 0.005-0.10 mass%, Rh: 0.005-0.10 mass%, Ir: 0.005-0.10 mass%, and Pt: 0.005-0.10 mass% At least one selected from
Os, Rh, Ir and Pt are elements that make the potential of titanium noble and promote the formation of a stable passive film and contribute to the improvement of corrosion resistance. In order to exhibit such an effect, it is necessary to contain 0.005 mass% or more, respectively. However, when added excessively, the workability is greatly deteriorated, so the upper limit of these contents is 0.10% by mass. Therefore, when adding Os, Rh, Ir, and Pt, it is set as 0.005-0.10 mass%, respectively. The Os, Rh, Ir, and Pt contents are each preferably 0.008% by mass or more, and more preferably 0.010% by mass or more. The Os, Rh, Ir, and Pt contents are each preferably 0.095% by mass or less, and more preferably 0.090% by mass or less.

<残部:Tiおよび不可避的不純物>
チタン合金材の成分は前記の通りであり、残部はTiおよび不可避的不純物からなる。不可避的不純物は、チタン合金材の諸特性を害さない範囲で許容できる。例えば、Nは、0.03質量%程度まで、Cは、0.08質量%程度まで、Hは、0.02質量%程度まで、Oは、0.3質量%程度までであれば、これらの元素の含有は問題なく、本発明の耐食性向上効果も得られる。
<Balance: Ti and inevitable impurities>
The components of the titanium alloy material are as described above, and the balance consists of Ti and inevitable impurities. Inevitable impurities are permissible as long as they do not impair various properties of the titanium alloy material. For example, N is up to about 0.03 mass%, C is up to about 0.08 mass%, H is up to about 0.02 mass%, and O is up to about 0.3 mass%. There is no problem with the inclusion of these elements, and the effect of improving the corrosion resistance of the present invention is also obtained.

≪製造方法≫
次に、本発明に係るチタン合金材の製造方法の一例について説明する。
まず、各種金属および合金を溶解し、前記組成を有するチタン合金鋳塊を作製する。得られた鋳塊を加熱温度950〜1050℃にて鍛造した後、800〜900℃で熱間圧延を行い、所定の板厚とする。次いで、700〜900℃で10〜60分間の焼鈍を施した後、冷間圧延により所定厚さのチタン合材を作製する。
≪Manufacturing method≫
Next, an example of a method for producing a titanium alloy material according to the present invention will be described.
First, various metals and alloys are melted to produce a titanium alloy ingot having the above composition. After forging the obtained ingot at a heating temperature of 950 to 1050 ° C., hot rolling is performed at 800 to 900 ° C. to obtain a predetermined plate thickness. Next, after annealing at 700 to 900 ° C. for 10 to 60 minutes, a titanium composite material having a predetermined thickness is produced by cold rolling.

≪構造部材≫
本発明に係る構造部材は、前記記載のチタン合金材を用いたものである。
前記のとおり、本発明のチタン合金材は、硫酸環境、高温中性塩化物環境、あるいはフッ化物を含有する高温中性塩化物環境等の非酸化性環境における耐食性に優れるため、このような環境に曝される、石油精製や石油化学プラント、海洋構造物、建材等の部材として使用することができる。例えば、火力・原子力発電所の復水器や海水淡水化プラントの伝熱管等に使用することができる。
≪Structural member≫
The structural member according to the present invention uses the titanium alloy material described above.
As described above, the titanium alloy material of the present invention has excellent corrosion resistance in a non-oxidizing environment such as a sulfuric acid environment, a high temperature neutral chloride environment, or a high temperature neutral chloride environment containing fluoride. It can be used as an oil refining or petrochemical plant, offshore structure, building material, etc. For example, it can be used for a condenser of a thermal power / nuclear power plant, a heat transfer pipe of a seawater desalination plant, or the like.

≪放射性廃棄物用容器≫
本発明に係る放射性廃棄物用容器は、前記記載のチタン合金材を用いたものである。
前記のとおり、核燃料製造施設、原子力発電所、核燃料再処理施設等の原子力関連施設から発生する放射性廃棄物を輸送または処分するための容器においては、放射性廃棄物の発熱により、容器の金属表面温度が高温になり、腐食促進因子である塩化物やフッ化物等が濃縮した高濃度溶液が形成され、厳しい腐食環境になる。
そこで、本発明のチタン合金材を用いることで、このような厳しい腐食環境においても適応することができる放射性廃棄物用容器とすることができる。
≪Container for radioactive waste≫
The radioactive waste container according to the present invention uses the titanium alloy material described above.
As described above, in the container for transporting or disposing of radioactive waste generated from nuclear facilities such as nuclear fuel manufacturing facilities, nuclear power plants, nuclear fuel reprocessing facilities, the metal surface temperature of the container due to heat generation of the radioactive waste Becomes a high-temperature solution, and a high-concentration solution in which chlorides and fluorides, which are corrosion promoting factors, are concentrated is formed, resulting in a severe corrosive environment.
Therefore, by using the titanium alloy material of the present invention, it is possible to provide a radioactive waste container that can be adapted even in such a severe corrosive environment.

次に、本発明に係るチタン合金材および構造部材ならびに放射性廃棄物用容器について、本発明の要件を満たす実施例と本発明の要件を満たさない比較例とを比較して具体的に説明する。   Next, the titanium alloy material, the structural member, and the radioactive waste container according to the present invention will be specifically described by comparing an example that satisfies the requirements of the present invention with a comparative example that does not satisfy the requirements of the present invention.

<供試材の作製>
真空アーク溶解炉を用いて、溶解原料の各種金属および合金を合計で約500g溶解し、種々のチタン合金鋳塊を作製した。化学組成は表1に示す通りである(残部はTiおよび不可避的不純物)。得られた鋳塊を加熱温度1000℃にて鍛造した後、870℃で熱間圧延を行い、板厚5mmとした。次いで、750℃で20分間の焼鈍を施した後、冷間圧延により厚さ3mmのチタン合金板素材を作製した。得られたチタン合金板素材から、縦50mm×横30mm×厚さ2mmのテストピースA(図1(a)、TP−A)、および、縦30mm×横30mm×厚さ2mmのテストピースB(図1(b)、TP−B)を切り出した。
<Production of test material>
Using a vacuum arc melting furnace, a total of about 500 g of various metals and alloys as melting raw materials were melted to prepare various titanium alloy ingots. The chemical composition is as shown in Table 1 (the balance is Ti and inevitable impurities). The obtained ingot was forged at a heating temperature of 1000 ° C., and then hot rolled at 870 ° C. to obtain a plate thickness of 5 mm. Next, after annealing at 750 ° C. for 20 minutes, a titanium alloy plate material having a thickness of 3 mm was produced by cold rolling. From the obtained titanium alloy plate material, a test piece A (FIG. 1 (a), TP-A) having a length of 50 mm × width 30 mm × thickness 2 mm and a test piece B (length 30 mm × width 30 mm × thickness 2 mm) FIG. 1 (b), TP-B) was cut out.

また、腐食試験時にテストピースを吊り下げるため、TP−Aの端部には、φ3mmの穴を開けた。また、隙間腐食特性を調べるため、同じ材料同士のTP−AとTP−Bを重ね合わせてボルト締めした隙間腐食試験片(供試材)Cも作製した(図1(c)、(d))。なお、隙間腐食試験片Cでは、TP−AとTP−Bとの合わせ面(隙間)に試験溶液がしみ込んで、塩分濃縮やpH低下が起こり、隙間外部より厳しい腐食条件となって、隙間腐食試験片Cの種類によっては、腐食が進展する(隙間腐食)。隙間腐食試験片Cは、TP−AとTP−Bの中央にφ5mmの穴を開け、純チタン製ボルトおよびナットで締め付けたものである。このとき、締め付けトルクは8.5N・mとして、純チタン製ボルトのねじ部にはシリコンチューブを被せ、さらにポリテトラフルオロエチレン(PTFE)製のワッシャー(PTFEワッシャー)を挟んで、TP−AまたはTP−Bとボルト・ナットとの異種金属接触を防止した。なお、すべてのTP−AおよびTP−Bは、湿式回転研磨機でSiC#600まで全面を研磨し、水洗およびアセトン洗浄をしてから試験に供試した。   Moreover, in order to suspend a test piece at the time of a corrosion test, the hole of (phi) 3mm was made in the edge part of TP-A. Moreover, in order to investigate crevice corrosion characteristics, the crevice corrosion test piece (test material) C which overlapped and bolted TP-A and TP-B of the same material was also produced (FIG.1 (c), (d) ). In the crevice corrosion test piece C, the test solution soaks into the mating surface (gap) of TP-A and TP-B, causing salt concentration and pH reduction, resulting in severe corrosion conditions from the outside of the gap, resulting in crevice corrosion. Depending on the type of test piece C, corrosion progresses (crevice corrosion). The crevice corrosion test piece C is a TP-A and TP-B with a 5 mm hole in the center and tightened with a pure titanium bolt and nut. At this time, the tightening torque is 8.5 N · m, and a threaded portion of a pure titanium bolt is covered with a silicon tube, and a polytetrafluoroethylene (PTFE) washer (PTFE washer) is sandwiched between the TP-A or Dissimilar metal contact between TP-B and bolts and nuts was prevented. In addition, all TP-A and TP-B were used for the test after grind | polishing the whole surface to SiC # 600 with the wet rotary grinder, and washing with water and acetone.

<腐食試験方法>
腐食環境として、(1)硫酸水溶液、(2)塩水、(3)フッ化物を含有する塩水、の3種の非酸化性溶液中での耐食性評価を実施した。腐食環境(1)については、沸騰5%HSO水溶液中での浸漬腐食試験を行い、浸漬試験前後の質量変化から求めた腐食減量により評価した。浸漬時間は72時間である。まず、容量1Lの丸底フラスコに試験溶液を入れて、マントルヒーターにより加熱し、沸騰させた。溶液が沸騰した後、PTFE製の糸を用いて、供試材としてテストピースA(TP−A)を吊るして浸漬させた。このとき、フラスコには冷却管を設置して、溶液の蒸発を防いだ。試験溶液の比液量は、試験片(供試材)1個につき、1Lである。本試験には、表1に示したNo.1〜40のチタン合金材を、それぞれ5枚づつ供試し、腐食減量は5枚の平均値を算出した。なお、試験後の質量は、浸漬後のテストピースAを水洗およびアセトン洗浄し、乾燥させた後に測定した。
<Corrosion test method>
As the corrosive environment, corrosion resistance was evaluated in three types of non-oxidizing solutions: (1) sulfuric acid aqueous solution, (2) salt water, and (3) salt water containing fluoride. As for the corrosive environment (1), an immersion corrosion test in a boiling 5% H 2 SO 4 aqueous solution was performed, and the corrosion weight loss determined from the mass change before and after the immersion test was evaluated. Immersion time is 72 hours. First, the test solution was put into a 1 L round bottom flask and heated by a mantle heater to boil. After the solution boiled, a test piece A (TP-A) was hung and immersed as a test material using PTFE yarn. At this time, a cooling tube was installed in the flask to prevent evaporation of the solution. The specific solution amount of the test solution is 1 L for each test piece (test material). In this test, No. 1 shown in Table 1 was used. Five to one titanium alloy materials of 1 to 40 were tested, and the average value of five pieces was calculated for the corrosion weight loss. The mass after the test was measured after the test piece A after immersion was washed with water and acetone and dried.

腐食環境(2)については、隙間腐食試験片(供試材)を沸騰20%NaCl水溶液中に浸漬し、隙間腐食試験片Cの合わせ面における隙間腐食発生の有無を調べた。まず、前記(1)と同様に、容量1Lの丸底フラスコに試験溶液を入れて、マントルヒーターにより加熱し、沸騰させた。溶液が沸騰した後、PTFE糸を用いて、供試材として隙間腐食試験片Cを吊るして浸漬させた。浸漬時間は30日間である。このとき、フラスコには冷却管を設置して、溶液の蒸発を防いだ。試験溶液の比液量は試験片(供試材)1個につき、1Lである。本試験には、表1に示したNo.1〜40のチタン合金材を、それぞれ5枚づつ供試し、隙間腐食発生確率(=隙間腐食が発生した試験片の個数/5×100(%))を求めた。なお、隙間腐食の発生の有無は、試験終了後の隙間腐食試験片Cを解体・洗浄し、深さ10μm以上の腐食孔が認められた場合を隙間腐食が発生したものと判定した。   For the corrosive environment (2), a crevice corrosion test piece (test material) was immersed in a boiling 20% NaCl aqueous solution, and the presence or absence of crevice corrosion on the mating surface of the crevice corrosion test piece C was examined. First, as in the above (1), the test solution was placed in a 1 L round bottom flask and heated with a mantle heater to boil. After the solution boiled, the crevice corrosion test piece C was hung and immersed as a test material using PTFE yarn. The immersion time is 30 days. At this time, a cooling tube was installed in the flask to prevent evaporation of the solution. The specific volume of the test solution is 1 L per test piece (test material). In this test, No. 1 shown in Table 1 was used. Five to one titanium alloy materials of 1 to 40 were tested, and crevice corrosion occurrence probability (= number of test pieces in which crevice corrosion occurred / 5 × 100 (%)) was determined. In addition, the presence or absence of crevice corrosion generate | occur | produced and the crevice corrosion test piece C after completion | finish of a test was disassembled and wash | cleaned, and it was determined that crevice corrosion had generate | occur | produced when the corrosion hole of depth 10micrometer or more was recognized.

腐食環境(3)については、pHを4.0に調整した沸騰20%NaCl+0.01%NaF水溶液中での浸漬腐食試験を行い、浸漬試験前後の質量変化から求めた腐食減量により評価した。浸漬時間は30日間である。まず、室温にて20%NaCl+0.01%NaF水溶液にHClを適量添加して溶液のpHを4.0に調整した。次いで、容量1Lの丸底フラスコに試験溶液を入れて、マントルヒーターにより加熱し、沸騰させた。溶液が沸騰した後、PTFE糸を用いて、供試材としてテストピースA(TP−A)を吊るして浸漬させた。このとき、フラスコには冷却管を設置して、溶液の蒸発を防いだ。試験溶液の比液量は試験片(供試材)1個につき、1Lである。本試験には、表1に示したNo.1〜40のチタン合金材を、それぞれ5枚づつ供試し、腐食減量は5枚の平均値を算出した。なお、試験後の質量は、浸漬後のテストピースAを水洗およびアセトン洗浄し、乾燥させた後に測定した。   As for the corrosive environment (3), an immersion corrosion test was performed in a boiling 20% NaCl + 0.01% NaF aqueous solution adjusted to pH 4.0, and evaluation was performed based on the corrosion weight loss obtained from the mass change before and after the immersion test. The immersion time is 30 days. First, an appropriate amount of HCl was added to a 20% NaCl + 0.01% NaF aqueous solution at room temperature to adjust the pH of the solution to 4.0. Next, the test solution was placed in a 1 L round bottom flask and heated with a mantle heater to boil. After the solution boiled, a test piece A (TP-A) was hung and immersed as a test material using PTFE yarn. At this time, a cooling tube was installed in the flask to prevent evaporation of the solution. The specific volume of the test solution is 1 L per test piece (test material). In this test, No. 1 shown in Table 1 was used. Five to one titanium alloy materials of 1 to 40 were tested, and the average value of five pieces was calculated for the corrosion weight loss. The mass after the test was measured after the test piece A after immersion was washed with water and acetone and dried.

これら、(1)硫酸水溶液、(3)フッ化物を含有する塩水、の2種の非酸化性溶液中での腐食試験については、各供試材の腐食減量を、No.35(純チタン)の腐食減量を100としたときの相対値で示した。そして、総合評価としては、(2)の塩水において、隙間腐食の発生が認められず(隙間腐食発生確率が0)、かつ前記(1)、(3)の各酸溶液中の腐食減量相対値が、ともに2以下(腐食減量がNo.35の1/50以下)のものを、耐食性が極めて良好(◎◎)、いずれか1つ以上が、2を超え5以下(腐食減量がNo.35の1/50を超え、1/20以下)かつ、ともに5以下のものを、良好(◎)、いずれか1つ以上が、5を超え10以下(腐食減量がNo.35の1/20を超え、1/10以下)かつ、ともに10以下のものを、やや良好(○)とした。また、隙間腐食の発生が認められ(隙間腐食発生確率が20以上)、かつ前記(1)、(3)の各酸溶液中の腐食減量相対値において、いずれか1つ以上が、10を超え(腐食減量がNo.35の1/10を超える)、100未満のものを、耐食性が不良(△)、No.35(純チタン)の腐食減量(100)を極めて不良(×)とした。   For the corrosion tests in these two types of non-oxidizing solutions, (1) sulfuric acid aqueous solution and (3) salt water containing fluoride, the corrosion weight loss of each test material is No. The relative value when the corrosion weight loss of 35 (pure titanium) is taken as 100 is shown. As a comprehensive evaluation, no crevice corrosion was observed in the salt water of (2) (the crevice corrosion occurrence probability was 0), and the corrosion weight loss relative value in each acid solution of (1) and (3) above. However, both of which are 2 or less (corrosion weight loss is 1/50 or less of No. 35), the corrosion resistance is very good (◎), and at least one exceeds 2 and 5 (corrosion weight loss is No. 35). 1/50 and 1/20 or less) and both 5 or less are good (◎), any one or more exceeds 5 and 10 or less (corrosion weight loss is 1/20 of No. 35) Exceeding 1/10 or less) and 10 or less in both cases were evaluated as slightly good (◯). In addition, crevice corrosion was observed (probability of crevice corrosion occurrence was 20 or more), and in the relative value of corrosion weight loss in each acid solution of (1) and (3) above, any one or more exceeded 10. (Corrosion weight loss is more than 1/10 of No. 35). Corrosion weight loss (100) of 35 (pure titanium) was determined to be extremely poor (x).

供試材の化学組成を表1に、腐食試験結果を表2に示す。なお、表1において、本発明の範囲を満たさないものは、数値に下線を引いて示し、成分を含有しないものは、「−」で示す。   Table 1 shows the chemical composition of the test material, and Table 2 shows the results of the corrosion test. In Table 1, those not satisfying the scope of the present invention are indicated by underlining the numerical values, and those not containing a component are indicated by “−”.

Figure 2010270360
Figure 2010270360

Figure 2010270360
Figure 2010270360

表1、2に示すように、No.1〜34のチタン合金材は、本発明の範囲を満たすため、いずれも塩水中での隙間腐食の発生は認められず、かつ、硫酸水溶液およびフッ化物を含有する塩水における腐食減量は、No.35の純チタンの1/10以下となっており、耐食性に優れる結果となった。これらの耐食性は、Ru、Pd、Ni、Cr、Vの複合添加により発現されるものである。   As shown in Tables 1 and 2, no. Since the titanium alloy materials 1 to 34 satisfy the scope of the present invention, no crevice corrosion was observed in the salt water, and the corrosion weight loss in the salt water containing the sulfuric acid aqueous solution and fluoride was No. It was 1/10 or less of 35 pure titanium, which resulted in excellent corrosion resistance. These corrosion resistances are manifested by the combined addition of Ru, Pd, Ni, Cr, and V.

一方、No.35〜40は、本発明の範囲を満たさないため、以下の結果となった。
No.35は、純チタンのため、耐食性に劣った。
No.36〜No.40のチタン合金は、No.35の純チタンと比較すれば耐食性は向上しているが、塩水中での隙間腐食の発生が認められ、腐食減量の低減も十分ではなかった。
No.36およびNo.37は、それぞれRuおよびPdの含有量が下限値未満のため、チタンの電位がそれほど貴化せず、安定な不働態皮膜生成が不十分であり、耐食性に劣った。
On the other hand, no. Since 35-40 did not satisfy the scope of the present invention, the following results were obtained.
No. 35 was inferior in corrosion resistance because of pure titanium.
No. 36-No. No. 40 titanium alloy is No. Although the corrosion resistance was improved as compared with 35 pure titanium, the occurrence of crevice corrosion in salt water was observed, and the reduction in corrosion weight was not sufficient.
No. 36 and no. In No. 37, since the contents of Ru and Pd were less than the lower limit values, the potential of titanium was not so noble, the generation of a stable passive film was insufficient, and the corrosion resistance was poor.

No.38、No.39およびNo.40は、それぞれNi、CrおよびVの含有量が下限値未満のため、RuおよびPdの表面濃縮が促進されず、チタンの電位がそれほど貴化せず、安定な不働態皮膜生成が不十分であり、耐食性に劣った。また、フッ化物を含有する塩水では、保護性のNi、CrおよびVの複合フッ化物皮膜の生成が不十分であり、耐食性に劣った。なお、No.38は、Niの含有量が下限値未満のため、安定な酸化物も生成しなかった。   No. 38, no. 39 and no. In No. 40, since the contents of Ni, Cr and V are less than the lower limit values respectively, the surface concentration of Ru and Pd is not promoted, the potential of titanium is not so precious, and the generation of a stable passive film is insufficient. There was inferior corrosion resistance. Moreover, in the salt water containing a fluoride, the production | generation of the protective composite fluoride film | membrane of Ni, Cr, and V was inadequate, and it was inferior to corrosion resistance. In addition, No. No. 38 did not produce a stable oxide because the Ni content was less than the lower limit.

以上のように、本発明のチタン合金材は、いずれも、非酸化性環境において優れた耐食性を有しており、構造部材として好適である。特に、フッ化物を含有する塩水における耐食性は、従来の微量白金族添加チタン合金材(No.36〜No.40)よりも優れていることから、塩化物やフッ化物等が濃縮した高濃度溶液環境に曝される放射性廃棄物の輸送または処分するための放射性廃棄物用容器として好適である。   As described above, any of the titanium alloy materials of the present invention has excellent corrosion resistance in a non-oxidizing environment and is suitable as a structural member. In particular, since the corrosion resistance in salt water containing fluoride is superior to conventional trace platinum group-added titanium alloy materials (No. 36 to No. 40), a high-concentration solution in which chloride, fluoride, etc. are concentrated It is suitable as a radioactive waste container for transporting or disposing of radioactive waste exposed to the environment.

以上、本発明に係るチタン合金材および構造部材ならびに放射性廃棄物用容器について実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されるものではない。なお、本発明の内容は、前記した記載に基づいて広く改変・変更等することができることはいうまでもない。   As described above, the titanium alloy material, the structural member, and the radioactive waste container according to the present invention have been described in detail with reference to the embodiments and examples. However, the gist of the present invention is not limited to the contents described above. Needless to say, the contents of the present invention can be widely modified and changed based on the above description.

A テストピース(TP−A)
B テストピース(TP−B)
C 隙間腐食試験片
A Test piece (TP-A)
B Test piece (TP-B)
C Crevice corrosion test piece

Claims (5)

Ru:0.005〜0.10質量%、Pd:0.005〜0.10質量%、Ni:0.01〜2.0質量%、Cr:0.01〜2.0質量%、V:0.01〜2.0質量%を含有し、残部がTiおよび不可避的不純物からなることを特徴とするチタン合金材。   Ru: 0.005-0.10 mass%, Pd: 0.005-0.10 mass%, Ni: 0.01-2.0 mass%, Cr: 0.01-2.0 mass%, V: A titanium alloy material characterized by containing 0.01 to 2.0% by mass, the balance being Ti and inevitable impurities. さらに、Al:0.005〜2.0質量%、Si:0.005〜2.0質量%、および、Fe:0.005〜2.0質量%から選ばれる少なくとも1種を含有することを特徴とする請求項1に記載のチタン合金材。   Furthermore, it contains at least one selected from Al: 0.005-2.0 mass%, Si: 0.005-2.0 mass%, and Fe: 0.005-2.0 mass%. The titanium alloy material according to claim 1, wherein the material is a titanium alloy material. さらに、Os:0.005〜0.10質量%、Rh:0.005〜0.10質量%、Ir:0.005〜0.10質量%、および、Pt:0.005〜0.10質量%から選ばれる少なくとも1種を含有することを特徴とする請求項1または請求項2に記載のチタン合金材。   Furthermore, Os: 0.005-0.10 mass%, Rh: 0.005-0.10 mass%, Ir: 0.005-0.10 mass%, and Pt: 0.005-0.10 mass The titanium alloy material according to claim 1, wherein the titanium alloy material contains at least one selected from%. 請求項1ないし請求項3のいずれか一項に記載のチタン合金材を用いたことを特徴とする構造部材。   A structural member using the titanium alloy material according to any one of claims 1 to 3. 請求項1ないし請求項3のいずれか一項に記載のチタン合金材を用いたことを特徴とする放射性廃棄物用容器。   A radioactive waste container, wherein the titanium alloy material according to any one of claims 1 to 3 is used.
JP2009122409A 2009-05-20 2009-05-20 Titanium alloy material and structural member, and radioactive waste container Expired - Fee Related JP5390934B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009122409A JP5390934B2 (en) 2009-05-20 2009-05-20 Titanium alloy material and structural member, and radioactive waste container
US12/771,147 US20100322817A1 (en) 2009-05-20 2010-04-30 Titanium alloy material, structural member, and container for radioactive waste
FR1053699A FR2945822B1 (en) 2009-05-20 2010-05-11 TITANIUM ALLOY MATERIAL, STRUCTURAL ELEMENT, AND CONTAINER FOR RADIOACTIVE WASTE
CN201010180682.0A CN101892402B (en) 2009-05-20 2010-05-14 Titanium alloy material, structural member, and container for radioactive waste
RU2010120135/02A RU2452785C2 (en) 2009-05-20 2010-05-19 Titanium alloy material, structural element, and container for radioactive wastes
KR1020100046701A KR101218858B1 (en) 2009-05-20 2010-05-19 Corrosion resistant structural member comprising titanium alloy material, and container for transportation or disposal of radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009122409A JP5390934B2 (en) 2009-05-20 2009-05-20 Titanium alloy material and structural member, and radioactive waste container

Publications (2)

Publication Number Publication Date
JP2010270360A true JP2010270360A (en) 2010-12-02
JP5390934B2 JP5390934B2 (en) 2014-01-15

Family

ID=43064520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009122409A Expired - Fee Related JP5390934B2 (en) 2009-05-20 2009-05-20 Titanium alloy material and structural member, and radioactive waste container

Country Status (6)

Country Link
US (1) US20100322817A1 (en)
JP (1) JP5390934B2 (en)
KR (1) KR101218858B1 (en)
CN (1) CN101892402B (en)
FR (1) FR2945822B1 (en)
RU (1) RU2452785C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093175A (en) * 2010-10-26 2012-05-17 Ihi Corp Corrosion testing apparatus and corrosion testing method
WO2014115845A1 (en) * 2013-01-25 2014-07-31 新日鐵住金株式会社 Titanium alloy having excellent corrosion resistance in environment containing bromine ions

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2883972A4 (en) * 2012-08-10 2016-04-06 Nippon Steel & Sumitomo Metal Corp Titanium alloy material
CN103345955B (en) * 2013-07-02 2016-07-06 中科华核电技术研究院有限公司 In, low-activity nuclear waste disposal apparatus
WO2015168131A1 (en) * 2014-04-28 2015-11-05 Rti International Metals, Inc. Titanium alloy, parts made thereof and method of use
CN104152744A (en) * 2014-07-08 2014-11-19 宁夏东方钽业股份有限公司 Low-cost medium-high-strength corrosion-resistant titanium alloy and processing method thereof
US20180087131A1 (en) * 2015-03-18 2018-03-29 Nippon Steel & Sumitomo Metal Corporation Titanium alloy, separator, and polymer electrolyte fuel cell
CN105349808A (en) * 2015-11-13 2016-02-24 无锡清杨机械制造有限公司 Preparing method for titanium alloy panel
RU2614229C1 (en) * 2016-03-01 2017-03-23 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Titanium-based alloy
CN108467970B (en) * 2018-03-23 2020-12-25 中国石油天然气集团公司管材研究所 Iron-containing titanium alloy pipe for high-corrosivity oil gas development and preparation method thereof
CN108998696A (en) * 2018-07-20 2018-12-14 中国航发北京航空材料研究院 A kind of marine engineering equipment use in strong corrosion resistant titanium alloy
CN109022914A (en) * 2018-10-09 2018-12-18 广州宇智科技有限公司 A kind of corrosion-resistant high heat-transfer performance chemical field titanium alloy and its technique
CN111430057B (en) * 2020-03-18 2021-06-08 张云逢 High radioactive nuclear waste container

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107040A (en) * 1985-11-05 1987-05-18 Sumitomo Metal Ind Ltd Titanium alloy excellent in crevice corrosion resistance
JPS62107041A (en) * 1985-11-05 1987-05-18 Sumitomo Metal Ind Ltd Highly corrosion resistant titanium alloy
JPH0436445A (en) * 1990-05-31 1992-02-06 Sumitomo Metal Ind Ltd Production of corrosion resisting seamless titanium alloy tube
JPH04308051A (en) * 1991-01-16 1992-10-30 Kobe Steel Ltd Corrosion resistant ti-based alloy
JPH04365828A (en) * 1990-07-06 1992-12-17 Nikko Kyodo Co Ltd Titanium alloy for anode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316722A (en) * 1992-07-09 1994-05-31 Kabushiki Kaisha Kobe Seiko Sho Corrosion resistant Ti-Cr-Ni alloy containing a platinum group metal
US5478524A (en) * 1992-08-24 1995-12-26 Nissan Motor Co., Ltd. Super high vacuum vessel
RU2039113C1 (en) * 1992-12-30 1995-07-09 Всероссийский научно-исследовательский институт авиационных материалов Titanium-base alloy
DE19962585C2 (en) * 1998-12-28 2003-06-26 Kobe Steel Ltd Corrosion-resistant titanium alloy and components made from it
JP4877185B2 (en) * 2007-10-05 2012-02-15 株式会社Ihi Radioactive waste disposal container and manufacturing method thereof, and radioactive waste disposal container manufacturing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107040A (en) * 1985-11-05 1987-05-18 Sumitomo Metal Ind Ltd Titanium alloy excellent in crevice corrosion resistance
JPS62107041A (en) * 1985-11-05 1987-05-18 Sumitomo Metal Ind Ltd Highly corrosion resistant titanium alloy
JPH0436445A (en) * 1990-05-31 1992-02-06 Sumitomo Metal Ind Ltd Production of corrosion resisting seamless titanium alloy tube
JPH04365828A (en) * 1990-07-06 1992-12-17 Nikko Kyodo Co Ltd Titanium alloy for anode
JPH04308051A (en) * 1991-01-16 1992-10-30 Kobe Steel Ltd Corrosion resistant ti-based alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013028328; 上田啓司、他3名: 'Ti-Ni-(Pd,Ru)合金の耐食性に及ぼすCr添加の影響' 鉄と鋼 Vol.80 No.4, 199404, Page.353-358 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093175A (en) * 2010-10-26 2012-05-17 Ihi Corp Corrosion testing apparatus and corrosion testing method
WO2014115845A1 (en) * 2013-01-25 2014-07-31 新日鐵住金株式会社 Titanium alloy having excellent corrosion resistance in environment containing bromine ions
JP5660253B2 (en) * 2013-01-25 2015-01-28 新日鐵住金株式会社 Titanium alloy with excellent corrosion resistance in environments containing bromine ions

Also Published As

Publication number Publication date
CN101892402A (en) 2010-11-24
RU2452785C2 (en) 2012-06-10
RU2010120135A (en) 2011-11-27
US20100322817A1 (en) 2010-12-23
KR20100125189A (en) 2010-11-30
JP5390934B2 (en) 2014-01-15
FR2945822B1 (en) 2014-04-18
FR2945822A1 (en) 2010-11-26
CN101892402B (en) 2012-07-11
KR101218858B1 (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP5390934B2 (en) Titanium alloy material and structural member, and radioactive waste container
JP5660253B2 (en) Titanium alloy with excellent corrosion resistance in environments containing bromine ions
KR101707284B1 (en) Titanium alloy
JPS6134498B2 (en)
JP5725630B1 (en) Ni-base alloy with excellent hot forgeability and corrosion resistance
JP5505214B2 (en) High corrosion resistance titanium alloy having a large 0.2% proof stress in the rolling direction and its manufacturing method
RU2291215C2 (en) Titanium-alloy material possessing high resistance to hydrogen absorption
JP2013001973A (en) Titanium alloy welded pipe having excellent hydrogen absorption resistance and pipe-formability and hoop product for welled pipe, and methods for manufacturing them
WO2018025942A1 (en) Austenitic stainless steel
JPH059503B2 (en)
KR102340036B1 (en) Titanium alloy and manufacturing method thereof
JP2643709B2 (en) High corrosion resistant alloy for boiler heat transfer tubes
RU2502819C1 (en) Titanium-base alloy
JP2013047369A (en) Titanium alloy
JP3878376B2 (en) Corrosion resistant Ti alloy
CN1032926C (en) Fe-Cr-Ni anti-corrosion high alloy
JPS6213558A (en) Alloy having superior h2s resistance
WO2015088382A1 (en) Corrosion-resistant titanium alloy
Crook et al. The Corrosion Characteristics of a Uniquely Versatile Nickel Alloy
JPH0457735B2 (en)
KR20220073785A (en) titanium alloy
JPH0453941B2 (en)
JPH0483837A (en) Titanium alloy for nitric acid resistant apparatus
JPS6221854B2 (en)
JPH0670262B2 (en) Titanium material with excellent oxidation resistance and heat resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Ref document number: 5390934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees