JPS6221854B2 - - Google Patents

Info

Publication number
JPS6221854B2
JPS6221854B2 JP13531383A JP13531383A JPS6221854B2 JP S6221854 B2 JPS6221854 B2 JP S6221854B2 JP 13531383 A JP13531383 A JP 13531383A JP 13531383 A JP13531383 A JP 13531383A JP S6221854 B2 JPS6221854 B2 JP S6221854B2
Authority
JP
Japan
Prior art keywords
less
unavoidable impurities
based alloy
corrosion cracking
cracking resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13531383A
Other languages
Japanese (ja)
Other versions
JPS6026636A (en
Inventor
Takeshi Yoshida
Yoshio Takizawa
Ichiro Sekine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP13531383A priority Critical patent/JPS6026636A/en
Publication of JPS6026636A publication Critical patent/JPS6026636A/en
Publication of JPS6221854B2 publication Critical patent/JPS6221854B2/ja
Priority to US07/135,958 priority patent/US4861550A/en
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、溶接などの熱履歴を受けても、溶
体化処理を施すことなく、そのままの状態ですぐ
れた耐応力腐食割れ性を示す耐食性Ni基合金に
関するものである。 従来、一般に、弗化水素ガスや塩酸ガスなどの
還元性ガスを含有する腐食性雰囲気や、塩酸、硫
酸、およびりん酸などの非酸化性酸にさらされ
る、例えば化学プラントの反応容器、熱交換器、
および薬品容器などの構造部材の製造に、これら
の腐食性雰囲気や非酸化性酸に対してすぐれた耐
食性を示すMo:26〜30%含有のNi基合金が使用
されている。 この従来耐食性Ni基合金は、上記のような腐
食環境ですぐれた耐食性を示すほか、冷間加工性
や溶接性にもすぐれた特性を示すものである。 一方、この従来耐食性Ni基合金は、Ni−Mo系
2元状態図からも明らかなように、600〜800℃の
温度でNi4Moの金属間化合物を析出し、この金属
間化合物は、靭性や延性の低下、並びに応力腐食
割れ発生の原因となることから、通常溶体化処理
を施した状態で実用に供されている。 したがつて、この従来耐食性Ni基合金が、例
えば溶接などの熱履歴を受けた場合にも、この溶
接によつて析出した金属間化合物を固溶消失させ
るための溶体化処理を施している。 しかし、溶接組立て後の構造部材に材する溶体
化処理は、構造的および容量的に制限を受けるほ
か、相手部材の材質によつても制限を受けるもの
であり、このようなことから、従来耐食性Ni基
合金は、その適用分野が限られたものになるのが
現状である。 そこで、本発明者等は、上述のような観点か
ら、溶接などの熱履歴を受けたままの状態でも応
力腐食割れの発生がない材料を得べく研究を行な
つた結果、重量%で、 Mo:25〜35%、 Al:0.3〜2%、 Fe:0.5〜6%、 を含有し、さらに必要に応じて、 V、W、Cr、およびCuのうちの1種または2
種以上:0.1〜4%と、 BおよびCaのうちの1種または2種:0.001〜
0.07%と、 Co:0.5〜5%、 の3つのグループのうちの1種以上を含有し、残
りがNiと不可避不純物からなる組成を有し、か
つ不可避不純物としてのCおよびSiの含有量が、 C:0.1%以下、 Si:1%以下、 であるNi基合金は、上記の腐食性雰囲気や非酸
化性酸にさらされる腐食環境において、すぐれた
耐食性を示し、かつ冷間加工性および溶接性にす
ぐれ、特に溶接などの熱履歴を受けても、金属間
化合物の析出がなく、したがつて溶体化処理を施
すことなく、熱履歴を受けたままの状態で実用に
供することができるという知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、以下に成分組成範囲を上記の通りに
限定した理由を説明する。 (a) Mo Mo成分には、素地に固溶して、還元性ガス
を含有する腐食性雰囲気や非酸化性酸などに対
する耐食性を著しく向上させる作用があるが、
その含有量が25%未満では前記作用に所望の効
果が得られず、一方35%を越えて含有させる
と、熱間加工性や常温靭性が劣化するようにな
ることから、その含有量を25〜35%と定めた。 (b) Al Al成分には、素地に固溶し、かつ合金中の
酸素含有量を0.006%(60p.p.m)以下に低減
して、600〜800℃の温度に加熱された合金中に
金属間化合物が析出するのを抑制し、もつて耐
応力腐食割れ性を向上させる作用があるが、そ
の含有量が0.3%未満では前記作用に所望の効
果が得られず、一方2%を越えて含有させても
金属間化合物の析出抑制効果は飽和するばかり
でなく、かえつて上記の腐食環境下での耐食性
に劣化傾向が現われるようになることから、そ
の含有量を0.3〜2%と定めた。 (c) Fe Fe成分にも、Alと同様に素地に固溶して、
溶接などの熱履歴を受けても金属間化合物の析
出を阻止し、もつて耐応力腐食割れ性を向上さ
せる作用があるが、その含有量が0.5%未満で
は、Alとの共存による著しい耐応力腐食割れ
性の向上効果が期待できず、一方6%を越えて
含有させると、Alと同様に上記の腐食環境下
での耐食性が劣化するようになることから、そ
の含有量を0.5〜6%と定めた。 (d) V、W、Cr、およびCu これらの成分には、上記の腐食環境下におけ
る耐食性を一段と向上させるほか、金属間化合
物の析出を抑制して耐応力腐食割れ性を一層向
上させ、さらに合金の強度を改善する作用があ
るので、これらの特性が要求される場合に必要
に応じて含有されるが、その含有量が0.1%未
満では前記作用に所望の向上効果が得られず、
一方4%を越えて含有させても前記作用により
一層の改善効果は得られないことから、経済性
を考慮して、その含有量を0.1〜4%と定め
た。 (e) BおよびCa これらの成分は、著しく高い金属間化合物析
出抑制作用をもつので、より一層の耐応力腐食
割れ性が要求される場合に必要に応じて含有さ
れるが、その含有量が0.001%未満では所望の
すぐれた耐応力腐食割れ性を確保することがで
きず、一方、0.07%を越えて含有させると、上
記の腐食環境での耐食性が低下するようになる
ことから、その含有量を0.001〜0.07%と定め
た。 (f) Co Co成分には、耐食性および耐応力腐食割れ
性を損なうことなく、合金強度を向上させる作
用があるので、特に強度が要求される場合に必
要に応じて含有されるが、その含有量が0.5%
未満では所望の強度向上効果が得られず、一方
5%を越えて含有させると冷間加工性が低下す
るようになることから、その含有量を0.5〜5
%と定めた。 (g) 不可避不純物 不可避不純物のうち、特にCおよびSiの含有
量は、それぞれC:0.1%以下、Si:1%以下
としなければならない。すなわち0.1%を越え
た多量のC成分が存在すると、MoがMo炭化物
としてくわれてしまい、粒界にMo欠乏層が形
成されるようになり、この結果耐粒界腐食性が
劣化するようになるからであり、一方Siは、溶
湯の脱ガスを促進し、かつ湯流れ性を良くする
作用をもつので、健全な鋳塊を製造するのに有
用な成分であるが、その含有量が1%を越える
と、Mo炭化物の形成を著しく促進するように
なるものであり、したがつてCおよびSiの上限
値:0.1%および1%をそれぞれ越えて含有さ
せてはならない。また、腐食環境が高温である
場合や、環元性ガスあるいは非酸化性酸の濃度
が高い場合などの厳しい環境下で使用される場
合には、CおよびSiの上限値をそれぞれC:
0.02%、Si:0.1%とする必要がある。 また、この他の不可避不純物として、P、
S、Mg、およびMnなどを含有するが、それぞ
れ、その含有量がP:0.05%以下、S:0.05%
以下、Mg:0.1%以下、およびMn:2.5%以下
であれば、合金特性が何ら損なわれるものでは
なく、むしろMgおよびMnには、脱ガスを促進
し、PおよびS成分の有害作用を抑制する作用
があるので、前記の上限値以下の範囲で積極的
に含有される場合がある。 さらに、合金成分として、Ti、Zr、Nb、お
よびYのうちの1種または2種以上を、それぞ
れTi:0.05〜0.5%、Zr:0.05〜0.5%、Nb:
0.05〜0.5%、およびY:0.005〜0.1%の範囲で
含有させると、これらの成分は固溶Cと結合し
て炭化物を形成し、この炭化物は結晶粒内に分
散析出するので、粒界に炭化物が析出しないよ
うになり、この結果耐粒界腐食性が向上するよ
うになる。 つぎに、この発明のNi基合金を実施例により
具体的に説明する。 実施例 通常の溶解鋳造法により、それぞれ第1表に示
される成分組成をもつた本発明Ni基合金1〜36
と従来Ni基合金を溶製し、鋳造した後、同じく
通常の条件で熱間鍛造および熱間圧延を施して板
厚:3mmの熱延板とし、引続いて、この熱延板
に、温度:1066℃に30分加熱保持後水冷の溶体化
処理を施した。 ついで、この結果得られた本発明Ni基合金1
The present invention relates to a corrosion-resistant Ni-based alloy that exhibits excellent stress corrosion cracking resistance as it is, without being subjected to solution treatment, even when subjected to thermal history such as welding. Conventionally, heat exchangers, for example, reaction vessels in chemical plants, which are generally exposed to corrosive atmospheres containing reducing gases such as hydrogen fluoride gas and hydrochloric acid gas, and non-oxidizing acids such as hydrochloric acid, sulfuric acid, and phosphoric acid. vessel,
Ni-based alloys containing 26 to 30% Mo are used in the manufacture of structural members such as chemical containers and chemical containers, which exhibit excellent corrosion resistance against these corrosive atmospheres and non-oxidizing acids. This conventional corrosion-resistant Ni-based alloy exhibits excellent corrosion resistance in the corrosive environment described above, and also exhibits excellent cold workability and weldability. On the other hand, as is clear from the Ni-Mo binary phase diagram, this conventional corrosion-resistant Ni-based alloy precipitates an intermetallic compound of Ni 4 Mo at a temperature of 600 to 800°C, and this intermetallic compound improves toughness. Because this causes a decrease in ductility and stress corrosion cracking, it is usually put into practical use after being subjected to solution treatment. Therefore, even when this conventional corrosion-resistant Ni-based alloy is subjected to a thermal history such as welding, a solution treatment is performed to dissolve and eliminate intermetallic compounds precipitated by this welding. However, solution treatment applied to structural members after welding and assembly is not only limited by the structure and capacity, but also by the material of the mating member. Currently, the fields of application of Ni-based alloys are limited. Therefore, from the above-mentioned viewpoint, the present inventors conducted research to obtain a material that does not cause stress corrosion cracking even when subjected to thermal history such as welding, and found that the Mo :25 to 35%, Al: 0.3 to 2%, Fe: 0.5 to 6%, and if necessary, one or two of V, W, Cr, and Cu.
More than species: 0.1-4%, one or two of B and Ca: 0.001-4%
0.07%, Co: 0.5 to 5%, and the remainder is Ni and unavoidable impurities, and the content of C and Si as unavoidable impurities is low. , C: 0.1% or less, Si: 1% or less. Ni-based alloys exhibit excellent corrosion resistance in the above corrosive atmospheres and corrosive environments exposed to non-oxidizing acids, and have excellent cold workability and weldability. It has excellent properties, and does not precipitate intermetallic compounds even when subjected to heat history such as welding, so it can be put to practical use as it is without solution treatment. I gained knowledge. This invention was made based on the above knowledge, and the reason why the component composition range was limited as described above will be explained below. (a) Mo The Mo component has the effect of forming a solid solution in the base material and significantly improving corrosion resistance against corrosive atmospheres containing reducing gases and non-oxidizing acids.
If the content is less than 25%, the desired effect cannot be obtained, while if the content exceeds 35%, hot workability and room temperature toughness will deteriorate, so the content should be reduced to 25%. It was set at ~35%. (b) Al The Al component is a solid solution in the base material, and the oxygen content in the alloy is reduced to 0.006% (60 p.pm) or less, and the metal is added to the alloy heated to a temperature of 600 to 800°C. It has the effect of suppressing the precipitation of intermediate compounds and improving stress corrosion cracking resistance, but if the content is less than 0.3%, the desired effect cannot be obtained, while if it exceeds 2% Even if it is included, the effect of suppressing the precipitation of intermetallic compounds will not only be saturated, but also the corrosion resistance will tend to deteriorate in the above-mentioned corrosive environment, so the content was set at 0.3 to 2%. . (c) Fe The Fe component also has a solid solution in the base material like Al,
It has the effect of preventing the precipitation of intermetallic compounds even when subjected to thermal history such as welding, and improving stress corrosion cracking resistance, but if the content is less than 0.5%, the coexistence with Al will cause significant stress resistance. The effect of improving corrosion cracking resistance cannot be expected, and on the other hand, if the content exceeds 6%, the corrosion resistance under the above corrosive environment will deteriorate like Al, so the content should be reduced to 0.5 to 6%. It was determined that (d) V, W, Cr, and Cu These components not only further improve corrosion resistance in the above-mentioned corrosive environment, but also suppress precipitation of intermetallic compounds to further improve stress corrosion cracking resistance. Since it has the effect of improving the strength of the alloy, it is included as necessary when these properties are required, but if the content is less than 0.1%, the desired effect of improving the above effect cannot be obtained,
On the other hand, even if the content exceeds 4%, further improvement effects cannot be obtained due to the above-mentioned action, so the content was determined to be 0.1 to 4% in consideration of economic efficiency. (e) B and Ca These components have a significantly high effect of suppressing the precipitation of intermetallic compounds, so they are included as necessary when even higher stress corrosion cracking resistance is required. If the content is less than 0.001%, the desired excellent stress corrosion cracking resistance cannot be ensured, while if the content exceeds 0.07%, the corrosion resistance in the above corrosive environment will decrease. The amount was determined to be 0.001-0.07%. (f) Co The Co component has the effect of improving alloy strength without impairing corrosion resistance and stress corrosion cracking resistance, so it is included as necessary when particularly strong strength is required. amount is 0.5%
If the content is less than 5%, the desired strength improvement effect cannot be obtained, while if the content exceeds 5%, the cold workability will decrease.
%. (g) Unavoidable impurities Among the unavoidable impurities, the content of C and Si in particular must be 0.1% or less for C and 1% or less for Si, respectively. In other words, if a large amount of C component exceeding 0.1% is present, Mo will be absorbed as Mo carbide, and a Mo-depleted layer will be formed at the grain boundaries, resulting in deterioration of intergranular corrosion resistance. On the other hand, Si has the effect of promoting degassing of the molten metal and improving the flowability of the molten metal, so it is a useful component for producing a sound ingot, but if its content is 1. %, the formation of Mo carbides is significantly promoted. Therefore, the upper limit values of C and Si should not be exceeded: 0.1% and 1%, respectively. In addition, when used in harsh environments such as high-temperature corrosive environments or high concentrations of cyclic gases or non-oxidizing acids, the upper limits of C and Si should be set to C:
0.02%, Si: 0.1%. In addition, other unavoidable impurities include P,
Contains S, Mg, Mn, etc., but the content is P: 0.05% or less and S: 0.05%, respectively.
Hereinafter, if Mg: 0.1% or less and Mn: 2.5% or less, the alloy properties will not be impaired in any way, but rather Mg and Mn will promote degassing and suppress the harmful effects of P and S components. Therefore, it may be actively included within the range below the above upper limit. Furthermore, as alloy components, one or more of Ti, Zr, Nb, and Y are added, respectively: Ti: 0.05 to 0.5%, Zr: 0.05 to 0.5%, Nb:
When contained in the ranges of 0.05 to 0.5% and Y: 0.005 to 0.1%, these components combine with solid solution C to form carbides, and these carbides are dispersed and precipitated within the crystal grains, so that they are not present at the grain boundaries. Carbides are prevented from precipitating, and as a result, intergranular corrosion resistance is improved. Next, the Ni-based alloy of the present invention will be specifically explained with reference to Examples. Examples Ni-based alloys 1 to 36 of the present invention having the respective compositions shown in Table 1 were produced by a normal melting and casting method.
After melting and casting a conventional Ni-based alloy, hot forging and hot rolling were performed under the same normal conditions to obtain a hot rolled sheet with a thickness of 3 mm. : After heating and holding at 1066°C for 30 minutes, solution treatment was performed by cooling with water. Next, the resulting Ni-based alloy 1 of the present invention
~

【表】【table】

【表】 36および従来Ni基合金の熱延板より、平行部長
さ:20mm×平行部幅:4mm×厚さ:2mmの寸法を
もつた試験片を機械加工により作成し、この試験
片に、750℃に15分間加熱保持と同温度に60分間
加熱保持の熱履歴を施した後、雰囲気をN2ガス
とし、0.5%のH2SO4と0.5%のHClを含有するア
セトンとアルコールの1:1溶液を収容する容
量:4.5の静置型オートクレーブ内の前記溶液
に浸漬し、前記溶液温度:150℃、歪速度:8.3×
10-7sec-1の条件で低歪速度による応力腐食割れ
試験を行ない、試験後の破面を観察し、破面全体
に占める応力腐食割れ破面(粒界割れ破面)の割
合(面積率)を算出した。したがつて、応力腐食
割れ破面の面積率が大きいほど耐応力腐食割れ性
に劣るものである。 また、同じく、上記の本発明Ni基合金1〜36
および従来Ni基合金の熱延板から、幅:25mm×
長さ:50mm×厚さ:2mmの寸法をもつた試験片を
機械加工により作成し、オートクレーブを用い、
沸騰した20%HCl水溶液中に96時間浸漬の条件で
腐食試験を行ない、試験後の重量減を測定し、年
換算した。これらの試験結果を第1表に示した。 第1表に示される結果から、本発明Ni基合金
1〜36は、いずれも750℃に加熱の熱履歴がある
にもかかわらず、すぐれた耐応力腐食割れ性を示
し、かつ耐食性にもすぐれているのに対して、従
来Ni基合金は耐応力腐食割れ性が著しく劣るこ
とが明らかである。 上述のように、この発明のNi基合金は、すぐ
れた耐食性、冷間加工性、および溶接性を保持し
た状態で、特に熱履歴を受けて場合にも金属間化
合物の析出がなく、すぐれた耐応力腐食割れ性を
示すので、例えば溶接後に溶体化処理を施す必要
がなく、さらに、例えば冷間加工後の歪取り焼鈍
などに際しても金属間化合物の析出が起らないの
で、これに原因する焼鈍割れの発生もなく、した
がつてこれらの特性が要求される広い分野に亘つ
ての適用が可能となるなど工業上有用な特性を有
するのである。
[Table] A test piece with dimensions of parallel part length: 20 mm x parallel part width: 4 mm x thickness: 2 mm was prepared by machining from hot rolled sheets of 36 and conventional Ni-based alloy, and this test piece was After a thermal history of heating and holding at 750°C for 15 minutes and heating and holding at the same temperature for 60 minutes, the atmosphere was N2 gas and a mixture of acetone and alcohol containing 0.5% H2SO4 and 0.5% HCl was applied. :1 Immerse in the solution in a static autoclave with a capacity of 4.5, solution temperature: 150°C, strain rate: 8.3×
A stress corrosion cracking test was performed at a low strain rate under the condition of 10 -7 sec -1 , the fracture surface was observed after the test, and the ratio (area rate) was calculated. Therefore, the larger the area ratio of stress corrosion cracking fracture surfaces, the poorer the stress corrosion cracking resistance. Similarly, the above-mentioned Ni-based alloys 1 to 36 of the present invention
And from conventional hot-rolled Ni-based alloy sheet, width: 25mm x
A test piece with dimensions of length: 50 mm x thickness: 2 mm was created by machining, and using an autoclave,
A corrosion test was conducted under the condition of immersion in a boiling 20% HCl aqueous solution for 96 hours, and the weight loss after the test was measured and converted into an annual value. The results of these tests are shown in Table 1. From the results shown in Table 1, the Ni-based alloys 1 to 36 of the present invention exhibit excellent stress corrosion cracking resistance and excellent corrosion resistance despite having a thermal history of heating at 750°C. In contrast, it is clear that conventional Ni-based alloys have significantly inferior stress corrosion cracking resistance. As mentioned above, the Ni-based alloy of the present invention has excellent corrosion resistance, cold workability, and weldability, and does not precipitate intermetallic compounds even when subjected to thermal history. It exhibits stress corrosion cracking resistance, so there is no need for solution treatment after welding, and furthermore, intermetallic compounds do not precipitate during strain relief annealing after cold working, so this can be avoided. It has industrially useful properties such as no annealing cracking and therefore can be applied to a wide range of fields where these properties are required.

Claims (1)

【特許請求の範囲】 1 Mo:25〜35%、 Al:0.3〜2%、 Fe:0.5〜6%、 を含有し、残りがNiと不可避不純物からなる組
成(以上重量%)を有し、かつ不可避不純物とし
てのCおよびSiの含有量が、それぞれ、 C:0.1%以下、 Si:1%以下、 であることを特徴とする耐応力腐食割れ性にすぐ
れた耐食性Ni基合金。 2 Mo:25〜35%、 Al:0.3〜2%、 Fe:0.5〜6%、 を含有し、さらに、 V、W、Cr、およびCuのうちの1種または2
種以上:0.1〜4%、 を含有し、残りがNiと不可避不純物からなる組
成(以上重量%)を有し、かつ不可避不純物とし
てのCおよびSiの含有量が、それぞれ、 C:0.1%以下、 Si:1%以下、 であることを特徴とする耐応力腐食割れ性にすぐ
れた耐食性Ni基合金。 3 Mo:25〜35%、 Al:0.3〜2%、 Fe:0.5〜6%、 を含有し、さらに、 BおよびCaのうちの1種または2種:0.001〜
0.07%、 を含有し、残りがNiと不可避不純物からなる組
成(以上重量%)を有し、かつ不可避不純物とし
てのCおよびSiの含有量が、それぞれ、 C:0.1%以下、 Si:1%以上、 であることを特徴とする耐応力腐食割れ性にすぐ
れた耐食性Ni基合金。 4 Mo:25〜35%、 Al:0.3〜2%、 Fe:0.5〜6%、 を含有し、さらに、 Co:0.5〜5%、 を含有し、残りがNiと不可避不純物からなる組
成(以上重量%)を有し、かつ不可避不純物とし
てのCおよびSiの含有量が、それぞれ、 C:0.1%以下、 Si:1%以下、 であることを特徴とする耐応力腐食割れ性にすぐ
れた耐食性Ni基合金。 5 Mo:25〜35%、 Al:0.3〜2%、 Fe:0.5〜6%、 を含有し、さらに、 V、W、Cr、およびCuのうちの1種または2
種以上:0.1〜4%と、 BおよびCaのうちの1種または2種:0.001〜
0.07%、 を含有し、残りがNiと不可避不純物からなる組
成(以上重量%)を有し、かつ不可避不純物とし
てのCおよびSiの含有量を、それぞれ、 C:0.1%以下、 Si:1%以下、 としたことを特徴とする耐応力腐食割れ性にすぐ
れた耐食性Ni基合金。 6 Mo:25〜35%、 Al:0.3〜2%、 Fe:0.5〜6%、 を含有し、さらに、 V、W、Cr、およびCuのうちの1種または2
種以上:0.1〜4%と、 Co:0.5〜5%、 を含有し、残りがNiと不可避不純物からなる組
成(以上重量%)を有し、かつ不可避不純物とし
てのCおよびSiの含有量を、それぞれ、 C:0.1%以下、 Si:1%以下、 としたことを特徴とする耐応力腐食割れ性にすぐ
れた耐食性Ni基合金。 7 Mo:25〜35%、 Al:0.3〜2%、 Fe:0.5〜6%、 を含有し、さらに、 BおよびCaのうちの1種または2種:0.001〜
0.07%と、 Co:0.5〜5%、 を含有し、残りがNiと不可避不純物からなる組
成(以上重量%)を有し、かつ不可避不純物とし
てのCおよびSiの含有量を、それぞれ、 C:0.1%以下、 Si:1%以下、 としたことを特徴とする耐応力腐食割れ性にすぐ
れた耐食性Ni基合金。 8 Mo:25〜35%、 Al:0.3〜2%、 Fe:0.5〜6%、 を含有し、さらに、 V、W、Cr、およびCuのうちの1種または2
種以上:0.1〜4%と、 BおよびCaのうちの1種または2種:0.001〜
0.07%と、 Co:0.5〜5%、 を含有し、残りがNiと不可避不純物からなる組
成(以上重量%)を有し、かつ不可避不純物とし
てのCおよびSiの含有量が、それぞれ、 C:0.1%以下、 Si:1%以下、 であることを特徴とする耐応力腐食割れ性にすぐ
れた耐食性Ni基合金。
[Claims] 1 Contains Mo: 25 to 35%, Al: 0.3 to 2%, Fe: 0.5 to 6%, and the remainder is Ni and unavoidable impurities (weight %), A corrosion-resistant Ni-based alloy with excellent stress corrosion cracking resistance, characterized in that the contents of C and Si as unavoidable impurities are: C: 0.1% or less, Si: 1% or less. 2 Contains Mo: 25 to 35%, Al: 0.3 to 2%, Fe: 0.5 to 6%, and further contains one or two of V, W, Cr, and Cu.
Species or higher: Contains 0.1 to 4%, with the remainder consisting of Ni and unavoidable impurities (wt%), and the content of C and Si as unavoidable impurities, respectively, C: 0.1% or less , Si: 1% or less, a corrosion-resistant Ni-based alloy with excellent stress corrosion cracking resistance. 3 Contains Mo: 25-35%, Al: 0.3-2%, Fe: 0.5-6%, and further contains one or two of B and Ca: 0.001-
0.07%, with the remainder consisting of Ni and unavoidable impurities (wt%), and the contents of C and Si as unavoidable impurities are respectively: C: 0.1% or less, Si: 1% A corrosion-resistant Ni-based alloy with excellent stress corrosion cracking resistance, characterized by the following. 4 Contains Mo: 25-35%, Al: 0.3-2%, Fe: 0.5-6%, and further contains Co: 0.5-5%, with the remainder consisting of Ni and unavoidable impurities (the above % by weight), and the contents of C and Si as inevitable impurities are respectively C: 0.1% or less and Si: 1% or less, and has excellent stress corrosion cracking resistance. Ni-based alloy. 5 Contains Mo: 25 to 35%, Al: 0.3 to 2%, Fe: 0.5 to 6%, and further contains one or two of V, W, Cr, and Cu.
More than species: 0.1-4%, one or two of B and Ca: 0.001-4%
0.07%, with the remainder consisting of Ni and unavoidable impurities (wt%), and the contents of C and Si as unavoidable impurities are respectively: C: 0.1% or less, Si: 1% A corrosion-resistant Ni-based alloy with excellent stress corrosion cracking resistance, characterized by the following: 6 Contains Mo: 25 to 35%, Al: 0.3 to 2%, Fe: 0.5 to 6%, and further contains one or two of V, W, Cr, and Cu.
Species: 0.1 to 4%, Co: 0.5 to 5%, and the remainder is Ni and unavoidable impurities (weight%), and the content of C and Si as unavoidable impurities is , C: 0.1% or less, Si: 1% or less, respectively.A corrosion-resistant Ni-based alloy with excellent stress corrosion cracking resistance. 7 Contains Mo: 25-35%, Al: 0.3-2%, Fe: 0.5-6%, and further contains one or two of B and Ca: 0.001-2%.
0.07%, Co: 0.5 to 5%, and the remainder is Ni and unavoidable impurities (weight%), and the contents of C and Si as unavoidable impurities are as follows: C: A corrosion-resistant Ni-based alloy with excellent stress corrosion cracking resistance, characterized by: 0.1% or less, Si: 1% or less. 8 Contains Mo: 25 to 35%, Al: 0.3 to 2%, Fe: 0.5 to 6%, and further contains one or two of V, W, Cr, and Cu.
More than species: 0.1-4%, one or two of B and Ca: 0.001-4%
0.07%, Co: 0.5 to 5%, and the remainder is Ni and unavoidable impurities (weight%), and the contents of C and Si as unavoidable impurities are as follows: C: A corrosion-resistant Ni-based alloy with excellent stress corrosion cracking resistance, characterized by: 0.1% or less, Si: 1% or less.
JP13531383A 1983-07-25 1983-07-25 Corrosion-resistant ni alloy having superior resistance to stress corrosion cracking Granted JPS6026636A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13531383A JPS6026636A (en) 1983-07-25 1983-07-25 Corrosion-resistant ni alloy having superior resistance to stress corrosion cracking
US07/135,958 US4861550A (en) 1983-07-25 1988-03-14 Corrosion-resistant nickel-base alloy having high resistance to stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13531383A JPS6026636A (en) 1983-07-25 1983-07-25 Corrosion-resistant ni alloy having superior resistance to stress corrosion cracking

Publications (2)

Publication Number Publication Date
JPS6026636A JPS6026636A (en) 1985-02-09
JPS6221854B2 true JPS6221854B2 (en) 1987-05-14

Family

ID=15148812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13531383A Granted JPS6026636A (en) 1983-07-25 1983-07-25 Corrosion-resistant ni alloy having superior resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JPS6026636A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA931230B (en) * 1992-03-02 1993-09-16 Haynes Int Inc Nickel-molybdenum alloys.

Also Published As

Publication number Publication date
JPS6026636A (en) 1985-02-09

Similar Documents

Publication Publication Date Title
US5529642A (en) Nickel-based alloy with chromium, molybdenum and tantalum
US7922969B2 (en) Corrosion-resistant nickel-base alloy
JPH028017B2 (en)
JPH086164B2 (en) Method for enhancing crevice and pitting corrosion resistance of nickel-base alloys
CA1149646A (en) Austenitic stainless corrosion-resistant alloy
JPS61288041A (en) Ni-base alloy excellent in intergranular stress corrosion cracking resistance and pitting resistance
JPS5940901B2 (en) Corrosion-resistant austenitic stainless steel
JPS649391B2 (en)
US4861550A (en) Corrosion-resistant nickel-base alloy having high resistance to stress corrosion cracking
JPS6221854B2 (en)
JPS6221855B2 (en)
US4050928A (en) Corrosion-resistant matrix-strengthened alloy
US3311470A (en) Ductile corrosion-resistant alloy
EP0570985A1 (en) Iron-chromium alloy with high corrosion resistance
JP2000001754A (en) Austenitic alloy and structure using the same
JPS6026638A (en) Corrosion-resistant ni alloy having superior resistance to stress corrosion cracking
JPS62170444A (en) Precipitation strengthening cast ni alloy having superior resistance to stress corrosion cracking
JPS6311644A (en) High-strength ni-cr alloy excellent in corrosion resistance and heat resistance
JPH07316699A (en) Corrosion-resistant nitride-dispersed nickel base alloy having high hardness and strength
JPS62224493A (en) Wire for welding 9cr-2mo steel
JPS5864364A (en) Manufacture of ni-cr alloy with superior corrosion resistance
JPS6353234A (en) Structural member having heat resistance and high strength
JP2004027254A (en) Titanium alloy having excellent corrosion resistance and method of producing the same
JPS5919978B2 (en) Malleable Ni-based super heat-resistant alloy
JPS583942A (en) Ni alloy with superior embrittlement resistance at intermediate temperature