JPS6026638A - Corrosion-resistant ni alloy having superior resistance to stress corrosion cracking - Google Patents

Corrosion-resistant ni alloy having superior resistance to stress corrosion cracking

Info

Publication number
JPS6026638A
JPS6026638A JP13531583A JP13531583A JPS6026638A JP S6026638 A JPS6026638 A JP S6026638A JP 13531583 A JP13531583 A JP 13531583A JP 13531583 A JP13531583 A JP 13531583A JP S6026638 A JPS6026638 A JP S6026638A
Authority
JP
Japan
Prior art keywords
unavoidable impurities
corrosion
resistant
less
stress corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13531583A
Other languages
Japanese (ja)
Inventor
Takeshi Yoshida
武司 吉田
Yoshio Takizawa
与司夫 滝沢
Ichiro Sekine
一郎 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP13531583A priority Critical patent/JPS6026638A/en
Publication of JPS6026638A publication Critical patent/JPS6026638A/en
Priority to US07/135,958 priority patent/US4861550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To obtain a corrosion-resistant Ni alloy causing no stress corrosion cracking while holding its heat history given by welding or other processing by adding specified amounts of Mo and Fe to Ni. CONSTITUTION:This Ni alloy consists of, by weight, 25-35% Mo, 2-8% Fe and the balance Ni with inevitable impurities including <=0.01% C and <=0.1% Si. One or more groups selected among 0.1-4% one or more among V, W, Cr and Cu (a), 0.001-0.07% B and/or Ca (b), and 0.5-5% Co (c) may be substituted for part of the Ni in the alloy.

Description

【発明の詳細な説明】 この発明は、溶接などの熱履歴(受けても、溶体化処理
を施すことなく、そのままの状態ですぐれた耐応力腐食
割れ性を示す耐食性Ni基合金に関するものである。
[Detailed Description of the Invention] This invention relates to a corrosion-resistant Ni-based alloy that exhibits excellent stress corrosion cracking resistance in its original state without being subjected to solution treatment, even if subjected to thermal history such as welding. .

従来、一般に、弗化水素ガスや塩酸ガスなどの還元性ガ
スを含有する腐食性雰囲気や、塩酸、硫酸、およびりん
酸などの非酸化性酸にさらされる、例えば化学プラント
の反応容器、熱交換器、および薬品容器などの構造部材
の製造に、これらの腐食性雰囲気や非酸化性酸に対して
すぐれた耐食性を示すMo : 26〜30係含有のN
1基合金が使用されでいる。
Conventionally, heat exchangers, for example, reaction vessels in chemical plants, which are generally exposed to corrosive atmospheres containing reducing gases such as hydrogen fluoride gas and hydrochloric acid gas, and non-oxidizing acids such as hydrochloric acid, sulfuric acid, and phosphoric acid. N containing Mo: 26-30, which exhibits excellent corrosion resistance against corrosive atmospheres and non-oxidizing acids, is suitable for manufacturing structural members such as containers and chemical containers.
Single-base alloys have been used.

この従来耐食性N1基合金は、上記のような腐食環境で
すぐれた耐食性を示すほか、冷間加工性や溶接性にもす
ぐれた特性を示すものである。
This conventional corrosion-resistant N1-based alloy exhibits excellent corrosion resistance in the above-mentioned corrosive environment, and also exhibits excellent properties in cold workability and weldability.

一方、この従来耐食性N1基合金は、N1−M0系2元
状態図からも明らかなように、600〜8o。
On the other hand, this conventional corrosion-resistant N1-based alloy has a corrosion resistance of 600 to 8o, as is clear from the N1-M0 system binary phase diagram.

℃の温度でNi4 Moの金属間化合物全析出し、この
金属間化合物は、靭性や延性の低下、並びに応力腐食割
れ発生の原因となることから1通常溶体化処理を施した
状態で実用に供されている。
The intermetallic compound of Ni4Mo is completely precipitated at a temperature of has been done.

したがって、この従来耐食性Ni基合金が、例えば溶接
などの熱履歴を受けた場合にも、この溶接によって析出
した金属間化合物を固溶消失させるための溶体化処理音
節している。
Therefore, even when this conventional corrosion-resistant Ni-based alloy is subjected to a thermal history such as welding, it is subjected to solution treatment to dissolve and eliminate intermetallic compounds precipitated by this welding.

しかし、溶接組立て後の構造部組に対する溶体化処理は
、構造的および容量的に制限を受けるほか、相手部材の
材質によっても制限を受けるものであシ、このようなこ
とから、従来耐食性N1基合金は、その適用分野が限ら
れたものになるのが現状である。
However, solution treatment for structural parts after welding and assembly is not only limited by the structure and capacity, but also by the material of the mating member.For these reasons, conventional corrosion-resistant N1 At present, the fields of application of alloys are limited.

そこで、本発明者等は、上述のような観点から、溶接な
どの熱履歴を受けたままの状態でも応力腐食割れの発生
がない材料を得べく研究を行なった結果、重量%で、 Mo : 25〜35係。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to obtain a material that does not cause stress corrosion cracking even when subjected to thermal history such as welding, and as a result, Mo: Section 25-35.

Fe:2〜8係、 を含有し、さらに必要に応じて、 V、W、Or、およびOuのうちの1種または2種以北
=0.1〜4係と、 BおよびCaのうちの1種1へは2種:0.001〜0
.07係と。
Contains Fe: 2 to 8, and if necessary, one or more of V, W, Or, and O = 0.1 to 4, and B and Ca. Type 1 to Type 1: Type 2: 0.001 to 0
.. With Section 07.

Co : 0.5〜5 壬、 の3つのグループのうちの1種以上を含有し、残りがN
1−と不可避不純物からなる組成を有し、かつ不可避不
純物としてのCおよびSlの含有量が。
Co: Contains one or more of the following three groups: 0.5 to 5, and the rest is N.
1- and unavoidable impurities, and the content of C and Sl as unavoidable impurities.

a:o、oi係以下、 Eli:0.1係以下、 で′あるN1基合金は、上記の腐食性雰囲気や非酸化性
酸にさらされる腐食環境において、すぐれた耐食性を示
し、かつ冷間加工性および溶接性にすぐれ、特に溶接な
どの熱履歴を受けても、金属間化合物の析出がなく、し
たがって溶体化処理を施すことなく、熱履歴を受けたま
まの状態で実用に供することができるという知見を得た
のである。
N1-based alloys with a: o, oi coefficient or less, Eli: 0.1 coefficient or less, exhibit excellent corrosion resistance in the above corrosive atmospheres and corrosive environments exposed to non-oxidizing acids, and are resistant to cold corrosion. It has excellent workability and weldability, and does not precipitate intermetallic compounds even when subjected to heat history such as welding. Therefore, it can be used for practical use without solution treatment and in the same state as it has undergone heat history. I learned that it is possible.

この発明は、上記知見にもとづいてなされたものであっ
て、以下に成分組成範囲を上記の通シに限定した理由を
説明する。
This invention was made based on the above knowledge, and the reason why the component composition range was limited to the above general range will be explained below.

(a) M。(a) M.

MO酸成分は、素地に固溶して、還元性ガス全含有する
腐食性雰囲気や非酸化性酸などに対する耐食性を著しく
向上させる作用があるが、その含有量が25係未満では
前記作用に所望の効果が得られず、一方35%を越えて
含有させると、熱間加工性や常温靭性が劣化するように
なることがら、その含有量を25〜35%と定めた。
The MO acid component dissolves in the base material and has the effect of significantly improving corrosion resistance against corrosive atmospheres containing all reducing gases and non-oxidizing acids, but if the content is less than 25%, the desired effect cannot be achieved. However, if the content exceeds 35%, the hot workability and room temperature toughness deteriorate, so the content was set at 25 to 35%.

(b) Fe Fe成分には、素地に固溶し、合金が600〜800℃
に加熱された場合にも金属間化合物が析出するのを阻止
し、もって応力腐食割れの発生を抑制する作用があるが
、その含有量が2係未満では前記作用に所望の効果が得
られず、一方8係を越えて含有させると、上記の腐食環
境下での耐食性が劣化するようになることから、その含
有量を2〜8係と定めた。
(b) Fe The Fe component is a solid solution in the base material, and the alloy is heated at 600 to 800°C.
It also has the effect of preventing the precipitation of intermetallic compounds and thereby suppressing the occurrence of stress corrosion cracking when heated to a temperature of On the other hand, if the content exceeds 8 parts, the corrosion resistance under the above-mentioned corrosive environment will deteriorate, so the content was set at 2 to 8 parts.

(c) V、 W、 C!r、およびOuこれらの成分
には、上記の腐食環境下における耐食性を一段と向上さ
せるほか、金属間化合物の析出を抑制して耐応力腐食割
れ性を一層向」ニさせ、さらに合金の強度を改善する作
用があるので、これらの特注が要求される場合に必覇゛
に応じて含有されるが、その含有量が0.1係未高では
前記作用に所望の向上効果が得られず、一方4係を越え
て含有させても前記作用により一層の改善効果は得られ
ないことから、経済性を考慮して、その含有量を0.1
〜4係と定めた。
(c) V, W, C! r, and Ou These components not only further improve corrosion resistance in the above-mentioned corrosive environment, but also suppress precipitation of intermetallic compounds to further improve stress corrosion cracking resistance, and further improve the strength of the alloy. Therefore, if these special orders are required, they are necessarily included, but if the content is less than 0.1, the desired effect of improving the above function cannot be obtained, and on the other hand, Even if the content exceeds 4%, no further improvement effect can be obtained due to the above action, so in consideration of economic efficiency, the content should be reduced to 0.1%.
It was decided that there would be 4 sections.

(a) BおよびOa これらの成分は、著しく高い金属間化合物析出抑制作用
をもつので、より一層の耐応力腐食割れ性が要求される
場合に必要に応じて含有されるが。
(a) B and Oa These components have a significantly high effect of suppressing precipitation of intermetallic compounds, so they are included as necessary when even higher stress corrosion cracking resistance is required.

その含有量が0.001係未満では所望のすぐれた耐応
力腐食割れ性を確保することができ−ず、一方、0.0
71i越えて含有させると、上記の腐食環境での耐食性
が低下するようになることから、その含有量′f:0.
001〜007係と定めた。
If the content is less than 0.001%, the desired excellent stress corrosion cracking resistance cannot be secured;
If the content exceeds 71i, the corrosion resistance in the above-mentioned corrosive environment will decrease, so the content 'f: 0.
It has been designated as Sections 001 to 007.

(θ) C。(θ) C.

COC成分は、耐食性および耐応力腐食割れ性を損なう
ことなく、合金強度を向上させる作用があるので、特に
強度が要求される場合に必要に応じて含有されるが、そ
の含有量が0.51未満では所望の強度向上効果が得ら
れず、一方5係を越えて含有させると冷間加工性が低下
するようになることから、その含有量全0.5〜5係と
定めた。
The COC component has the effect of improving alloy strength without impairing corrosion resistance and stress corrosion cracking resistance, so it is included as necessary when particularly strong strength is required. If the content is less than 5 parts, the desired strength-improving effect cannot be obtained, while if the content exceeds 5 parts, the cold workability will deteriorate. Therefore, the total content was set at 0.5 to 5 parts.

(f) 不可避不純物 不可避不純物のうち、特にCおよびSlの含有量I−f
0.1それぞれC:0.01係以下、Si : 0.1
係以下としなければ外らない。すなわち、0.01%を
越えたC成分が存在すると、MoがMo炭化物としてく
われてしまい、粒界にMO欠乏層が形成されるようにな
シ、この結果耐粒界腐食性が劣化するようになるからで
あり、一方Siは、溶湯の脱ガスを促進し、かつ湯流れ
性を良くする作用をもつので、健全な鋳塊を製造するの
に有用な成分であるが、その含有量が0.1係を越える
と、Mo炭化物の形成を著しく促進するようになるもの
であり、したがってCおよびSlの上限値:0.014
およびo、 i % ’1それぞれ越えて含有させては
ならない。
(f) Unavoidable impurities Among the unavoidable impurities, especially the content I-f of C and Sl
0.1 each C: 0.01 or less, Si: 0.1
You will not be able to pass unless you are below the relevant level. In other words, if the C component exceeds 0.01%, Mo will be absorbed as Mo carbide, and an MO-depleted layer will be formed at the grain boundaries, resulting in deterioration of intergranular corrosion resistance. On the other hand, Si has the effect of promoting the degassing of the molten metal and improving the flowability of the molten metal, so it is a useful component for producing a healthy ingot, but its content is If it exceeds a coefficient of 0.1, the formation of Mo carbides will be significantly promoted. Therefore, the upper limit of C and Sl: 0.014
and o, i% '1, respectively, must not be contained.

また、この他の不可避不純物として、p、s。In addition, other unavoidable impurities include p and s.

Mg、およびMn7zどを含有するが、それぞれ、その
含有量がP:0.05係以下、S:0.05%以下。
It contains Mg, Mn7z, etc., but the content thereof is P: 0.05% or less and S: 0.05% or less.

Mg: 0.1 %以下、およびMn : 2.5 %
以下であれば、合金特性が何ら損なわれるものではなく
、むしろMgおよびMnには、脱ガスを促進し%Pおよ
びS成分の有害作用を抑制する作用があるので、前記の
上限値以下の範囲で積極的に含有される場合がある。
Mg: 0.1% or less, and Mn: 2.5%
If it is below, the alloy properties will not be impaired in any way; rather, Mg and Mn have the effect of promoting degassing and suppressing the harmful effects of the P and S components, so the range is below the upper limit. It may be actively included in some cases.

さらに、合金成分として、Ti、 Zr、 Nb、およ
びYのうちの1種捷たは2種以」二ヲ、それぞれTに0
.05〜0.5 %、 Zr: 0.05〜0.5係、
 Nt+: 0.05〜0.5係、およびY:0.00
5〜01#)の範囲で含有させると、これらの成分は固
溶Cと結合して炭化物を形成し、この炭化物は結晶粒内
に分散析出するので、粒界に炭化物が析出しないように
なり、この結果耐粒界腐食性が向上するようになる。
Furthermore, as an alloy component, one or more of Ti, Zr, Nb, and Y are selected, and T is 0.
.. 05-0.5%, Zr: 0.05-0.5%,
Nt+: 0.05 to 0.5, and Y: 0.00
When contained in the range of 5 to 01#), these components combine with solid solution C to form carbides, and these carbides are dispersed and precipitated within the crystal grains, so that carbides are not precipitated at grain boundaries. As a result, intergranular corrosion resistance is improved.

つぎに、この発明のN1基合金を実施例により具体的に
説明する。
Next, the N1-based alloy of the present invention will be specifically explained using examples.

実施例 通常の溶解鋳造法により、それぞれ第1表に示される成
分組成をもった本発明N1基合金1〜23と従来Ni基
合金を溶製し、鋳造した後、同じく通常の条件で熱間鍛
造および熱間圧4’4施して板厚:3mの熱延板とし、
引続いて、この熱延板に、温度:1066℃に30分分
熱熱保持後冷の溶体化処理を施した。
Examples N1-based alloys 1 to 23 of the present invention and conventional Ni-based alloys having the compositions shown in Table 1 were melted and cast by a normal melting and casting method, and then hot-casted under the same normal conditions. Forged and hot-pressed 4'4 to make a hot-rolled plate with a thickness of 3m,
Subsequently, this hot-rolled sheet was subjected to a solution treatment in which it was maintained at a temperature of 1066° C. for 30 minutes and then cooled.

ついで、この結果得られた本発明N1基合金1〜23お
よび従来N1基合金の熱延板より、平行部長さ: 20
 +mi X平行部幅:4晒×厚さ=2箇の寸法をもっ
た試験片を機械加工によシ作成し、この試験片に、75
0℃に20分間加熱保持の熱履歴を施した後、雰囲気i
N2ガスとし、0.5係のN2 S04と0.5憾のH
Ctf含有するアセトンとアルコールの1:1溶液を収
容する容量:4.5tの・静置型オートクレーブ内の前
記溶液に浸漬し、前記溶液温度:150℃、歪速度二8
.3X10sec の条件で低歪速度による応力腐食割
れ試験を行ない、試験後の破面全観察し、破面全体に占
める応力腐食割れ破面(粒界割れ破面)の割合(面積率
)全算出した。したがって、応力腐食割れ破面の面積率
が大きいほど耐応力腐食割れ性に劣るものである。
Then, from the hot rolled sheets of the N1-based alloys 1 to 23 of the present invention and the conventional N1-based alloy obtained as a result, the parallel length: 20
+mi
After a thermal history of heating and holding at 0°C for 20 minutes, the atmosphere i
N2 gas, 0.5 part N2 S04 and 0.5 part H
A 1:1 solution of acetone and alcohol containing Ctf was immersed in the solution in a stationary autoclave with a capacity of 4.5 t, the solution temperature: 150 ° C., and the strain rate was 28.
.. A stress corrosion cracking test was conducted at a low strain rate under the conditions of 3 x 10 seconds, the entire fracture surface was observed after the test, and the ratio (area ratio) of the stress corrosion crack surface (intergranular crack surface) to the entire fracture surface was calculated. . Therefore, the larger the area ratio of stress corrosion cracking fracture surfaces, the worse the stress corrosion cracking resistance.

また、同じく、上記の本発明N1基合金1〜23および
従来N1基合金の熱延板から、幅ニア0mmx長さ:1
50wnx厚さ:3叫の寸法をもった試験片全機械加工
によ962枚づつ作成し、これを長手方向に’rIG溶
接法にて突合せ溶接した後、溶接部が中央に位置する状
態で幅:25mmX長さ=50mの寸法の試験片を切出
し、この試験片を用い、温度:150″C:の20%H
C1水溶液中に100時間浸漬の条件で粒界腐食試験を
用い、試験後の゛溶接熱影響部における最大侵食性A全
測定した。
Similarly, from the above-mentioned hot-rolled sheets of the present invention N1-based alloys 1 to 23 and the conventional N1-based alloy, width near 0 mm x length: 1
50 wn : Cut out a test piece with dimensions of 25 mm x length = 50 m, use this test piece, and heat at 20% H at a temperature of 150''C.
Using a grain boundary corrosion test under the condition of immersion in a C1 aqueous solution for 100 hours, the maximum erodibility A in the weld heat affected zone after the test was completely measured.

これらの結果を第1表に示した。These results are shown in Table 1.

第1表に示される結果から、本発明N1基合金、1〜2
3は、いずれも750℃に加熱の熱履歴があるにもかか
わらず、すぐれた耐応力腐食割れ性を示し、かつ耐食性
にもすぐれているのに対して、従来Ni基合金は耐応力
腐食割れ性の著しく劣るものであった。
From the results shown in Table 1, the N1-based alloys of the present invention, 1 to 2
3 shows excellent stress corrosion cracking resistance and excellent corrosion resistance even though they have a thermal history of heating at 750°C, whereas conventional Ni-based alloys have poor stress corrosion cracking resistance. It was of significantly inferior quality.

上述のように、この発明のN1基合金は、すぐれた耐食
性、冷間加工性、および溶接性を保持した状態で、特に
熱履歴を受けた場合にも金属間化合物の析出がなく、す
ぐれた耐応力腐食割れ性を示すので、例えば溶接後に溶
体化処4’を施す必要がなく、さらに1例えば冷間加工
後の歪取り焼鈍などに際しても金属間化合物の析出が起
らないので、これに原因する焼鈍割れの発生もなく、し
たがってこれらの特性が要求される広い分野に亘っての
適用が可能となるなど工業上有用な特性を有するのであ
る。
As mentioned above, the N1-based alloy of the present invention has excellent corrosion resistance, cold workability, and weldability, and does not precipitate intermetallic compounds even when subjected to thermal history. Since it exhibits stress corrosion cracking resistance, it is not necessary to perform solution treatment after welding, and furthermore, it does not cause precipitation of intermetallic compounds even during strain relief annealing after cold working. There is no occurrence of annealing cracks due to this, and therefore it has industrially useful properties, such as being able to be applied to a wide range of fields where these properties are required.

出願人 三菱金属株式会社 代理人 富 1)和 夫 外1名Applicant: Mitsubishi Metals Corporation Agent Tomi 1) Kazuo and 1 other person

Claims (8)

【特許請求の範囲】[Claims] (1) Mo: 25〜35% Fe:2〜84、 全含有し、残シがN1と不可避不純物からなる組成(以
上重量係)を有し、かつ不可避不純物としてのCおよび
Slの含有量が、それぞれ、a:0.01係以下。 Si : Q、 l係以下。 であることを特徴とする耐応力腐食割れ性にすぐれた耐
食性N1基合金。
(1) Mo: 25-35% Fe: 2-84, all contained, with the remainder consisting of N1 and unavoidable impurities (weight ratio), and the content of C and Sl as unavoidable impurities , respectively, a: 0.01 or less. Si: Q, Level 1 and below. A corrosion-resistant N1-based alloy with excellent stress corrosion cracking resistance.
(2) MO: 25〜35%、 Fe:2〜8係、 全含有し、さらに。 V、W、Or、およびOuのうちの1種または2種以上
=0.1〜4係。 を含有し、残りがNiと不可避不純物からなる組成(以
上重量係)を有し、かつ不可避不純物としてのCおよび
Slの含有量が、それぞれ、a:o、oi係以下、 Si:0.1係以下、 であることを特徴とする耐応力腐食割れ性にすぐれた耐
食性Ni基合金。
(2) MO: 25-35%, Fe: 2-8%, all contained, and further. One or more of V, W, Or, and Ou = 0.1 to 4 ratio. and the remainder is Ni and unavoidable impurities (weight ratio), and the contents of C and Sl as unavoidable impurities are a: o and oi ratio or less, respectively, Si: 0.1 A corrosion-resistant Ni-based alloy with excellent stress corrosion cracking resistance, characterized by the following:
(3)Mo:25〜35係、 Fe:2〜8憾、 を含有し、さら[。 BおよびCaのうちの1種または2種=0.001〜0
.07%、 を含有し、残シがN1と不可避不純物からなる組成(以
上重量係)ヲ有し、かつ不可避不純物としてのCおよび
Slの含有量が、それぞれ、c:o、oi係以下、 Si:0.l係以下、 であることを特徴とする耐応力腐食割れ性にすぐわ、た
耐食性Ni基合金。
(3) Contains Mo: 25 to 35, Fe: 2 to 8, and further [. One or two of B and Ca = 0.001 to 0
.. 07%, with the balance consisting of N1 and unavoidable impurities (weight ratio), and the content of C and Sl as unavoidable impurities is below c:o, oi ratio, respectively, Si :0. A corrosion-resistant Ni-based alloy having a stress corrosion cracking resistance of less than or equal to 1.
(4) MO: 25〜35s、 Fe:2〜8係、 を含有し、さらに、 Oo:0.5〜5係、 全含有し、残シがNiと不可避不純物からなる組成(以
上重量%)を有し、かつ不可避不純物としてのCおよび
Slの含有量が、それぞれ、c:o、01%以下、 Si:Q、l係以下。 であることを特徴とする耐応力腐食割れ性にすぐれた耐
食性N1基合金。
(4) A composition containing MO: 25 to 35s, Fe: 2 to 8 parts, and further Oo: 0.5 to 5 parts, with the remainder consisting of Ni and unavoidable impurities (wt%) and the contents of C and Sl as unavoidable impurities are, respectively, c:o, 01% or less, and Si:Q, 1% or less. A corrosion-resistant N1-based alloy with excellent stress corrosion cracking resistance.
(5) Mo: 25〜35%、 Fe : 2〜8 L を含有し、さらに、 V、W、Or、およびCuのうちの1種または2種以上
二0.1〜4壬と、 BおよびCaのうちの1種または2種:0.001〜0
.07係。 を含有し、残りがN1と不可避不純物からなる組成(以
上重量%)ヲ有し、かつ不可避不純物としてのCおよび
Slの含有量を、それぞれ。 C!:0.01係以下、 Si:0.1係以下、 としたことを特徴とする耐応力腐食割れ性にすぐれた耐
食性Ni基合金。
(5) Contains Mo: 25-35%, Fe: 2-8 L, and further contains one or more of V, W, Or, and Cu, and B and One or two of Ca: 0.001-0
.. Section 07. , with the remainder consisting of N1 and unavoidable impurities (the above weight %), and the contents of C and Sl as unavoidable impurities, respectively. C! A corrosion-resistant Ni-based alloy having excellent stress corrosion cracking resistance.
(6)Mo:25〜35係、 Fe:2〜8係、 を含有し、さらに、 V I W I Crl およびOuのうちの1種また
は2種以上:0.1〜4係と、 Oo:0,5〜5 係、 を含有し、残シがNiと不可避不純物からなる組成(以
上重量係〕ヲ有し、かつ不可避不純物とし−CのCおよ
びSiの含有量を、それぞれ、C:0.01係以下。 Si : 0.1係以下、 としたことを特徴とする耐応力腐食割れ性にすぐれた耐
食性Ni基合金。
(6) Contains Mo: 25 to 35 parts, Fe: 2 to 8 parts, and further contains one or more of VI WI Crl and O: 0.1 to 4 parts, and Oo: 0.5 to 5, and has a composition (weight ratio) with the remainder consisting of Ni and unavoidable impurities, and the C and Si contents of -C as unavoidable impurities are respectively C: 0 A corrosion-resistant Ni-based alloy with excellent stress corrosion cracking resistance, characterized by having a coefficient of .01 or less.Si: a coefficient of 0.1 or less.
(7)MO:25〜35憾、 Fe: 2〜8 係 、 全含有し、さらに、 BおよびCtaのうちの1種または2種二〇、001〜
0.07係と。 Co:Q、5〜5%、 全含有し、残9がN]と不可避不純物からなる組成(以
」二重量係)ヲ有し、かつ不可避不純物としてのCおよ
びSiの含有量を、それぞれ、0:0.01係以下、 Si:0.1係以下、 としたことを特徴とする耐応力腐食割れ性にすぐれた耐
食性N1基合金。
(7) MO: 25-35%, Fe: 2-8%, and further contains one or two of B and Cta 20,001-
With the 0.07 section. Co: Q, 5 to 5%, all contained, the balance 9 being N] and unavoidable impurities (hereinafter referred to as "double weight"), and the contents of C and Si as unavoidable impurities, respectively. A corrosion-resistant N1-based alloy having excellent stress corrosion cracking resistance, characterized in that: 0:0.01 or less, Si: 0.1 or less.
(8) MO: 25〜35 %、 Fe : 2〜8%、 を含有し、さらに。 v+ W r−Cr 、およびOuのうちの1種または
2種以上:0.1〜4係と。 BおよびOaのうちの1種または2種二〇、001〜0
.07係と、 Co : 0.5〜5係。 を含有し、残りがNiと不可避不純物からなる組成(以
上重量%)ヲ有し、かつ不可避不純物としてのCおよび
Siの含有量が、それぞれ。 0:0.01係以下、 Si:0.1qb以下、 であることを特徴とする耐応力腐食割れ性にすぐれた耐
食性N1基合金。
(8) Contains MO: 25-35%, Fe: 2-8%, and further contains. v+ W r-Cr and one or more of Ou: 0.1 to 4. One or two of B and Oa 20,001-0
.. Section 07 and Co: Section 0.5 to 5. , with the remainder consisting of Ni and unavoidable impurities (the above weight %), and the contents of C and Si as unavoidable impurities, respectively. A corrosion-resistant N1-based alloy with excellent stress corrosion cracking resistance, characterized in that: 0:0.01 or less; Si: 0.1qb or less.
JP13531583A 1983-07-25 1983-07-25 Corrosion-resistant ni alloy having superior resistance to stress corrosion cracking Pending JPS6026638A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13531583A JPS6026638A (en) 1983-07-25 1983-07-25 Corrosion-resistant ni alloy having superior resistance to stress corrosion cracking
US07/135,958 US4861550A (en) 1983-07-25 1988-03-14 Corrosion-resistant nickel-base alloy having high resistance to stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13531583A JPS6026638A (en) 1983-07-25 1983-07-25 Corrosion-resistant ni alloy having superior resistance to stress corrosion cracking

Publications (1)

Publication Number Publication Date
JPS6026638A true JPS6026638A (en) 1985-02-09

Family

ID=15148863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13531583A Pending JPS6026638A (en) 1983-07-25 1983-07-25 Corrosion-resistant ni alloy having superior resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JPS6026638A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103964A (en) * 1990-08-21 1992-04-06 Nippon Steel Corp Molding method and drying method for high temperature exothermic body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103964A (en) * 1990-08-21 1992-04-06 Nippon Steel Corp Molding method and drying method for high temperature exothermic body

Similar Documents

Publication Publication Date Title
US6860948B1 (en) Age-hardenable, corrosion resistant Ni—Cr—Mo alloys
JP2541995B2 (en) High strength Al alloy composite brazing sheet for Al heat exchanger structural member
CA1149646A (en) Austenitic stainless corrosion-resistant alloy
JPS61288041A (en) Ni-base alloy excellent in intergranular stress corrosion cracking resistance and pitting resistance
JPH0472013A (en) Manufacture of two phase stainless steel having excellent corrosion resistance to concentrated sulfuric acid
JPS6199660A (en) High strength welded steel pipe for line pipe
US4861550A (en) Corrosion-resistant nickel-base alloy having high resistance to stress corrosion cracking
JPS6026638A (en) Corrosion-resistant ni alloy having superior resistance to stress corrosion cracking
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JPH0210212B2 (en)
JPS6026637A (en) Corrosion-resistant ni alloy having superior resistance to stress corrosion cracking
JPS6026636A (en) Corrosion-resistant ni alloy having superior resistance to stress corrosion cracking
JPH0428837A (en) Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture
JPS58164749A (en) Composite al alloy material with superior pitting corrosion resistance
JPH07316699A (en) Corrosion-resistant nitride-dispersed nickel base alloy having high hardness and strength
JPH03104838A (en) Aluminum alloy sacrificial fin material for vapor phase brazing
JP2004027254A (en) Titanium alloy having excellent corrosion resistance and method of producing the same
JPS5864364A (en) Manufacture of ni-cr alloy with superior corrosion resistance
JPS62214163A (en) Manufacture of stress corrosion-resisting aluminum-magnesium alloy soft material
JP2801837B2 (en) Fe-Cr alloy with excellent corrosion resistance
JPS62170444A (en) Precipitation strengthening cast ni alloy having superior resistance to stress corrosion cracking
JPS583942A (en) Ni alloy with superior embrittlement resistance at intermediate temperature
JPS6353234A (en) Structural member having heat resistance and high strength
JPH083668A (en) Nickel-base alloy excellent in strength and corrosion resistance
JPS6047891B2 (en) Corrosion-resistant Ni-based alloy with excellent intermediate temperature brittleness resistance