JPS583942A - Ni alloy with superior embrittlement resistance at intermediate temperature - Google Patents

Ni alloy with superior embrittlement resistance at intermediate temperature

Info

Publication number
JPS583942A
JPS583942A JP10098181A JP10098181A JPS583942A JP S583942 A JPS583942 A JP S583942A JP 10098181 A JP10098181 A JP 10098181A JP 10098181 A JP10098181 A JP 10098181A JP S583942 A JPS583942 A JP S583942A
Authority
JP
Japan
Prior art keywords
alloy
resistance
less
component
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10098181A
Other languages
Japanese (ja)
Other versions
JPS6047890B2 (en
Inventor
Takeshi Yoshida
武司 吉田
Yoshio Takizawa
与司夫 滝沢
Ichiro Sekine
一郎 関根
Akira Mimura
三村 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP10098181A priority Critical patent/JPS6047890B2/en
Publication of JPS583942A publication Critical patent/JPS583942A/en
Publication of JPS6047890B2 publication Critical patent/JPS6047890B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To enhance the embrittlement resistance of an Ni-Mo alloy at intermediate temp. without deteriorating the resistance to hydrochloric acid by adding a very small smount of B to the alloy and restricting the contents of the inevitable impurities. CONSTITUTION:An Ni alloy with superior embrittlement resistance at intermediate temp. as well as high weldability and corrosion resistance is obtd. by providing a composition consisting of, by weight, 26-30% Mo, 0.01-2.0% Fe, 0.001-0.01% B and the balance Ni with inevitable impurities and by restricting the contents of Cr, Mn, Co, Si, C, P and S as the impurities to <=1.0% Cr, <=1.0% Mn, <=1.0% Co, <=0.1% Si, <=0.02% C, <=0.04% P and <=0.03% S. The Ni alloy does not cause annealing cracking when it passes through the temp. range of about 700-800 deg.C during annealing after cold working or welding.

Description

【発明の詳細な説明】 この発明は、冷間加工後または溶接施工後の焼鈍に際し
て、いわゆる焼鈍割れを起しにくい、耐中間温度脆性に
すぐれたN1基合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an N1-based alloy that is resistant to so-called annealing cracks and has excellent intermediate temperature embrittlement resistance during annealing after cold working or welding.

一般に、Ni−Mo系合金は、還元性の腐食雰囲気に最
適の耐食合金であり、非酸化性の酸、特に塩酸に対して
はすぐれた耐食性を有する合金として知られておシ、石
油化学関係の塔や槽、熱交換器。
In general, Ni-Mo alloys are corrosion-resistant alloys that are ideal for reducing corrosive atmospheres, and are known as alloys that have excellent corrosion resistance against non-oxidizing acids, especially hydrochloric acid. towers, tanks, and heat exchangers.

あるいは配管材料として広く使用されている合金の1つ
である。そして、これら装置部品は、曲げや伸管等の冷
間加工および溶接施工を組合せて作られるが、このよう
な加工によって発生した残留歪や残留応力は、その加工
後あるいは中間加工工程において焼鈍を施すことによシ
除去され、その後さらに加工されるかまたは最終製品と
して使用に供されるのが普通であった。しかしながら、
この焼鈍は、通常、1000〜1150℃の温度で数十
分間性なわれるものであるが、この温度に前記合金部品
が昇温される途中、’700〜800℃の温度範囲を通
過するときに、著しい脆化(中間温度脆性)を生じ、こ
のため、高い引張り残留応力の作用の下に割れを発生す
ることが知られていた。
Or it is one of the alloys widely used as piping materials. These equipment parts are made by a combination of cold working such as bending and pipe drawing, and welding, but the residual strain and residual stress generated by such processing can be removed by annealing after the processing or during intermediate processing. It has typically been removed by application and then either further processed or used as a final product. however,
This annealing is normally carried out at a temperature of 1000 to 1150°C for several tens of minutes, but when the alloy part passes through a temperature range of 700 to 800°C while being heated to this temperature, It was known that the material undergoes significant embrittlement (intermediate temperature embrittlement) and therefore cracks under the action of high tensile residual stresses.

この焼鈍割れは、この合金のもつ1700〜800℃に
おける粒界の結合力の低下と、ちょうどこの温度域[N
o5eをもつ金属間化合物Nj、4Moの析出により、
結晶粒内強度が高くなって硬さが高くなり、伸びが著し
く低下する作用と、冷間加工時または溶接施工時の高い
引張り残留応力との相互作用とによって生ずることから
、従来、このような合金の焼鈍脆化割れの発生を防止す
る手段として、つぎに挙げるような方法が検討されてい
た。
This annealing cracking is caused by a decrease in the bonding strength of the grain boundaries of this alloy at 1700-800°C, and also by a decrease in the bonding strength of the grain boundaries in this temperature range [N
Due to the precipitation of intermetallic compound Nj, 4Mo with o5e,
Traditionally, this type of stress is caused by the interaction between the effects of increased intracrystalline strength, increased hardness, and significantly reduced elongation, and high tensile residual stress during cold working or welding. The following methods have been considered as means for preventing the occurrence of annealing embrittlement cracking in alloys.

(a)  Ni−Mo系合金のMo含有量の低減により
、金属間化合物Ni4Moの析出を抑制し、700〜8
00℃の温度範囲における硬さを低く抑えることによっ
て、結晶粒界への応力集中を緩和する方法。
(a) By reducing the Mo content of the Ni-Mo alloy, the precipitation of the intermetallic compound Ni4Mo is suppressed, and the
A method of alleviating stress concentration at grain boundaries by keeping hardness low in the temperature range of 00°C.

(b)  金属間化合物N j、 4 M oの析出に
は、ある程度の時間が必要であることから、昇温速度を
非常に早くして脆性温度領域を急速に通過させることに
よって、Ni4Moの析出が起る前に残留応力を除去し
てしまう方法。
(b) Since a certain amount of time is required for the precipitation of the intermetallic compounds Nj, 4Mo, the precipitation of Ni4Mo can be achieved by increasing the heating rate very quickly and rapidly passing through the brittle temperature region. A method to remove residual stress before it occurs.

(C)  冷間加工時または溶接施工時に残留応力を残
さないようにするか、あるいは圧縮残留応力のみとなる
ようにする方法。
(C) A method in which no residual stress remains during cold working or welding, or only compressive residual stress remains.

しかし、Mo含有量を低減させる前記(a)に示す方法
では、N i、 −Mo系合金のすぐれた耐塩酸性を損
うことなく焼鈍脆化割れの発生を防止することが不可能
であり、また前記(b)に示す方法は、対象製品が大き
くなると、工業上その実施が非常に困難となり、さらに
、前記(C)に示す方法では、現実の加工製品において
、あらゆる部位の残留応力をすべて予知することが困難
であシ、これを測定する手段も限られているので、冷間
加工時や溶接施工時に引張り残留応力を残さないような
加工方法を開発することが非常に難しいという理由から
、すべての製品に適用することができないという問題点
があった。
However, with the method shown in (a) above for reducing the Mo content, it is impossible to prevent the occurrence of annealing embrittlement cracking without impairing the excellent hydrochloric acid resistance of the Ni, -Mo alloy. In addition, the method shown in (b) above becomes extremely difficult to implement industrially when the target product becomes large. Furthermore, the method shown in (C) above eliminates all residual stress in all parts of the actual processed product. This is because it is difficult to predict and there are limited means to measure it, so it is extremely difficult to develop a processing method that does not leave tensile residual stress during cold processing or welding. However, there was a problem in that it could not be applied to all products.

本発明者等は、上述のような観点から、高い引張り残留
応力を有した冷間加工部品または溶接施工部品を、ゆっ
くりとした昇温速度で昇温しで1000℃以上の温度で
焼鈍した場合においても焼鈍割れの発生が起ることのな
い、耐中間温度脆性にすぐれ、かつ耐食性の良好な合金
を得べく、特に、すぐれた耐塩酸性を有するNi−Mo
系合金を基本として、その特性を失うことなく耐中間温
度脆性を向上させるべく研究を重ねた結果、N1−M。
From the above-mentioned viewpoint, the present inventors have found that when cold-worked parts or welded parts with high tensile residual stress are annealed at a temperature of 1000°C or higher by heating at a slow heating rate. In order to obtain an alloy with excellent intermediate temperature brittleness resistance and corrosion resistance that does not cause annealing cracking even in
N1-M was developed as a result of repeated research to improve the resistance to intermediate temperature embrittlement without losing its properties, based on alloys based on the N1-M series.

系合金に微量のBを含有させると共に、不可避不純物の
含有量を限定すると、′200〜800℃における結晶
粒界の結合力が強化され、割れの発生が抑制されるとい
う知見を得るに至ったのである。
We have found that by including a small amount of B in the alloy and limiting the content of unavoidable impurities, the bonding strength of grain boundaries at 200 to 800°C is strengthened and the occurrence of cracks is suppressed. It is.

したがって、この発明は上記知見にもとづいてなされた
ものであって、非酸化性の酸に対してすぐれた耐食性を
有するNi基合金を、 Mo:26〜30%(以下チは重量%とする)、Fe:
 o、o l 〜2.0%、 B:o、oo1〜0.01%、 N〕および不可避不純物:残シ、  5 − で構成するとともに、不可避不純物としてのCr。
Therefore, this invention has been made based on the above knowledge, and uses a Ni-based alloy having excellent corrosion resistance against non-oxidizing acids, Mo: 26 to 30% (hereinafter, ``chi'' is % by weight). , Fe:
o, ol ~ 2.0%, B: o, oo1 ~ 0.01%, N] and inevitable impurities: remainder, 5 - and Cr as an inevitable impurity.

Mn、 Co、 Si、 C、P 、およびSの含有量
をそれぞれ、 cr:1.0%以下、 14n:1.0%以下、 CO:1.0%以下、 si:0.1%以下、 C:0.02%以下、 p:o、04%以下、 S : 0.03%以下、 として、すぐれた耐中間温度脆性を付与したことに特徴
を有するものである。
The contents of Mn, Co, Si, C, P, and S are as follows: cr: 1.0% or less, 14n: 1.0% or less, CO: 1.0% or less, si: 0.1% or less, C: 0.02% or less, p: o: 0.04% or less, S: 0.03% or less, and is characterized by providing excellent intermediate temperature brittleness resistance.

ついで、この発明のN1基合金において、Mo + F
e+B成分の成分組成範囲を上述のように限定し、Cr
Next, in the N1-based alloy of this invention, Mo + F
The composition range of the e+B component is limited as described above, and Cr
.

Mn、 Co、 Si、  C、P 、およびSの不可
避不純物量を上述のように制限した理由を説明する。
The reason why the amounts of unavoidable impurities of Mn, Co, Si, C, P, and S are limited as described above will be explained.

(a)  M。(a) M.

Mo成分には、基金属たるN1中に固溶して、合金の耐
食性、特に耐塩酸性を向上させる作用があり、非酸化性
の酸に対する耐食性にすぐれたN1基合金 6− を構成するために不可欠の元素であるが、その含有量が
26%未満では前記作用に所望の効果が得られず、一方
30%を越えて含有させると、合金の熱間加工性および
常温での機械的性質を低下させるようになることから、
その含有量を26〜30チと限定した。
The Mo component dissolves in N1, which is the base metal, and has the effect of improving the corrosion resistance of the alloy, especially hydrochloric acid resistance. Although it is an essential element, if its content is less than 26%, the desired effect cannot be obtained in the above action, while if it is contained in more than 30%, the hot workability and mechanical properties of the alloy at room temperature are affected. Because it starts to lower
Its content was limited to 26 to 30 inches.

(1))  Fe Fe成分には、合金の熱間加工性および常温での機械的
性質を向上させる作用があるが、その含有、量が0.0
1%未満では前記作用に所望の効果が得られず、特に熱
間加工性に著しく劣る合金しか得ることができ々いが、
一方2.○チを越えて含有させると、合金の耐食性を低
下させるように々ることがら、その含有量を0.01〜
2.0%と限定した。
(1)) Fe The Fe component has the effect of improving the hot workability of the alloy and the mechanical properties at room temperature, but if its content or amount is 0.0
If it is less than 1%, the desired effect cannot be obtained in the above-mentioned action, and in particular, only an alloy with extremely poor hot workability can be obtained.
On the other hand 2. ○Containing more than
It was limited to 2.0%.

(C)  B B成分は、合金の結晶粒二界に偏析して、該合金の結晶
粒界を強化し、粒界割れの発生および伝播を阻止して、
耐焼鈍割れ性を高める作用を有するものであるが、その
含有量が0.001%未満では前記作用に所望の効果が
得られず、一方0.01%を越えて含有させると結晶粒
界の耐食性が劣化するようになるうえ、溶接性にも悪影
響を及ばずようになることから、その含有量をO,OO
1〜0.01%と限定した。
(C) B The B component segregates at the grain boundaries of the alloy, strengthens the grain boundaries of the alloy, and prevents the occurrence and propagation of intergranular cracks.
It has the effect of increasing annealing cracking resistance, but if its content is less than 0.001%, the desired effect cannot be obtained, while if it is contained in excess of 0.01%, it may cause formation of grain boundaries. Since corrosion resistance will deteriorate and weldability will not be adversely affected, the content should be reduced to O, OO.
It was limited to 1 to 0.01%.

(d)C C成分は、溶接熱影響部において、粒界にMOの炭化物
を形成し、この部分の粒界の耐食性を劣化させて粒界腐
食を発生させる有害々元素であシ、その含有量が0.0
2%を越えるとその傾向が顕著になることから、その含
有量を0.02%以下と限定した。しかし、十分な耐食
性を確保するためには、Cの含有量を0.01%以下と
するのが望ましいことである。
(d) C The C component is a harmful element that forms carbides of MO at the grain boundaries in the welding heat affected zone, deteriorating the corrosion resistance of the grain boundaries in this area and causing intergranular corrosion. amount is 0.0
Since this tendency becomes noticeable when it exceeds 2%, the content was limited to 0.02% or less. However, in order to ensure sufficient corrosion resistance, it is desirable that the C content be 0.01% or less.

(e)  Cr、 Mn、 Co、 Si、 P、およ
びS通常、Ni−Mo系合金には不可避の不純物として
、Cの他に、Cr、 Mn、 Co、 Sj 、  P
 、およびSなどが含有されているが、これらの不純物
は、合金の耐食性の低下、延性の低下、溶接性および加
工性の劣化などの原因となるものであるが、その含有量
が、Cr 、 1vln 、 およびcoについては1
%以下、slについては0.1%以下、Pについては0
.04%以下Sについては0.03%以下であれば実用
上の障害とならないことから、その含有量の許容範囲を
前記のように限定した。
(e) Cr, Mn, Co, Si, P, and S In addition to C, Cr, Mn, Co, Sj, and P are usually unavoidable impurities in Ni-Mo alloys.
These impurities cause reductions in the corrosion resistance, ductility, and weldability and workability of the alloy; 1vln, and 1 for co
% or less, 0.1% or less for sl, 0 for P
.. 0.04% or less S does not pose a practical problem if it is 0.03% or less, so the permissible range of its content is limited as described above.

つぎに、この発明のNi基合金を実施例により比較例と
対比しながら説明する。
Next, the Ni-based alloy of the present invention will be explained using examples and comparing with comparative examples.

実施例 l まず、第1表に示す通シの化学成分組成の合金を溶製し
、Ni合金等で通常行なっている方法で熱間鍛造および
熱゛間圧延し、焼なまし状態の平板試料を作製した。々
お、試料番号1〜3のものはB成分の所定量を含有した
この発明合金であり、試料番号4のものはB成分を積極
的に添加しない比較合金、試料番号5のものは0.01
 %を越えてB成分を含有せしめた比較合金を示すもの
である。
Example 1 First, an alloy having the chemical composition shown in Table 1 was melted, hot-forged and hot-rolled using the methods normally used for Ni alloys, etc., and an annealed flat plate sample was prepared. was created. Sample numbers 1 to 3 are alloys of this invention containing a predetermined amount of component B, sample number 4 is a comparative alloy in which component B is not actively added, and sample number 5 is a comparative alloy containing 0. 01
This shows a comparative alloy containing B component exceeding %.

これらの5種類の試料について、まず、高温引張シ試験
を行なった。高温引張り試験は、試験片を5分以内に所
定の温度に昇温した後、この温度で20分間保持し、引
続いて引張速度1117H/minで引張り試験を行な
い、その時の試料の伸び(%)を測 9一 定するものである。この試験結果を第1表に併せて示し
た。第1表に示した高温引張り試験結果からは、B成分
を積極的に添加した本発明合金1〜3および比較合金5
は、B成分を添加しない比較合金4に比して、′700
℃および’i’50℃における伸びが著しく向上してお
り、B成分の含有にょシ結晶粒界が強化されるというこ
とが明らかである。
First, a high temperature tensile test was conducted on these five types of samples. In the high-temperature tensile test, the specimen was heated to a predetermined temperature within 5 minutes, held at this temperature for 20 minutes, and then subjected to a tensile test at a tensile rate of 1117 H/min. ) is constant. The test results are also shown in Table 1. From the high temperature tensile test results shown in Table 1, the present invention alloys 1 to 3, in which the B component was actively added, and the comparative alloy 5
is '700 compared to comparative alloy 4 which does not contain B component.
It is clear that the elongation at 50° C. and 50° C. is significantly improved, and the grain boundaries are strengthened when the B component is contained.

つぎに、B成分の含有による溶接性および20%HC1
沸騰溶液中の耐食性に対する影響を調べた。溶接性の試
験は、トランスパレストレン試験によって行なった。こ
の試験方法について説明すると、まず、曲げブロック上
に板状の試験片の片側を固定し、試験片の表面上に直流
正極性の’I’IGによりピードオンプレート溶接を行
ない、TIGのトーチが試験片の中央部に移動したとき
、曲げブロックに沿って試験片を瞬間的に曲げるもので
あり、このとき、溶接方向と曲げ歪み方向とは互に直角
になるようにして、試験片表面ビード部に所定の曲げ歪
を付与するようにする。そして、こ10− の際に、ビード中央部に発生する割れ長さによシ、溶接
性を評価するのである。
Next, the weldability due to the inclusion of B component and 20% HC1
The effect on corrosion resistance in boiling solution was investigated. The weldability test was carried out using a transparestrene test. To explain this test method, first, one side of a plate-shaped test piece is fixed on a bending block, and peak-on-plate welding is performed on the surface of the test piece using DC positive polarity 'I' IG. When moving to the center of the test piece, the test piece is momentarily bent along the bending block. At this time, the welding direction and bending strain direction are perpendicular to each other, and the bead on the test piece surface is A predetermined bending strain is applied to the part. At this time, the weldability is evaluated based on the length of the crack that occurs at the center of the bead.

このようなトランスパレストレン試験によって得られた
、歪量と最大割れ長さとの関係を表わす線図を第1図に
示した。
A diagram showing the relationship between the amount of strain and the maximum crack length obtained by such a transpare strain test is shown in FIG.

第1図に示した結果からは、B成分含有の本発明合金1
〜3と、B成分を積極的に添加しなかった比較合金4と
の最大割れ長さくこれが長い程溶接性が悪い)K差が無
いが、B成分の含有量が、0.01%を越えた比較合金
5では、最大割れ長さが長くなっており、このことから
も、過剰のB成分の添加が溶接性を劣化させることが確
認された。
From the results shown in FIG. 1, the alloy 1 of the present invention containing component B
There is no difference in the maximum crack length (the longer this is, the worse the weldability is) between alloys 3 and 4, in which the B component was not actively added, but the content of the B component exceeds 0.01%. In Comparative Alloy 5, the maximum crack length was longer, and this also confirmed that addition of excessive B component deteriorated weldability.

さらに、通常の腐食に対する耐食性試験も実施したが、
これは20%HC1の沸騰溶液中に試験片を3週間保持
することによって実施した。この結果は第1表に示した
とおシであった。第1表に示した結果は、それぞれ3個
の試料に対して実施した腐食試験結果の平均値を示した
ものであるが、この結果からは、B成分の所定量を含有
した本発明合金1〜3と、B成分を積極的に添加してい
な12− い比較合金4とでは腐食深さに差がみられず、また、い
ずれの合金も粒界腐食を起していないが、B成分含有量
が0.01%を越えている比較合金5では、腐食深さが
若干大きくなるうえ、粒界腐食を起すことが確認された
Furthermore, we also conducted corrosion resistance tests against normal corrosion.
This was done by keeping the specimens in a boiling solution of 20% HCl for 3 weeks. The results were as shown in Table 1. The results shown in Table 1 are the average values of the corrosion test results conducted on three samples. There is no difference in the corrosion depth between alloys 12-3 and comparative alloy 4, to which the B component is not actively added, and neither alloy causes intergranular corrosion, but the B component In Comparative Alloy 5, in which the content exceeds 0.01%, it was confirmed that the corrosion depth was slightly larger and intergranular corrosion occurred.

実施例 2 実施例1で用いた本発明合金1〜3および比較合金4,
5の平板を用いて、上向きノンフィラー自動TIG溶接
機にてパイプを作った。このようにして得られた外径:
2’i’、2ifiφ×肉厚+2.2mmの寸法のパイ
プを空引きして、2′7.0mmφ×22mmの寸法の
パイプとし、このパイプを、電気炉にて大気中で560
℃から1066℃まで2時間30分で昇温し、1066
℃で炉より取出して空冷することによって焼鈍を行なっ
た。なお、このとき、700℃から750℃までの間の
昇温速度を33℃/ mmとした。焼鈍後のパイプにつ
いて割れの有無を調べるためにカラーチェックを行なっ
た。この結果、B成分を積極的に添加含有せしめた本発
明合金1〜3と比較合金5を原材料とした13− 溶接パイプには割れの発生が認められなかったのに対し
て、B成分の積極添加のない比較合金4を原材料とした
溶接パイプには割れの発生が認められた。
Example 2 Invention alloys 1 to 3 used in Example 1 and comparative alloy 4,
A pipe was made using the flat plate No. 5 using an upward non-filler automatic TIG welding machine. Outer diameter thus obtained:
A pipe with dimensions of 2'i', 2ifiφ x wall thickness + 2.2mm is drawn dry to make a pipe with dimensions of 2'7.0mmφ x 22mm, and this pipe is heated in an electric furnace in the atmosphere for 560 minutes.
℃ to 1066℃ in 2 hours and 30 minutes, 1066℃
Annealing was performed by taking the sample out of the furnace at ℃ and cooling it in air. Note that at this time, the temperature increase rate from 700°C to 750°C was 33°C/mm. A color check was performed on the annealed pipe to check for cracks. As a result, no cracking was observed in the 13-welded pipes made of Inventive Alloys 1 to 3 and Comparative Alloy 5, in which the B component was actively added. Cracks were observed in welded pipes made from Comparative Alloy 4 with no additives.

実施例1および2によって得られた結果からも、この発
明の範囲でB成分を含有したNi−Mo系合金は、良好
な溶接性および耐食性を有しており、しかもすぐれた耐
中間温度脆性を併せ持つものであることが確認された。
The results obtained in Examples 1 and 2 also show that the Ni-Mo alloy containing the B component within the scope of the present invention has good weldability and corrosion resistance, and has excellent intermediate temperature embrittlement resistance. It was confirmed that they have both.

上述のように、この発明の1h基合金は、従来のNj 
−Mo系合金と同様のすぐれた耐食性と溶接性を有する
とともに、中間温度脆性に対しては、従来のNj、−M
o系合金にない高い抵抗性を有しているので、冷間加工
後または溶接施工後の焼鈍に際しては、残留応力につい
て何ら考慮することなく、すなわち、仮に高い引張シ残
留応力状態にあっても、これを低減したり、圧縮残留応
力に変えたりすることなく、そのままの状態で、昇温速
度も特に速める必要も々く、通常の焼鈍炉に於て焼鈍す
るだけで、割れ等の存在しない健全な高耐食性部品とす
ることができるなど、工業上有用な特性をもつものであ
る。
As mentioned above, the 1h-based alloy of the present invention has a conventional Nj
-It has excellent corrosion resistance and weldability similar to Mo-based alloys, and has better resistance to intermediate temperature embrittlement than conventional Nj, -M alloys.
Since it has high resistance not found in o-based alloys, it can be annealed after cold working or welding without any consideration of residual stress, that is, even if it is in a high tensile residual stress state. , without reducing this stress or converting it into compressive residual stress, it is often necessary to particularly increase the temperature increase rate, and there is no cracking etc. by simply annealing it in a normal annealing furnace. It has industrially useful properties, such as being able to produce healthy, highly corrosion-resistant parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は種々の化学成分組成の合金の歪量と最大割れ長
さとの関係を示した線図である。 出願人  三菱金属株式会社 代理人  富  1) 和  夫
FIG. 1 is a diagram showing the relationship between the amount of strain and the maximum crack length for alloys with various chemical compositions. Applicant Mitsubishi Metals Co., Ltd. Agent Tomi 1) Kazuo

Claims (1)

【特許請求の範囲】 Mo: 26〜30%、 Fe : 0.01〜2.0%、 B:0.001〜0.01%、 N1および不可避不純物:残り、 から成るとともに、不可避不純物としてのCr、Mn。 Co、 Si、  C,P、およびSの含有量をそれぞ
れ、Cr:1.0%以下、 Mll:1.0%以下、 Co: 1.0%以下、 3i:0.1%以下、 C: 0.02%以下、 P:0.04%以下、 S: 0.03%以下、 (以上重量%)としたことを特徴とする耐中間温度脆性
にすぐれたN1基合金。
[Claims] Mo: 26 to 30%, Fe: 0.01 to 2.0%, B: 0.001 to 0.01%, N1 and unavoidable impurities: the remainder; Cr, Mn. The contents of Co, Si, C, P, and S are as follows: Cr: 1.0% or less, Mll: 1.0% or less, Co: 1.0% or less, 3i: 0.1% or less, C: 0.02% or less, P: 0.04% or less, S: 0.03% or less (weight%).
JP10098181A 1981-06-29 1981-06-29 Ni-based alloy with excellent intermediate temperature brittleness resistance Expired JPS6047890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10098181A JPS6047890B2 (en) 1981-06-29 1981-06-29 Ni-based alloy with excellent intermediate temperature brittleness resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10098181A JPS6047890B2 (en) 1981-06-29 1981-06-29 Ni-based alloy with excellent intermediate temperature brittleness resistance

Publications (2)

Publication Number Publication Date
JPS583942A true JPS583942A (en) 1983-01-10
JPS6047890B2 JPS6047890B2 (en) 1985-10-24

Family

ID=14288508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10098181A Expired JPS6047890B2 (en) 1981-06-29 1981-06-29 Ni-based alloy with excellent intermediate temperature brittleness resistance

Country Status (1)

Country Link
JP (1) JPS6047890B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040742U (en) * 1983-08-29 1985-03-22 光洋機械産業株式会社 steel scaffolding board
JPH04185950A (en) * 1990-11-19 1992-07-02 Yamada Dobby Co Ltd Feed adjustment device for press machine
WO1993018194A1 (en) * 1992-03-02 1993-09-16 Haynes International, Inc Nickel-molybdenum alloys

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040742U (en) * 1983-08-29 1985-03-22 光洋機械産業株式会社 steel scaffolding board
JPH04185950A (en) * 1990-11-19 1992-07-02 Yamada Dobby Co Ltd Feed adjustment device for press machine
WO1993018194A1 (en) * 1992-03-02 1993-09-16 Haynes International, Inc Nickel-molybdenum alloys
GB2278614A (en) * 1992-03-02 1994-12-07 Haynes Int Inc Nickel-molybdenum alloys
GB2278614B (en) * 1992-03-02 1995-09-06 Haynes Int Inc Nickel-molybdenum alloys
US6503345B1 (en) 1992-03-02 2003-01-07 Haynes International, Inc. Nickel-molybdenum alloys

Also Published As

Publication number Publication date
JPS6047890B2 (en) 1985-10-24

Similar Documents

Publication Publication Date Title
US20160097112A1 (en) Ni-Fe-Cr-Mo Alloy
US3813239A (en) Corrosion-resistant nickel-iron alloy
CA1227109A (en) Method for producing a weldable austenitic stainless steel in heavy sections
JPS61288041A (en) Ni-base alloy excellent in intergranular stress corrosion cracking resistance and pitting resistance
JP2003527485A (en) Corrosion resistant austenitic alloy
US4033767A (en) Ductile corrosion resistant alloy
JPH01275738A (en) Austenite stainless steel
JP3461350B2 (en) Nickel-molybdenum alloy
JPS583942A (en) Ni alloy with superior embrittlement resistance at intermediate temperature
US4808371A (en) Exterior protective member made of austenitic stainless steel for a sheathing heater element
US4861550A (en) Corrosion-resistant nickel-base alloy having high resistance to stress corrosion cracking
JP3533548B2 (en) Ferritic stainless steel pipe for heat resistance with excellent workability
JPS60131958A (en) Production of precipitation strengthening type ni-base alloy
US4050928A (en) Corrosion-resistant matrix-strengthened alloy
JP2014046358A (en) Ferritic stainless steel welding wire having superior weldability, high heat resistance and high corrosion resistance
JPH0754081A (en) High corrosion-resistant titanium alloy excellent in cold processibility and weldability
JP3879365B2 (en) Manufacturing method of steel material with excellent fatigue crack growth resistance
JPH0694579B2 (en) Corrosion resistant Ni-Cr alloy with excellent bending workability
JP2020164919A (en) Austenitic heat-resistant steel
JP2936968B2 (en) High strength titanium alloy with excellent cold workability and weldability
JPS6047891B2 (en) Corrosion-resistant Ni-based alloy with excellent intermediate temperature brittleness resistance
JPS61130461A (en) Nitrogen-containing stainless steel of two phase system having superior hot workability
JP3046932B2 (en) Corrosion-resistant copper alloy with excellent hot ductility and resistance to annealing brittleness
JP2002194466A (en) Nickel based alloy clad steel and its production method
JPH05255788A (en) Hydrogen induced embrittlement resistant high ni-base alloy and its manufacture