JPS649391B2 - - Google Patents

Info

Publication number
JPS649391B2
JPS649391B2 JP18641983A JP18641983A JPS649391B2 JP S649391 B2 JPS649391 B2 JP S649391B2 JP 18641983 A JP18641983 A JP 18641983A JP 18641983 A JP18641983 A JP 18641983A JP S649391 B2 JPS649391 B2 JP S649391B2
Authority
JP
Japan
Prior art keywords
resistance
solution treatment
less
scc
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18641983A
Other languages
Japanese (ja)
Other versions
JPS6077918A (en
Inventor
Junichi Sakai
Itsuki Matsushima
Masaharu Pponda
Yoshiki Kamemura
Yoshikazu Ishizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP18641983A priority Critical patent/JPS6077918A/en
Publication of JPS6077918A publication Critical patent/JPS6077918A/en
Publication of JPS649391B2 publication Critical patent/JPS649391B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐食性合金鋼の製造方法に関する。 金属材料が使われる腐食環境は、近年その苛酷
度が増す傾向にあり、例えば、化学プラント等で
は高温、高圧化、塩化物の高濃度化が進み、また
油井、ガス井や地熱井等でもその深井戸化に伴い
井戸底部での高温、高圧化、塩化物の高濃度化が
進むとともに、硫化水素、炭酸ガス等も高濃度化
しつつある。このような腐食環境条件の苛酷化に
対応し、そこで使用される金属材料には耐孔食性
や耐応力腐食割れ性(以下「耐SCC性」と称す)
が要求され、このため耐孔食性のためにクロム、
モリブデン等を、また耐SCC性のためにニツケル
等をそれぞれ添加した材料が使用されるようにな
りつつあり、従来の9%クロム鋼、13%クロム
鋼、18%クロム鋼或いはSUS304、316クラスの
鉄鋼材料等から、例えばインコロイ、ハステロイ
等で知られる高合金鋼の使用も検討されつつあ
る。上記したように耐食合金鋼は耐SCC性向上の
ためにニツケルの添加量を増し、また耐孔食性向
上のためにクロム、モリブデンを増す方向にある
が、各々の合金元素の添加量は、個別元素の固別
現象への効果を基に定められており、耐SCC性と
耐孔食性向上のためにニツケル、クロム、モリブ
デン等の合金元素の相互最適バランスが定量的に
考慮されている材料は未だ知られていない。さら
に、実際の製品製造において最も重要な要素の1
つである熱履歴、特に溶体化処理条件と耐SCC
性、耐孔食性との相互使用についても十分な解明
がなされていないのが現状である。一方、高ニツ
ケル合金鋼は冷間加工によつて水素脆性を生じる
傾向があり、例えば十分な耐SCC性及び耐孔食性
を示すハステロイは、この水素脆性を起してしま
う。厳しい腐食環境で使用する高合金鋼は、耐孔
食性及び耐SCC性とともに耐水素脆性が必要とさ
れるが、従来、このような総合的な性能を有する
優れた合金鋼は知られていない。 本発明はこのような現状に鑑み創案されたもの
で、耐SCC性、耐孔食性及び耐水素脆性に対する
合金元素の相互作用及びそれらと溶体化(又は準
溶体化)処理条件との関係を解明し、従来の所謂
インコロイやハステロイに劣らない優れた耐SCC
性と耐孔食性を有するとともに、これに耐水素脆
性をも兼ね備えた耐食合金鋼を得ることに成功し
たものである。 即ち、本発明においては、C:0.03wt%以下、
Si:2wt%以下、Mn:2wt%以下、P:0.02wt%
以下、S:0.01wt%以下、Ni:30〜60wt%、
Cr:22〜35wt%、Mo:10wt%以下、Ti:0.5〜
3.0wt%、N:0.01wt%以下、さらにこれに加え
て2wt%以下のCu、0.1wt%以下のCa、1wt%以
下のNbのうちの1種又は2種以上を含有し、残
部鉄及び不可避不純物からなる組成であつて、 Δ1=Cr+1.5Mo−100C+30N で求められるΔ1値が25以上であり、且つ Δ2=Ni−〔(Cr+1.5Mo−20)2 /12−30C−10N〕 で求められるΔ2値が15以上である組成を有する
合金鋼を、1000℃以上の温度範囲で溶体化又は準
溶体化処理するようにしたものである。 以下本発明の成分組成及び熱処理条件の限定理
由を詳細に説明する。 本発明の成分組成の限定理由は以下の通りであ
る。 Cは粒内型SCCの抑制に対して有効との説もあ
るが、C含有量が0.03wt%を超えると粒界型SCC
を起し易くなり、特にC固溶度が減少する高Ni
合金でそのおそれが大きくなる。また炭化物の析
出物は孔食の起点となり易いという問題があり、
このようなことからCはその上限が0.03wt%以下
に制限される。 Siは脱酸成分として必要であり、また耐SCC性
の向上に有効な元素であるが、2wt%を超えると
熱間加工性を劣化させ、したがつてその上限が
2wt%と定められる。 MnはSiと同様脱酸作用がある。このMnは耐
SCC性にはほとんど影響を与えないが、2wt%を
超えるとマンガン硫化物等の析出物が孔食の起点
となり易く、従つて、その上限が2wt%と定めら
れる。 不可避不純物としてのPはSCC感受性を高める
作用があるため極力低減させる必要があり、この
ためその上限が0.02wt%と定められる。 不可避不純物としてのSには熱間加工性を劣化
させる作用があり、マンガン硫化物等を作つて耐
孔食性を悪化させるので、その上限が0.01wt%と
定められる。 Niは耐SCC性を向上させるのに有効な元素で
あり、30wt%以上の含有量でその効果が顕著に
なる。一方、61wt%を超えて含有せしめてもそ
れ以上の効果は期待できず、却つて経済性を損う
ことになる。 Crは高合金鋼の耐食性、とくに不働態皮膜の
強化による耐食性向上に有効な元素である。十分
な耐孔食性を得るためには22wt%以上の含有量
が必要であるが、その含有量が35wt%を超える
と熱間加工性の劣化が避け難く、このため、その
含有量は22〜35wt%と定められる。 Moは不働態皮膜の強化に対してCrの1.5倍程度
の効果があるが、その含有量が10wt%を超える
と熱間工程時に耐食性を劣化させるσ相を容易に
生成するようになり、このためその上限が10wt
%と定められる。 Nは耐孔食性を向上させるが、本発明鋼では窒
素成分がなくても十分な耐孔食性がある。逆にN
は0.01wt%を超えると耐SCC性に悪影響を与える
ものであり、このためその上限が0.01wt%と定め
られる。 Tiは熱間加工性を向上させる作用と、Cを固
定して結果的に粒界SCCを抑制する効果をもつと
ともに、高Ni合金の水素脆性を効果的に抑制す
る効果があり、このため0.5wt%以上含有せしめ
る必要がある。しかし3wt%を超えると高温割れ
を生じたり金属組織が不安定になり、このためそ
の上限が3wt%に定められる。第1図は水素割れ
に及ぼすNiとTiの含有量の影響を調べた結果を
示すもので、水素割れ感受性は、冷間加工を加え
た試験片を25℃のH2Sを飽和した5%塩化ナトリ
ウム、0.5%酢酸に鉄と接触させながら浸漬し、
300時間経過後の割れの有無で判定したものであ
る。同図から明らかなように、水素割れの生じ易
い高Niの範囲においてもTiを0.5%以上含有せし
めることにより耐水素脆性が適切に得られている
ことが判る。 Cu、Nb、Caの各成分は、その1種又は2種以
上が含有せしめられる。これらの成分のうちCu
は材料の耐食性を向上させるのに役立つが、2wt
%を超えると熱間加工性の劣化を招き、このため
2wt%が上限と定められる。またNbとCaは熱間
加工性を向上させる作用があるとともに、Nbは
Cを固定して結果的に粒界SCCを抑制する効果を
もつ。各成分がこのような効果発揮するのに、
Caは0.1wt%以下、Nbは1wt%以下あれば十分で
あり、この上限を超えて含有せしめてもそれ以上
の効果は期待できない。従つてこれらはCaが
0.1wt%、Nbが1wt%を上限として含有せしめら
れる。 本発明では、以上のような成分元素の組成条件
に、さらに次のような条件、即ち、 Δ1=Cr+1.5Mo−100C+30N Δ2=Ni−〔(Cr+1.5Mo−20)2 /12−30C−10N〕 の各式で定義されるΔ1値及びΔ2値が、それぞれ
Δ125、Δ215を満足させるよう各成分値が調
整される必要がある。さらに本発明では、以上の
ような成分条件の合金鋼を溶製した後、熱間圧延
工程以降の工程で所謂溶体化処理又は準溶体化処
理が行われるが、この熱処理を1000℃以上の温度
域で行う必要がある。そして、本発明ではこのよ
うに組成条件を上記Δ1値及びΔ2値で規制しつつ、
溶体化処理(又は準溶体化処理)の処理温度を
1000℃以上とすることにより、優れた耐孔食性と
耐SCC性を得ることができるものである。なお、
上記準溶体化処理とは、完全とまではいかないま
でも組織中のカーバイトの溶解が進行し成分元素
の不均一が均一化される状態となるような処理を
指す。 第2図はΔ1値が耐孔食性に及ぼす影響を、950
℃以上での溶体化又は準溶体化処理温度との関係
で調べたもので、この場合の孔食感受性は、試験
片を50℃、10%塩化第二鉄溶液に浸漬し、孔食の
腐食量(2g/m2/h、<2g/m2/h)で判定し
たものである。また、第3図はΔ2値が耐SCC性
に及ぼす影響を、950℃以上での溶体化又は準溶
体化処理温度との関係で調べたもので、この場合
のSCC感受性は、試験片を154℃沸騰の塩化マグ
ネシウム溶液に浸漬し600時間経過後の割れの有
無で判定したものである。そして、これらの試験
結果によれば、まず第2図に示される耐孔食性に
ついては、Δ1<25の範囲では耐孔食性が悪く、
またΔ125の範囲でも熱処理温度が1000℃未満
では必ずしも好結果が得られない。また第3図に
示される耐SCC性については、Δ215の範囲に
おいて耐SCC性が優れ、熱処理温度が1000℃以上
でもSCC割れを生じていない。したがつて、これ
らを総合すると、本発明が目的とする耐孔食性及
び耐SCC性を確保するには、組成条件をΔ125、
Δ215とし且つ1000℃以上の温度で溶体化又は
溶体化処理する必要があることが判る。 上記した溶体化処理又は準溶体化処理は、熱間
加工以降の種々の段階で行うことができ例えば
熱間圧延−冷間圧延−溶体化処理又は準溶体化処
理、熱間圧延−溶体化処理又は準溶体化処理−
冷間圧延、等の各工程を採ることができる。また
溶体化処理(若しくは準溶体化処理)後、固溶C
を過飽和の状態から飽和状態にして組織の安定化
を図るための熱処理、所謂安定化処理を行うこと
ができ、この場合には、例えば熱間圧延−溶体
化処理−冷間圧延−安定化処理、熱間圧延−溶
体化処理−安定化処理−冷間圧延、熱間圧延−
冷間圧延−溶体化処理−冷間圧延−安定化処理、
等の各工程を採ることができる。ここで上記準溶
体化処理は、組織中のカーバイドの溶解をある程
度進行せしめ、これによつて成分元素の均一化
(ミクロ的な成分濃度の均一化を含む)が図られ
るようにした熱処理であることは前述した通りで
あり、このようにして得られる組織は溶体化処理
−安定化処理を経て均一化、安定化された組織に
近いものとなる。なお、上記した、で示すよ
うな工程では、溶体化処理と安定化処理の工程間
で冷間圧延が行われ、この冷間圧延によつて
NbC、TiC等の析出が促進されるため、より安定
化した組織を得ることができる。 〔実施例〕 第1表に本発明鋼(A−1〜A−15)及び比較
鋼(B−1〜B−7)の化学成分を示す。これら
はいずれも通常のステンレス鋼の製造ラインで製
造されたもので、熱間圧延−焼鈍−冷間圧延後、
950〜1100℃の温度範囲で10〜30分間加熱して急
冷する溶体化処理又は準溶体化処理を行つた。な
お、いくつかの条件では上記焼鈍工程に相当する
段階で溶体化処理又は準溶体化処理を行い、冷間
圧延後の熱処理を省略した。工程上における熱処
理の位置或いは当該熱処理における保持時間は結
果に影響を与えないので、それらの項目は省略し
た。各供試鋼の耐孔食性及び耐SCC性に関する試
験結果を第1表に併せて示した。
The present invention relates to a method for manufacturing corrosion-resistant alloy steel. The corrosive environments in which metal materials are used have tended to become more severe in recent years.For example, chemical plants are experiencing higher temperatures, higher pressures, and higher concentrations of chlorides, and oil, gas, and geothermal wells are also experiencing corrosion. With the deepening of wells, the temperature and pressure at the bottom of wells are increasing, and the concentration of chlorides is increasing, and the concentrations of hydrogen sulfide, carbon dioxide, etc. are also increasing. In response to these increasingly severe corrosive environmental conditions, the metal materials used therein have properties such as pitting corrosion resistance and stress corrosion cracking resistance (hereinafter referred to as "SCC resistance").
is required, and for this reason chromium is used for pitting resistance.
Materials to which molybdenum, etc. are added, and nickel, etc. for SCC resistance are being used. The use of high alloy steels known as Incoloy, Hastelloy, etc., is also being considered as a steel material. As mentioned above, there is a trend toward increasing the amount of nickel added to corrosion-resistant alloy steel to improve SCC resistance, and increasing chromium and molybdenum to improve pitting corrosion resistance, but the amount of each alloying element added varies individually. Materials are determined based on the effect of elements on solidification phenomena, and the mutual optimum balance of alloying elements such as nickel, chromium, and molybdenum is quantitatively considered in order to improve SCC resistance and pitting corrosion resistance. Not yet known. Furthermore, one of the most important elements in actual product manufacturing
Thermal history, especially solution treatment conditions and SCC resistance
At present, the interaction between corrosion resistance and pitting corrosion resistance has not been sufficiently elucidated. On the other hand, high nickel alloy steels tend to develop hydrogen embrittlement during cold working, and for example, Hastelloy, which exhibits sufficient SCC and pitting corrosion resistance, will develop hydrogen embrittlement. High alloy steel used in severe corrosive environments is required to have hydrogen embrittlement resistance as well as pitting corrosion resistance and SCC resistance, but to date, no alloy steel with excellent overall performance has been known. The present invention was created in view of the current situation, and aims to elucidate the interaction of alloying elements with respect to SCC resistance, pitting corrosion resistance, and hydrogen embrittlement resistance, and the relationship between these and solution treatment (or quasi-solution treatment) treatment conditions. However, it has excellent SCC resistance comparable to conventional so-called Incoloy and Hastelloy.
We have succeeded in producing a corrosion-resistant alloy steel that not only has high corrosion resistance and pitting corrosion resistance, but also has hydrogen embrittlement resistance. That is, in the present invention, C: 0.03wt% or less,
Si: 2wt% or less, Mn: 2wt% or less, P: 0.02wt%
Below, S: 0.01wt% or less, Ni: 30 to 60wt%,
Cr: 22~35wt%, Mo: 10wt% or less, Ti: 0.5~
3.0wt%, N: 0.01wt% or less, and in addition, contains one or more of the following: 2wt% or less of Cu, 0.1wt% or less of Ca, 1wt% or less of Nb, and the balance is iron and A composition consisting of unavoidable impurities, where the Δ 1 value determined by Δ 1 = Cr+1.5Mo−100C+30N is 25 or more, and Δ 2 =Ni−[(Cr+1.5Mo−20) 2 /12−30C−10N ] An alloy steel having a composition with a Δ 2 value of 15 or more is subjected to solution treatment or semi-solution treatment at a temperature range of 1000°C or more. The reasons for limiting the component composition and heat treatment conditions of the present invention will be explained in detail below. The reasons for limiting the component composition of the present invention are as follows. Some say that C is effective in suppressing intragranular SCC, but if the C content exceeds 0.03wt%, grain boundary SCC may occur.
High Ni content tends to occur, especially when C solid solubility decreases
This risk increases with alloys. There is also the problem that carbide precipitates can easily become a starting point for pitting corrosion.
For this reason, the upper limit of C is limited to 0.03 wt% or less. Si is necessary as a deoxidizing component and is an effective element for improving SCC resistance, but if it exceeds 2wt%, it deteriorates hot workability, and therefore its upper limit is
It is defined as 2wt%. Like Si, Mn has a deoxidizing effect. This Mn is
It has almost no effect on SCC properties, but if it exceeds 2wt%, precipitates such as manganese sulfide tend to become a starting point for pitting corrosion, so the upper limit is set at 2wt%. Since P as an unavoidable impurity has the effect of increasing SCC susceptibility, it must be reduced as much as possible, and therefore its upper limit is set at 0.02 wt%. S as an unavoidable impurity has the effect of deteriorating hot workability and creates manganese sulfide, etc., which deteriorates pitting corrosion resistance, so its upper limit is set at 0.01 wt%. Ni is an effective element for improving SCC resistance, and its effect becomes noticeable when the content is 30 wt% or more. On the other hand, even if the content exceeds 61 wt%, no further effect can be expected, and on the contrary, it will impair economic efficiency. Cr is an effective element for improving the corrosion resistance of high alloy steel, especially by strengthening the passive film. In order to obtain sufficient pitting corrosion resistance, a content of 22 wt% or more is required, but if the content exceeds 35 wt%, it is difficult to avoid deterioration of hot workability. It is determined to be 35wt%. Mo is about 1.5 times as effective as Cr in strengthening the passive film, but if its content exceeds 10wt%, it easily forms a σ phase that deteriorates corrosion resistance during hot processing. Therefore, the upper limit is 10wt
%. Although N improves pitting corrosion resistance, the steel of the present invention has sufficient pitting corrosion resistance even without a nitrogen component. On the contrary, N
If it exceeds 0.01wt%, it will have an adverse effect on SCC resistance, and therefore the upper limit is set at 0.01wt%. Ti has the effect of improving hot workability, fixing C and suppressing grain boundary SCC, and has the effect of effectively suppressing hydrogen embrittlement in high Ni alloys. It is necessary to contain more than wt%. However, if it exceeds 3wt%, hot cracking occurs and the metal structure becomes unstable, so the upper limit is set at 3wt%. Figure 1 shows the results of investigating the effects of Ni and Ti content on hydrogen cracking. Sodium chloride, 0.5% acetic acid in contact with iron,
Judgment was made based on the presence or absence of cracks after 300 hours. As is clear from the figure, even in the high Ni range where hydrogen cracking is likely to occur, hydrogen embrittlement resistance is appropriately obtained by containing 0.5% or more of Ti. One or more of Cu, Nb, and Ca components may be contained. Among these components, Cu
is helpful to improve the corrosion resistance of the material, but 2wt
If it exceeds %, it will lead to deterioration of hot workability.
The upper limit is set at 2wt%. In addition, Nb and Ca have the effect of improving hot workability, and Nb has the effect of fixing C and, as a result, suppressing grain boundary SCC. Although each ingredient exhibits such effects,
It is sufficient if Ca is 0.1 wt% or less and Nb is 1 wt% or less, and no further effect can be expected even if the content exceeds these upper limits. Therefore, these are Ca
0.1wt%, Nb can be contained up to 1wt%. In the present invention, in addition to the compositional conditions of the component elements as described above, the following conditions are further applied: Δ 1 =Cr+1.5Mo−100C+30N Δ2 =Ni−[(Cr+1.5Mo−20) 2 /12−30C −10N] It is necessary to adjust each component value so that the Δ 1 value and Δ 2 value defined by each equation satisfy Δ 1 25 and Δ 2 15, respectively. Furthermore, in the present invention, after the alloy steel having the above-mentioned composition conditions is melted, so-called solution treatment or quasi-solution treatment is performed in the steps after the hot rolling step. It is necessary to do this in the area. In the present invention, while regulating the composition conditions using the above Δ 1 value and Δ 2 value,
The processing temperature of solution treatment (or quasi-solution treatment)
By setting the temperature to 1000°C or higher, excellent pitting corrosion resistance and SCC resistance can be obtained. In addition,
The quasi-solution treatment described above refers to a treatment in which the dissolution of carbide in the structure progresses, although not completely, and the non-uniformity of the component elements becomes uniform. Figure 2 shows the influence of Δ1 value on pitting corrosion resistance at 950
The pitting corrosion susceptibility was investigated in relation to the solution or quasi-solution treatment temperature at 50°C or higher. (2g/m 2 /h, <2g/m 2 /h). In addition, Figure 3 shows the effect of Δ2 value on SCC resistance in relation to solution treatment or quasi-solution treatment temperature at 950°C or higher. It was immersed in a magnesium chloride solution boiling at 154°C and judged by the presence or absence of cracks after 600 hours. According to these test results, the pitting corrosion resistance shown in Figure 2 is poor in the range of Δ 1 <25;
Further, even in the range of Δ 1 25, good results are not necessarily obtained if the heat treatment temperature is less than 1000°C. Further, regarding the SCC resistance shown in FIG. 3, the SCC resistance is excellent in the range of Δ 2 15, and no SCC cracking occurs even when the heat treatment temperature is 1000° C. or higher. Therefore, taking all of these into account, in order to ensure the pitting corrosion resistance and SCC resistance that are the objectives of the present invention, the composition conditions should be set to Δ 1 25,
It can be seen that it is necessary to set Δ 2 15 and to perform solution treatment or solution treatment at a temperature of 1000° C. or higher. The solution treatment or quasi-solution treatment described above can be performed at various stages after hot working, such as hot rolling-cold rolling-solution treatment or quasi-solution treatment, hot rolling-solution treatment. or quasi-solution treatment-
Various processes such as cold rolling can be used. Also, after solution treatment (or quasi-solution treatment), solid solution C
A heat treatment, a so-called stabilization treatment, can be performed to stabilize the structure by changing it from a supersaturated state to a saturated state.In this case, for example, hot rolling - solution treatment - cold rolling - stabilization treatment can be performed. , hot rolling - solution treatment - stabilization treatment - cold rolling, hot rolling -
Cold rolling-solution treatment-cold rolling-stabilization treatment,
The following steps can be taken. Here, the quasi-solution treatment is a heat treatment that progresses the dissolution of carbide in the structure to a certain extent, thereby achieving uniformity of component elements (including uniformity of microscopic component concentration). This is as described above, and the structure obtained in this manner becomes similar to a homogenized and stabilized structure through solution treatment and stabilization treatment. In addition, in the process shown above, cold rolling is performed between the solution treatment and stabilization treatment, and this cold rolling
Since the precipitation of NbC, TiC, etc. is promoted, a more stable structure can be obtained. [Example] Table 1 shows the chemical components of the invention steels (A-1 to A-15) and comparative steels (B-1 to B-7). All of these were manufactured on a normal stainless steel production line, and after hot rolling, annealing, and cold rolling,
Solution treatment or quasi-solution treatment was performed by heating in a temperature range of 950 to 1100°C for 10 to 30 minutes and rapidly cooling. Note that under some conditions, solution treatment or quasi-solution treatment was performed at a stage corresponding to the above-mentioned annealing step, and heat treatment after cold rolling was omitted. Since the position of the heat treatment in the process or the holding time in the heat treatment do not affect the results, these items were omitted. Test results regarding the pitting corrosion resistance and SCC resistance of each sample steel are also shown in Table 1.

【表】【table】

【表】 *3 水素割れ試験結果:○割れなし、●割れ
同表からも明らかなように、本発明鋼はいずれ
も、耐孔食性、耐SCC性及び耐水素脆性の総てを
満足させる優れた性質を有しているのに対し、比
較鋼では、少くとも1つの特性について悪影響が
現われていることが判る。 以上述べたように本発明によれば、耐孔食性、
耐SCC性及び耐水素脆性に対する合金元素の相互
作用及びそれらと熱処理条件との関係を解明し、
それらを特定の範囲に選定することにより、優れ
た耐孔食性及び耐SCC性と耐水素脆性を備えた合
金鋼の製造を可能ならしめたものであつて、この
種合金鋼に関する工業的な効果の大きい発明であ
る。
[Table] *3 Hydrogen cracking test results: ○No cracking, ●Cracking As is clear from the table, all of the steels of the present invention are excellent in terms of pitting corrosion resistance, SCC resistance, and hydrogen embrittlement resistance. It can be seen that, in contrast to the comparative steel, at least one property was adversely affected. As described above, according to the present invention, pitting corrosion resistance,
Elucidating the interactions of alloying elements on SCC resistance and hydrogen embrittlement resistance and their relationship with heat treatment conditions,
By selecting them within a specific range, it has become possible to manufacture alloy steel with excellent pitting corrosion resistance, SCC resistance, and hydrogen embrittlement resistance, and the industrial effects associated with this type of alloy steel have been made possible. This is a great invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水素割れに及ぼすNiとTiの含有量の
影響を示すものである。第2図はΔ1値が耐孔食
性に及ぼす影響を熱処理温度との関係で示すもの
である。第3図はΔ2値が耐SCC性に及ぼす影響
を熱処理温度との関係で示すものである。
Figure 1 shows the influence of Ni and Ti contents on hydrogen cracking. FIG. 2 shows the influence of the Δ 1 value on pitting corrosion resistance in relation to the heat treatment temperature. FIG. 3 shows the influence of Δ 2 value on SCC resistance in relation to heat treatment temperature.

Claims (1)

【特許請求の範囲】 1 C:0.03wt%以下、Si:2wt%以下、Mn:
2wt%以下、P:0.02wt%以下、S:0.01wt%以
下、Ni:30〜60wt%、Cr:22〜35wt%、Mo:
10wt%以下、Ti:0.5〜3.0wt%、N:0.01wt%
以下、さらにこれらに加えて2wt%以下のCu、
0.1wt%以下のCa、1wt%以下のNbのうちの1種
又は2種以上を含有し、残部鉄及び不可避不純物
からなる組成であつて、 Δ1=Cr+1.5Mo−100C+30N で求められるΔ1値が25以上であり、且つ Δ2=Ni−〔(Cr+1.5Mo−20)2 /12−30C−10N〕 で求められるΔ2値が15以上である組成を有する
合金鋼を、1000℃以上の温度範囲で溶体化又は準
溶体化処理することを特徴とする耐食性合金鋼の
製造方法。
[Claims] 1 C: 0.03wt% or less, Si: 2wt% or less, Mn:
2wt% or less, P: 0.02wt% or less, S: 0.01wt% or less, Ni: 30 to 60wt%, Cr: 22 to 35wt%, Mo:
10wt% or less, Ti: 0.5-3.0wt%, N: 0.01wt%
Below, in addition to these, 2wt% or less of Cu,
A composition containing one or more of Ca of 0.1wt% or less and Nb of 1wt% or less, with the balance consisting of iron and unavoidable impurities, and Δ1 = Cr + 1.5Mo - 100C + 30N . Alloy steel having a composition with a Δ 2 value of 25 or more and a Δ 2 value of 15 or more obtained by Δ 2 = Ni−[(Cr+1.5Mo−20) 2 /12−30C−10N] at a temperature of 1000°C or more. A method for producing a corrosion-resistant alloy steel, the method comprising solution treatment or quasi-solution treatment in a temperature range of .
JP18641983A 1983-10-05 1983-10-05 Manufacture of corrosion resistant alloy steel Granted JPS6077918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18641983A JPS6077918A (en) 1983-10-05 1983-10-05 Manufacture of corrosion resistant alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18641983A JPS6077918A (en) 1983-10-05 1983-10-05 Manufacture of corrosion resistant alloy steel

Publications (2)

Publication Number Publication Date
JPS6077918A JPS6077918A (en) 1985-05-02
JPS649391B2 true JPS649391B2 (en) 1989-02-17

Family

ID=16188093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18641983A Granted JPS6077918A (en) 1983-10-05 1983-10-05 Manufacture of corrosion resistant alloy steel

Country Status (1)

Country Link
JP (1) JPS6077918A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100152A (en) * 1986-10-15 1988-05-02 Kubota Ltd Highly corrosion-resistant casting alloy
JPH01111839A (en) * 1987-10-26 1989-04-28 Nippon Steel Corp Austenitic alloy having high corrosion resistance in environment where hydrogen sulfide is present
JPH0635639B2 (en) * 1987-10-26 1994-05-11 新日本製鐵株式会社 Austenitic alloy with high pitting resistance in the presence of hydrogen sulfide
JPH02185943A (en) * 1989-01-11 1990-07-20 Nippon Steel Corp Highly corrosion resistant ti-containing alloy for oil well tube and line pipe excellent in hot workability
JPH03120342A (en) * 1989-09-30 1991-05-22 Kubota Corp Method for heat treating cast material
US5827377A (en) * 1996-10-31 1998-10-27 Inco Alloys International, Inc. Flexible alloy and components made therefrom
JP2010159438A (en) * 2009-01-06 2010-07-22 Nippon Yakin Kogyo Co Ltd High corrosion-resistant alloy excellent in grain-boundary corrosion resistance
JP2014040669A (en) * 2013-10-10 2014-03-06 Nippon Yakin Kogyo Co Ltd High corrosion-resistant alloy excellent in intergranular corrosion resistance
ES2865379T3 (en) * 2016-03-31 2021-10-15 Nippon Steel Corp NI-FE-CR alloy
JP7002197B2 (en) * 2017-01-10 2022-01-20 山陽特殊製鋼株式会社 High Ni alloy with excellent intergranular corrosion resistance and pitting corrosion resistance

Also Published As

Publication number Publication date
JPS6077918A (en) 1985-05-02

Similar Documents

Publication Publication Date Title
KR100613943B1 (en) AGE-HARDENABLE, CORROSION RESISTANT Ni-Cr-Mo ALLOYS
US5779821A (en) Rotor for steam turbine and manufacturing method thereof
JP5357410B2 (en) Composite type corrosion resistant nickel alloy
JP2007284799A (en) Corrosion-resistant austenitic stainless steel
US7922969B2 (en) Corrosion-resistant nickel-base alloy
JPS649391B2 (en)
KR20170007133A (en) METHOD FOR PRODUCING TWO-PHASE Ni-Cr-Mo ALLOYS
EP0384013A1 (en) Method for strengthening coldworked nickel-base alloys
US4861550A (en) Corrosion-resistant nickel-base alloy having high resistance to stress corrosion cracking
JPS6119764A (en) Two-phase stainless steel excellent in toughness
JP2672437B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP3779043B2 (en) Duplex stainless steel
JPH07331368A (en) Age hardening nickel-base alloy material, excellent in strength and corrosion resistance, and its production
JP2004018897A (en) High-chromium alloy steel and turbine rotor using this
JPS649392B2 (en)
TWI655303B (en) Ge-added stainless steels
JPS6326192B2 (en)
JP6974507B2 (en) Corrosion resistant alloy
JPH0352527B2 (en)
JP2001064754A (en) Tool steel with excellent weldability and machinability and suppressed secular change, and die using the same
JPS6221855B2 (en)
JPH04224643A (en) Shape memory alloy and its manufacture
JPH07113146A (en) High corrosion resistant austenitic stainless steel and production thereof
CN117448715A (en) N09925 nickel-based alloy bar and heat treatment method thereof
JPS6221854B2 (en)