JPH07331368A - Age hardening nickel-base alloy material, excellent in strength and corrosion resistance, and its production - Google Patents

Age hardening nickel-base alloy material, excellent in strength and corrosion resistance, and its production

Info

Publication number
JPH07331368A
JPH07331368A JP6127540A JP12754094A JPH07331368A JP H07331368 A JPH07331368 A JP H07331368A JP 6127540 A JP6127540 A JP 6127540A JP 12754094 A JP12754094 A JP 12754094A JP H07331368 A JPH07331368 A JP H07331368A
Authority
JP
Japan
Prior art keywords
less
corrosion resistance
equivalent
alloy material
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6127540A
Other languages
Japanese (ja)
Other versions
JP3198807B2 (en
Inventor
Susumu Hirano
奨 平野
Masaaki Igarashi
正晃 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14962544&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07331368(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12754094A priority Critical patent/JP3198807B2/en
Publication of JPH07331368A publication Critical patent/JPH07331368A/en
Application granted granted Critical
Publication of JP3198807B2 publication Critical patent/JP3198807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain an age hardening Ni-base alloy material excellent in strength and corrosion resistance by specifying a composition consisting of Ni, Cr, Ti, Nb, Al, Mo, W, B, Cu, and Fe, controlling impurities, and forming a specific structure. CONSTITUTION:This age hardening Ni-base alloy material can be obtained by providing a composition, which consists of, by weight, 48-55% Ni, 17-25% Cr, 0.4-2.5% Ti, 4-6% Nb, 0.3-0.8% Al, Mo and W in the range satisfying 2.5<=Mo+1/2W<=5%, 0-0.01% B, 0-2% Cu, and the balance Fe with inevitable impurities and in which C, N, Si, Mn, P, and S among these impurities are regulated to <=0.3%, <=0.01%, <=0.3%, <=0.3%, <=0.015%, and <=0.005%, respectively, and also providing a structure in which the formation of intermetallic compound and carbide is prevented in crystalline grain boundaries. This alloy material can be economically obtained by subjecting an alloy with the above composition to heating and holding at 980-1080 deg.C for 1min-2hr and to forced cooling to undergo solution heattreatment and then subjecting it to heating and holding at 680-730 deg.C for 5-10hr to undergo aging treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、腐食環境下、特に硫化
水素、二酸化炭素および塩素イオンの1種または2種以
上を含む環境下などにおいて、良好な耐食性を有する時
効硬化型ニッケル基合金材に関する。
FIELD OF THE INVENTION The present invention relates to an age hardening type nickel base alloy material having good corrosion resistance in a corrosive environment, particularly in an environment containing one or more of hydrogen sulfide, carbon dioxide and chlorine ions. Regarding

【0002】[0002]

【従来の技術】油井、化学工業および地熱発電などの構
造部材では、高強度で、かつ高耐食性が要求される。こ
こで問題となる腐食は主に、上述の環境下などにおける
孔食、隙間腐食、粒界腐食および応力腐食割れである。
2. Description of the Related Art Structural members for oil wells, chemical industry and geothermal power generation are required to have high strength and high corrosion resistance. Corrosion which is a problem here is mainly pitting corrosion, crevice corrosion, intergranular corrosion and stress corrosion cracking under the above-mentioned environment.

【0003】従来、上記の用途に用いるものであって冷
間加工による強度上昇が図れない厚肉または特殊形状の
金属部材では、時効硬化型合金材が適用されてきた。
Age-hardening alloy materials have hitherto been applied to thick-walled or specially shaped metal members which are used for the above-mentioned applications and whose strength cannot be increased by cold working.

【0004】上記合金材のうち、時効硬化型ニッケル基
合金としては、Alloy 718(商品名:ASTM UNS No.N07718
)が最もよく使用されている。しかし、Alloy 718 は、
もともと高温材料として開発されたため、CとNの含有
量が高いものもあり、耐食性は十分とは言えない。
Among age-hardening type nickel-base alloys among the above alloy materials, Alloy 718 (trade name: ASTM UNS No. N07718) is used.
) Is most commonly used. But Alloy 718
Since it was originally developed as a high-temperature material, there are some with high C and N contents, and it cannot be said that the corrosion resistance is sufficient.

【0005】Alloy 718 について、高温環境での疲労特
性改善を目的として低C材にした報告(例えば、T.Bani
k 他:Proc.Superalloys 718,625 and Various Derivat
ives,TMS(1991),P.913〜924)もあるが、熱処理条件は耐
食性材料として適正化されていない。また、油井環境で
使用される材料を対象とするNACE MR0175 では Alloy71
8 の硬さの上限規制(HRC≦40) は定められているが、熱
処理条件については特に指定がなく、一般に高温用途材
に適用される 775〜800 ℃で6〜8時間の時効処理が施
されている。
Regarding Alloy 718, a report of using a low C material for the purpose of improving fatigue characteristics in a high temperature environment (for example, T. Bani
k and others: Proc.Superalloys 718,625 and Various Derivat
ives, TMS (1991), P.913-924), but the heat treatment conditions have not been optimized as a corrosion resistant material. In addition, Alloy71 is used in NACE MR0175 for materials used in oil well environments.
Although the upper limit of hardness of 8 (HRC ≤ 40) is specified, there is no particular specification for heat treatment conditions, and aging treatment is generally applied to high temperature applications at 775 to 800 ° C for 6 to 8 hours. Has been done.

【0006】高耐食時効硬化型ニッケル基合金としてAl
loy 725(商品名:UNS No.N07725)、Alloy 625 Plus (商
品名:UNS No.N07716)が知られているが、いずれも耐食
性と組織安定性を高めるため、Ni≧55%、Mo≧7%で高
価となる。
Al as a high corrosion resistance age hardening type nickel base alloy
loy 725 (trade name: UNS No.N07725) and Alloy 625 Plus (trade name: UNS No.N07716) are known, but both Ni ≧ 55% and Mo ≧ 7 in order to improve corrosion resistance and structural stability. It becomes expensive in%.

【0007】時効硬化型ニッケル基合金における耐食性
改善法として、Nb単独添加系 (特公昭63−1387号公報)
、Nb−Al複合添加系 (特公平1−14992 号公報) およ
びTi、Nb、Al複合添加系 (特公平5−40011 号公報) が
開示されてるいが、 0.2%耐力が 825MPa(120ksi) 以
上を満足する時効処理条件は、実質的に20時間以上であ
って製造上経済的でない。さらに、特公平5−40011 号
公報に示されるニッケル基合金ではMn添加を必須として
いるが、溶ニッケル合金中や溶鋼中のMnは蒸気圧が高
く、この種の合金の製造に通常適用されるVIM( 真空
誘導溶解 )やVAR( 真空アーク再溶解 )のような真空
溶解においては特別な注意を要する。
As a method for improving the corrosion resistance of an age-hardening nickel-base alloy, a system containing only Nb (Japanese Patent Publication No. 63-1387)
, Nb-Al composite additive system (Japanese Patent Publication No. 1-14992) and Ti, Nb, Al composite additive system (Japanese Patent Publication No. 5-40011), 0.2% proof stress is 825MPa (120ksi) or more. The aging condition satisfying the condition is substantially 20 hours or more, which is not economical in manufacturing. Furthermore, the nickel-based alloy disclosed in Japanese Patent Publication No. 5-40011 requires the addition of Mn, but Mn in molten nickel alloy or molten steel has a high vapor pressure and is usually applied to the production of this type of alloy. Special attention is required for vacuum melting such as VIM (vacuum induction melting) and VAR (vacuum arc remelting).

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、硫化
水素などを含む前述の腐食環境下であって、特に従来の
Alloy 718 の耐食性では不十分であるが、高価なAlloy
725 、Alloy 625 Plusを使用するには及ばない腐食環境
下において用いるのに好適であり、しかも大幅な製造コ
ストアップを招かない時効硬化型ニッケル基合金材とそ
の製造方法を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to provide the above-mentioned corrosive environment containing hydrogen sulfide, etc.
Alloy 718 has poor corrosion resistance, but expensive Alloy
No. 725 and Alloy 625 Plus are suitable for use in a corrosive environment that is inferior to the use of Alloy 625 Plus, and an age-hardening nickel-base alloy material and a method for producing the same that do not significantly increase the production cost.

【0009】[0009]

【課題を解決するための手段】本発明者らは、Alloy 71
8 を基本組成とし、強度と耐食性に及ぼす微量成分と熱
処理条件の影響について研究を行い、大幅な製造コスト
アップなしに耐食性を著しく向上させることが可能な条
件を見いだした。
The present inventors have found that Alloy 71
We investigated the effect of trace components and heat treatment conditions on strength and corrosion resistance, using No. 8 as the basic composition, and found conditions under which corrosion resistance can be significantly improved without significantly increasing manufacturing costs.

【0010】本発明の要旨は、下記の (1)および(2) の
時効硬化型ニッケル基合金材と (3)および(4) のその製
造方法にある。
The gist of the present invention resides in the following age-hardening nickel-base alloy materials (1) and (2) and the manufacturing methods thereof (3) and (4).

【0011】(1)重量%で、Ni:48〜55%、Cr:17〜25
%、Ti: 0.4〜2.5 %、Nb:4〜6%、Al: 0.3〜0.8
%およびMo単独またはMo+W: 2.5%≦〔Mo+(1/2)
W〕≦5%を含有し、更にB:0〜0.01%およびCu:0
〜2%の1種以上を含み、残部がFeおよび不可避不純物
からなり、不純物中のCは0.01%以下、Nは0.01%以
下、Siは 0.3%以下、Mnは 0.3%以下、Pは 0.015%以
下およびSは 0.005%以下であり、結晶粒界において金
属間化合物および炭化物の生成が防止されている組織を
有する強度と耐食性に優れた時効硬化型ニッケル基合金
材。
(1)% by weight, Ni: 48 to 55%, Cr: 17 to 25
%, Ti: 0.4 to 2.5%, Nb: 4 to 6%, Al: 0.3 to 0.8
% And Mo alone or Mo + W: 2.5% ≦ [Mo + (1/2)
W] ≦ 5%, and further B: 0 to 0.01% and Cu: 0
~ 2% of one or more, the balance consisting of Fe and unavoidable impurities, C in the impurities is 0.01% or less, N is 0.01% or less, Si is 0.3% or less, Mn is 0.3% or less, P is 0.015% The following and S are 0.005% or less, and an age-hardening type nickel-base alloy material excellent in strength and corrosion resistance having a structure in which the formation of intermetallic compounds and carbides at grain boundaries is prevented.

【0012】(2)上記(1) の成分において、かつ下記式
で求められるTi当量と、下記式で求められるR値と
の関係が下記式またはを満足し、結晶粒界において
金属間化合物および炭化物の生成が防止されている組織
を有する強度と耐食性に優れた時効硬化型ニッケル基合
金材。
(2) In the component of (1) above, the relationship between the Ti equivalent calculated by the following formula and the R value calculated by the following formula satisfies the following formula or An age-hardening nickel-base alloy material having a structure in which the formation of carbides is prevented and having excellent strength and corrosion resistance.

【0013】 Ti当量=Ti(%) +0.52Nb(%) ・・・・・・・・・・・・・・・ R= 2.3〔C(%) +N(%) 〕+65〔C(%) +N(%) 〕2 ・・・ Ti当量≦3.5 のとき、R≦(0.02×Ti当量)・・・・・・・・ Ti当量>3.5 のとき、R≦0.07・・・・・・・・・・・・・・ (3)上記(1) の成分の素材ニッケル基合金を、 980〜108
0℃で1分〜2時間加熱保持した後、空冷以上の冷却速
度で室温まで冷却する溶体化処理を施し、次いで680 〜
730℃で5〜10時間加熱保持する時効処理を施し、結晶
粒界において金属間化合物および炭化物の生成が防止さ
れている組織とする強度と耐食性に優れた時効硬化型ニ
ッケル基合金材の製造方法。
Ti equivalent = Ti (%) + 0.52Nb (%) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ R = 2.3 [C (%) + N (%)] + 65 [C (%) + N (%)] 2・ ・ ・ When Ti equivalent ≦ 3.5, R ≦ (0.02 × Ti equivalent) ・ ・ ・ ・ ・ ・ ・ ・ When Ti equivalent> 3.5, R ≦ 0.07 ・ ・ ・・ ・ ・ ・ ・ ・ (3) 980 to 108
After heating and holding at 0 ° C for 1 minute to 2 hours, a solution treatment of cooling to room temperature at a cooling rate of air cooling or more is performed, and then 680 to
A process for producing an age-hardening nickel-base alloy material excellent in strength and corrosion resistance, which is a structure in which the formation of intermetallic compounds and carbides is prevented at grain boundaries by subjecting to an aging treatment by heating and holding at 730 ° C for 5 to 10 hours .

【0014】(4)上記(1) の成分と、上記(2) の式で
求められるTi当量とを有する素材ニッケル基合金を、 9
80〜1080℃で1分〜2時間加熱保持した後、空冷以上の
冷却速度で室温まで冷却する溶体化処理を施し、次いで
680〜730 ℃で5〜10時間加熱保持する時効処理を施
し、前記式で求められるR値が前記式またはを満
足し、結晶粒界において金属間化合物および炭化物の生
成が防止されている組織とする強度と耐食性に優れた時
効硬化型ニッケル基合金材の製造方法。
(4) A raw material nickel-base alloy having the component of the above (1) and the Ti equivalent determined by the above equation (2) is
After heating and holding at 80 to 1080 ° C for 1 minute to 2 hours, a solution treatment of cooling to room temperature at a cooling rate of air cooling or more is performed, and then,
A structure in which an aging treatment of heating and holding at 680 to 730 ° C. for 5 to 10 hours is performed, the R value obtained by the above formula satisfies the above formula or, and the formation of intermetallic compounds and carbides at grain boundaries is prevented. A method for producing an age hardening type nickel-base alloy material having excellent strength and corrosion resistance.

【0015】上記の各ニッケル基合金材とその素材にお
いて、BおよびCuはいずれも無添加でもよい。積極的に
含有させる場合の下限は、Bで0.0005%、Cuで0.01%と
するのが望ましい。
In each of the above nickel-base alloy materials and their materials, neither B nor Cu may be added. When positively contained, the lower limits are preferably 0.0005% for B and 0.01% for Cu.

【0016】前記式のR値は抽出残渣中のTi当量を意
味し、以下、RはR〔Ti〕eq. 、Ti当量は〔Ti〕eq. と
記す。
The R value in the above formula means the Ti equivalent in the extraction residue, and hereinafter, R is described as R [Ti] eq. And Ti equivalent as [Ti] eq.

【0017】[0017]

【作用】まず、本発明のニッケル基合金材およびその製
造方法の対象となる素材合金の化学組成の限定理由を説
明する。%は重量%を意味する。
First, the reasons for limiting the chemical composition of the nickel-base alloy material of the present invention and the material alloy to which the method for producing the same is applied will be explained. % Means% by weight.

【0018】Ni:48〜55% Niは、γ’相やγ”相の構成元素であるばかりでなく、
CrおよびMoとの含有量のバランスによって、σ、μおよ
びLaves 相などの、延性、靱性および耐食性に対して好
ましくない金属間化合物の生成を抑制し、オーステナイ
ト基地を安定化させる効果を有する。これらの効果を得
るにはNi含有量は48%以上とする必要がある。一方、55
%を超えると耐水素割れ性が確保できなくなるため、Ni
含有量の上限は55%とした。
Ni: 48-55% Ni is not only a constituent element of the γ'phase and γ "phase, but also
The balance between the contents of Cr and Mo has the effect of suppressing the formation of intermetallic compounds such as σ, μ and Laves phases, which are unfavorable for ductility, toughness and corrosion resistance, and stabilizing the austenite matrix. To obtain these effects, the Ni content needs to be 48% or more. On the other hand, 55
%, The hydrogen cracking resistance cannot be ensured.
The upper limit of the content is 55%.

【0019】Cr:17〜25% CrはMoとともに耐食性を向上させる。この効果を得るに
はCr含有量は17%以上とする必要がある。一方、25%を
超えると熱間加工性が低下し、さらにσ、μおよびLave
s 相などの金属間化合物やM23C6 およびM6C などの炭化
物が生成しやすくなり、延性、靱性および耐食性を劣化
させる。
Cr: 17-25% Cr improves corrosion resistance together with Mo. To obtain this effect, the Cr content needs to be 17% or more. On the other hand, if it exceeds 25%, the hot workability deteriorates, and σ, μ and
Intermetallic compounds such as s phase and carbides such as M 23 C 6 and M 6 C are easily generated, which deteriorates ductility, toughness and corrosion resistance.

【0020】Ti: 0.4〜2.5 % Tiは主にγ’相として析出し、強度の上昇に寄与する。
Ti含有量が0.4 %未満ではこの効果が不十分である。一
方、2.5 %を超えるとγ’相の粗大化を促進し延性、靱
性を低下させる。
Ti: 0.4 to 2.5% Ti is mainly precipitated as a γ'phase and contributes to the increase in strength.
If the Ti content is less than 0.4%, this effect is insufficient. On the other hand, if it exceeds 2.5%, coarsening of the γ'phase is promoted and ductility and toughness are reduced.

【0021】Nb:4〜6% Nbは、主にγ”相として析出し、強度の上昇に寄与する
とともに耐食性を向上させる。これらの効果はNb含有量
が4%以上で顕著となる。しかし、6%を超えるとσ、
μおよびLaves 相などの、延性、靱性および耐食性に対
して好ましくない金属間化合物が生成しやすくなる。
Nb: 4 to 6% Nb is mainly precipitated as a γ ″ phase, which contributes to the increase in strength and improves the corrosion resistance. These effects become remarkable when the Nb content is 4% or more. , Σ above 6%,
It tends to form intermetallic compounds such as μ and Laves phases, which are unfavorable for ductility, toughness and corrosion resistance.

【0022】Al: 0.3〜0.8 % 脱酸剤として添加する。Alはまた、γ’相やγ”相の析
出を安定化させる。これらの効果はAl含有量が0.3 %未
満では不十分である。一方、0.8 %を超えると酸化物系
の介在物が増加し、耐食性を劣化させる。
Al: 0.3 to 0.8% Added as a deoxidizing agent. Al also stabilizes the precipitation of the γ'phase and γ "phase. These effects are not sufficient if the Al content is less than 0.3%. On the other hand, if it exceeds 0.8%, oxide-based inclusions increase. And deteriorates corrosion resistance.

【0023】Mo単独またはMo+W: 2.5%≦〔Mo+(1/
2) W〕≦5% MoはCrとの共存によって耐孔食性を向上させるため、必
らず添加しなければならない。この効果はMo含有量が2.
5 %以上で顕著となる。しかし、5%を超えると熱間加
工性が低下し、さらにσ、μおよびLaves 相などの金属
間化合物やM6Cなどの炭化物が生成しやすくなり、延
性、靱性および耐食性を劣化させる。よって、Moを単独
で含有させる場合の範囲は 2.5〜5%とした。
Mo alone or Mo + W: 2.5% ≦ [Mo + (1 /
2) W] ≦ 5% Mo coexists with Cr to improve pitting corrosion resistance, so it must be added. This effect has a Mo content of 2.
It becomes remarkable at 5% or more. However, if it exceeds 5%, the hot workability is deteriorated, and further intermetallic compounds such as σ, μ and Laves phase and carbides such as M 6 C are apt to be generated, and ductility, toughness and corrosion resistance are deteriorated. Therefore, the range of containing Mo alone is set to 2.5 to 5%.

【0024】Moの一部をその2倍量のWで置換しても同
様の効果が得られる。よって、MoとWを複合添加する場
合の範囲は 2.5%≦〔Mo+(1/2) W〕≦5%とした。
Even if a part of Mo is replaced with twice as much W, the same effect can be obtained. Therefore, the range in the case of adding Mo and W in combination is 2.5% ≦ [Mo + (1/2) W] ≦ 5%.

【0025】C:0.01%以下 Cは、未固溶炭化物、特にNbCを増加させ、耐孔食性を
劣化させるばかりでなく、TiおよびNbが溶体化ままで析
出してしまうことにより、時効処理によって析出する
γ’相とγ”相の析出量が減少し、十分な硬化が得られ
ない。さらに、時効処理中にM23C6 およびM6C 型炭化物
の粒界析出を促進する。このため、C含有量は0.01%以
下とした。望ましいのは0.007 %以下である。
C: 0.01% or less C increases the amount of undissolved carbides, especially NbC, and deteriorates the pitting corrosion resistance. In addition, Ti and Nb are precipitated as a solution, which causes aging treatment. The amount of precipitated γ'phase and γ "phase is reduced, and sufficient hardening cannot be obtained. Furthermore, the grain boundary precipitation of M 23 C 6 and M 6 C type carbides is promoted during the aging treatment. , C content was 0.01% or less, preferably 0.007% or less.

【0026】N:0.01%以下 Nは、未固溶窒化物、特にTiNを増加させ、耐孔食性を
劣化させるばかりでなく、TiおよびNbが溶体化ままで析
出してしまうことにより、時効処理によって析出する
γ’相とγ”相の析出量が減少し、十分な硬化が得られ
ない。このため、N含有量0.01%以下とした。望ましい
のは0.007 %以下である。
N: 0.01% or less N increases the amount of undissolved nitrides, particularly TiN, and deteriorates the pitting corrosion resistance. In addition, Ti and Nb are precipitated in the solution state, so that the aging treatment is performed. As a result, the precipitation amount of the γ'phase and the γ "phase is reduced and sufficient hardening cannot be obtained. Therefore, the N content is set to 0.01% or less, preferably 0.007% or less.

【0027】Si:0.3 %以下 脱酸剤として添加する。しかし、Si含有量が0.3 %を超
えると、σ相などの延性、靱性に対して好ましくない金
属間化合物が粒界に生成しやすくなる。望ましいのは0.
1 %以下である。
Si: 0.3% or less Added as a deoxidizing agent. However, if the Si content exceeds 0.3%, intermetallic compounds such as σ phase, which are unfavorable for ductility and toughness, are likely to be formed at the grain boundaries. 0 is preferred.
It is 1% or less.

【0028】Mn:0.3 %以下 脱硫剤として添加する。しかし、Mn含有量が0.3 %を超
えると、酸化物系、硫化物系の介在物が増加し、耐孔食
性を劣化させる。
Mn: 0.3% or less Added as a desulfurizing agent. However, when the Mn content exceeds 0.3%, oxide-based and sulfide-based inclusions increase and the pitting corrosion resistance deteriorates.

【0029】P:0.015 %以下 P含有量が0.015 %を超えると、粒界偏析により熱間加
工性を低下させる。また、耐食性も劣化させるため0.01
5 %以下とした。
P: 0.015% or less If the P content exceeds 0.015%, the hot workability is deteriorated due to the segregation of grain boundaries. In addition, the corrosion resistance also deteriorates, so 0.01
It was set to 5% or less.

【0030】S:0.005 %以下 S含有量が0.005 %を超えると、粒界偏析により熱間加
工性を低下させる。また、耐食性も劣化させるため 0.0
05%以下とした。
S: 0.005% or less When the S content exceeds 0.005%, the hot workability is deteriorated due to the segregation of grain boundaries. It also deteriorates corrosion resistance, so 0.0
It was less than 05%.

【0031】本発明のニッケル基合金材とその素材合金
では、更にBおよびCuの1種または2種を含有させるこ
とができる。いずれも無添加でもよい。
The nickel-base alloy material and the material alloy thereof according to the present invention may further contain one or two of B and Cu. None of them may be added.

【0032】B:0〜0.01% Bは熱間加工性と靱性を向上させるので、必要に応じて
添加する。この目的で積極的に含有させる場合のB含有
量は、0.0005%以上とするのが望ましい。しかし、0.01
%を超えるとこれらの効果が飽和するため、B含有量の
上限は0.01%とした。
B: 0 to 0.01% B improves hot workability and toughness, so is added as necessary. When positively contained for this purpose, the B content is preferably 0.0005% or more. But 0.01
%, The effects are saturated, so the upper limit of the B content is 0.01%.

【0033】Cu:0〜2% Cuは耐食性皮膜の形成に寄与するので、必要に応じて添
加する。この目的で積極的に含有させる場合のCu含有量
は0.01%以上とするのが望ましい。しかし、2%を超え
ると強度に寄与するγ’相とγ”相の析出を妨げ、δ相
などの延性、靱性に好ましくない金属間化合物の粒界析
出を促進するため、Cu含有量の上限は2%とした。
Cu: 0 to 2% Since Cu contributes to the formation of a corrosion resistant film, it is added if necessary. When positively contained for this purpose, the Cu content is preferably 0.01% or more. However, if it exceeds 2%, the precipitation of γ'phase and γ "phase that contribute to strength is prevented and the intergranular precipitation of intermetallic compounds such as δ phase, which is not preferable for ductility and toughness, is promoted. Was set to 2%.

【0034】本発明のニッケル基合金材の一つは、上記
の成分と結晶粒界において金属間化合物および炭化物の
生成が防止された組織とを有し、耐食性を向上させたも
のである。
One of the nickel-based alloy materials of the present invention has the above-mentioned components and a structure in which the formation of intermetallic compounds and carbides is prevented at the grain boundaries, and the corrosion resistance is improved.

【0035】本発明のニッケル基合金材の他の一つは、
さらに下記式で求められる〔Ti〕eq. と、下記式で
求められるR値、すなわちR〔Ti〕eq. との関係が、下
記式またはを満足するものである。
Another one of the nickel-based alloy materials of the present invention is
Furthermore, the relationship between [Ti] eq. Obtained by the following equation and R value obtained by the following equation, that is, R [Ti] eq., Satisfies the following equation or:

【0036】 〔Ti〕eq. =Ti(%) +0.52Nb(%) ・・・・・・・・・・・・・・・・ R〔Ti〕eq. =〔C(%) +N(%) 〕+65〔C(%) +N(%) 〕2 ・・・ 〔Ti〕eq. ≦3.5 のとき、R〔Ti〕eq. ≦(0.02×〔Ti〕eq. )・・ 〔Ti〕eq. >3.5 のとき、R〔Ti〕eq. ≦0.07・・・・・・・・・・ ここで、上記式は本発明における〔Ti〕eq. の定義に
相当するものであり、素材段階のニッケル基合金につい
ても同様に適用される。上記式のRは抽出残渣中のも
のであることを意味し、この式は溶体化後における未
固溶炭窒化物量の推定値を示すものでもある。
[Ti] eq. = Ti (%) + 0.52Nb (%) ... R [Ti] eq. = [C (%) + N (% )] +65 [C (%) + N (%)] 2・ ・ ・ [Ti] eq. ≦ 3.5, R [Ti] eq. ≦ (0.02 × [Ti] eq.) ··· [Ti] eq. > 3.5, R [Ti] eq. ≤0.07 ... Here, the above formula corresponds to the definition of [Ti] eq. In the present invention, and nickel in the material stage is used. The same applies to the base alloy. R in the above formula means that it is in the extraction residue, and this formula also shows an estimated value of the amount of undissolved carbonitride after solution treatment.

【0037】上記条件の限定理由を図1〜図5に基づい
て説明する。
The reason for limiting the above conditions will be described with reference to FIGS.

【0038】まず、種々のCとNの含有量のニッケル基
合金について、溶体化ままでの未固溶炭窒化物量を推定
するため、抽出残渣を採取し残渣中のTiとNbの量を測定
したところ、表1および図1に示す結果を得た。
First, in order to estimate the amount of undissolved carbonitride in the as-solution state for nickel-based alloys having various C and N contents, the extraction residue was sampled and the amounts of Ti and Nb in the residue were measured. Then, the results shown in Table 1 and FIG. 1 were obtained.

【0039】[0039]

【表1】 [Table 1]

【0040】図1は、溶体化後のR〔Ti〕eq. と〔C〕
+〔N〕との関係を示す図である。
FIG. 1 shows R [Ti] eq. And [C] after solution treatment.
It is a figure which shows the relationship with + [N].

【0041】表1および図1に示すように、1次近似式
と2次近似式を用いてR〔Ti〕eq.と〔C〕+〔N〕と
の関係を回帰計算により求めたところ、図1中に示され
る二つの線を得た。二つの線のうち、フイッティング性
が高い破線で示される2次近似式を採用した。この式が
上記式である。
As shown in Table 1 and FIG. 1, the relation between R [Ti] eq. And [C] + [N] was obtained by regression calculation using the first-order approximation formula and the second-order approximation formula. The two lines shown in Figure 1 were obtained. Of the two lines, the quadratic approximation formula shown by the broken line with high fitting property was adopted. This equation is the above equation.

【0042】さらに、後述する時効処理温度条件を定め
るに先立ち、まず低C、低Nとした効果を確実に発揮さ
せるために後述する式における〔Ti〕eq. とR〔Ti〕
eq.との関係を定めることで、有効Ti、Nb量 (以下、E
〔Ti〕eq. と記す) を確保しておかなければならないの
である。
Further, before determining the aging treatment temperature condition which will be described later, first, [Ti] eq. And R [Ti] in the formulas described later in order to ensure the effects of low C and low N.
By determining the relationship with eq., the effective Ti and Nb amounts (hereinafter, E
[Ti] eq.).

【0043】図2は、本発明の合金材におけるR〔Ti〕
eq. と〔Ti〕eq. との関係を示す図である。特に〔Ti〕
eq. ≦3.5 の合金では、もともと析出強化量が少ないた
め、同じTi、Nbの含有量であっても、強度(YS)を向
上させる観点から、E〔Ti〕eq. を確保する目的で、介
在物として析出するR〔Ti〕eq. を〔Ti〕eq. の2%以
下にし、一方、〔Ti〕eq. >3.5 の合金では、未固溶炭
窒化物量を抑制し粒界に炭化物が析出しないようにする
目的で、R〔Ti〕eq. ≦0.07とするのがよい。
FIG. 2 shows R [Ti] in the alloy material of the present invention.
It is a figure which shows the relationship between eq. and [Ti] eq. Especially [Ti]
In the alloy of eq. ≦ 3.5, the amount of precipitation strengthening is originally small, so even if the contents of Ti and Nb are the same, from the viewpoint of improving the strength (YS), in order to secure E [Ti] eq. The amount of R [Ti] eq. Precipitated as inclusions is 2% or less of that of [Ti] eq. On the other hand, in the alloy of [Ti] eq.> 3.5, the amount of undissolved carbonitrides is suppressed and carbides at grain boundaries are For the purpose of preventing precipitation, it is preferable that R [Ti] eq. ≦ 0.07.

【0044】すなわち、前記式の〔Ti〕eq. と前記式
で求められる抽出残渣中の推定未固溶炭窒化物量を表
すR〔Ti〕eq. との関係が、特に下記の式およびを
満足する合金に、後述する熱処理を施すことで、優れた
延性、靱性とともに耐食性も付与することができる。
That is, the relationship between the [Ti] eq. Of the above equation and the R [Ti] eq. Representing the estimated amount of undissolved carbonitride in the extraction residue obtained by the above equation particularly satisfies the following equations and By subjecting the alloy to a heat treatment described below, excellent ductility and toughness as well as corrosion resistance can be imparted.

【0045】 〔Ti〕eq. ≦3.5 のとき、R〔Ti〕eq. ≦(0.02×〔Ti〕eq. )・・ 〔Ti〕eq. >3.5 のとき、R〔Ti〕eq. ≦0.07・・・・・・・・・・ さらに、種々のCとNの含有量のニッケル基合金を時効
処理して、その組成毎に2つの試験片をJIS G0578 に規
定されている溶液 (6%FeCl3)中に50℃で24時間浸漬し
た後、孔食発生の有無を観察して図3を得た。
When [Ti] eq. ≤3.5, R [Ti] eq. ≤ (0.02 x [Ti] eq.) ・ ・ When [Ti] eq.> 3.5, R [Ti] eq. ≤0.07 ・..... Further, nickel-based alloys with various C and N contents are aged, and two test pieces are prepared for each composition into a solution specified by JIS G0578 (6% FeCl After immersion in 3 ) at 50 ° C. for 24 hours, the presence or absence of pitting corrosion was observed to obtain FIG.

【0046】図3は、孔食発生率に及ぼすR〔Ti〕eq.
と〔C〕+〔N〕との関係を示す図である。図3からわ
かるように、高C、高Nの場合には耐孔食性が劣化す
る。これは未固溶の介在物が増加するためであり、延性
と靱性も低下する。
FIG. 3 shows R [Ti] eq.
It is a figure which shows the relationship between [C] + [N]. As can be seen from FIG. 3, in the case of high C and high N, the pitting corrosion resistance deteriorates. This is because undissolved inclusions increase, and ductility and toughness also decrease.

【0047】図1および図3の結果から、耐孔食性に優
れる合金材を得るという本発明の目的の一つを達成する
ためにも、〔Ti〕eq. とR〔Ti〕eq. との関係を明らか
にする必要があることがわかる。
From the results of FIG. 1 and FIG. 3, in order to achieve one of the objects of the present invention to obtain an alloy material having excellent pitting corrosion resistance, [Ti] eq. And R [Ti] eq. It turns out that it is necessary to clarify the relationship.

【0048】図4は、CとNの含有量が異なる2種類の
合金 (後述する実施例、表2の No.1、6の合金) に対
して、 650〜800 ℃×8hACの時効処理を施したとき
の強度(YS)、硬さ、靱性およびASTM A262 Practice
Bによる粒界腐食減量を示す図である。これらの結果に
よれば、CとNの含有量を共に低減させると、γ’相と
γ”相の析出強化に寄与する有効Ti、Nb量 (E〔Ti〕e
q. ) を増加させるので同一条件で時効処理しても強度
(YS)が約100 MPa 程度増加する上に、靱性( 吸収
エネルギー )も飛躍的に向上する。例えば、本発明範囲
の条件では表2の合金No.1は所定の高強度(YS≧825
MPa)と靱性も60J以上を同時に満足し、かつNACEの硬
度上限(HRC≦40)を超えることなく、耐粒界腐食性
も極めて優れている。一方、従来合金(表2の合金No.
6)では、強度、靱性および耐粒界腐食性を同時に満足
するものは得られない。
FIG. 4 shows aging treatment at 650 to 800 ° C. × 8 hAC for two kinds of alloys having different contents of C and N (Examples described later, alloys of Nos. 1 and 6 in Table 2). Strength (YS) when applied, hardness, toughness and ASTM A262 Practice
It is a figure which shows the intergranular corrosion weight loss by B. According to these results, when both the contents of C and N are reduced, the effective Ti and Nb amounts (E [Ti] e) that contribute to the precipitation strengthening of the γ'phase and the γ "phase are reduced.
q.) is increased, the strength (YS) is increased by about 100 MPa and the toughness (absorbed energy) is dramatically improved even if the aging treatment is performed under the same conditions. For example, under the conditions of the present invention, alloy No. 1 in Table 2 has a predetermined high strength (YS ≧ 825).
(MPa) and toughness of 60 J or more are satisfied at the same time, NACE hardness upper limit (HRC ≦ 40) is not exceeded, and intergranular corrosion resistance is extremely excellent. On the other hand, conventional alloy (alloy No. in Table 2
In 6), it is not possible to obtain one that simultaneously satisfies strength, toughness and intergranular corrosion resistance.

【0049】上記の有効Ti、Nb量(E〔Ti〕eq. )は、
次式で求められる。
The effective Ti and Nb amounts (E [Ti] eq.) Are
It is calculated by the following formula.

【0050】 E〔Ti〕eq. =〔Ti〕eq. −R〔Ti〕eq. ・・・・・ この強度、靱性および耐粒界腐食性が向上する理由を、
図5に基づいて説明する。
E [Ti] eq. = [Ti] eq.-R [Ti] eq .. The reason why the strength, toughness and intergranular corrosion resistance are improved is as follows.
A description will be given based on FIG.

【0051】図5は時効処理条件によるδ相とM6C との
析出領域を示す図である。CとNの含有量を共に低減さ
せ、E〔Ti〕eq. を増加させた場合、δ相と炭化物M6C
の析出曲線は図中の実線となる。この場合、従来の条件
はδ相の析出領域に位置し、粒界にはδ相が容易に析出
することになり、強度、靱性および耐粒界腐食性の点で
良好な結果は得られない。しかし、上記の本発明の条件
を満たす場合には、炭化物M6C とδ相の析出はともに起
こらず、かつ式で求められるE〔Ti〕eq. が増加して
いるため、強度、靱性および耐粒界腐食性の全てを兼ね
備えることが可能となる。
FIG. 5 is a diagram showing precipitation regions of the δ phase and M 6 C depending on the aging treatment conditions. When both C and N contents are reduced and E [Ti] eq. Is increased, δ phase and carbide M 6 C
The precipitation curve of is the solid line in the figure. In this case, the conventional condition lies in the precipitation region of the δ phase, and the δ phase easily precipitates at the grain boundaries, and good results cannot be obtained in terms of strength, toughness and intergranular corrosion resistance. . However, when the above-mentioned conditions of the present invention are satisfied, neither precipitation of the carbide M 6 C nor the δ phase occurs, and E [Ti] eq. It is possible to have all of the intergranular corrosion resistance.

【0052】因みに従来の高C、高Nの合金において
も、本発明で定める条件はδ相とMCの析出域(図5
中の破線)外であるが、E〔Ti〕eq. が低いため、強
度および/または靱性が不十分であり、かつ耐粒界腐食
性も必ずしも良好ではない。
Incidentally, even in the conventional high C and high N alloys, the conditions defined in the present invention are that the precipitation region of δ phase and M 6 C (see FIG. 5).
Although it is outside the broken line in the middle), since E [Ti] eq. Is low, strength and / or toughness are insufficient, and intergranular corrosion resistance is not always good.

【0053】次に、製造工程と処理条件の限定理由につ
いて説明する。
Next, the reasons for limiting the manufacturing process and processing conditions will be described.

【0054】素材ニッケル基合金の溶製は、常法に従い
VIM(真空誘導溶解)、VAR(真空アーク再溶解な
どにより行うのが望ましい。その後、必要により熱間鍛
造、熱間加工(圧延、押出しなど)、冷間加工などによ
り製品形状とする。
Material Nickel-based alloy is preferably melted by VIM (vacuum induction melting), VAR (vacuum arc remelting, etc.) according to a conventional method, and then hot forging and hot working (rolling, extrusion) as required. Etc.) and cold working to obtain the product shape.

【0055】本発明の製造方法では、上述の加工後の素
材ニッケル基合金を、 980〜1080℃で1分〜2時間加熱
保持した後、空冷以上の冷却速度で室温まで冷却する溶
体化処理を施し、次いで 680〜730 ℃で5〜10時間加熱
保持する時効処理を施す。
In the production method of the present invention, the above-mentioned processed nickel-base alloy material is heated and held at 980 to 1080 ° C. for 1 minute to 2 hours and then solution-treated to cool it to room temperature at a cooling rate of air cooling or higher. Then, an aging treatment of heating and holding at 680 to 730 ° C. for 5 to 10 hours is performed.

【0056】溶体化条件:時効処理によりγ’相とγ”
相を有効に析出させるため、適切な溶体化処理が必要で
ある。溶体化温度が 980℃未満ではδ相やLaves 相の析
出の恐れがある。
Solution heat treatment condition: γ ′ phase and γ ″ by aging treatment
Appropriate solution treatment is required to effectively precipitate the phases. If the solution temperature is lower than 980 ° C, precipitation of δ phase or Laves phase may occur.

【0057】一方、1080℃を超えると結晶粒が粗大化
し、延性、靱性を損ねる。
On the other hand, if the temperature exceeds 1080 ° C., the crystal grains become coarse and the ductility and toughness are impaired.

【0058】保持時間は、析出物を完全固溶させ金属間
化合物および炭化物が結晶粒界に存在しないようにする
ため、1分以上が必要である。一方、結晶粒度の目標を
ASTMGS No.≦3とするため、保持時間は2時間以下とし
た。保持後の冷却条件は、空冷以上の冷却速度で室温ま
で冷却して金属間化合物や炭化物が粒界に析出するのを
防止できる条件としなければならない。特に上記析出物
が析出しやすい 980〜730 ℃の間の冷却速度は10℃/分
以上とするのが望ましい。
The holding time is required to be 1 minute or more so that the precipitate is completely solid-dissolved and the intermetallic compound and the carbide are not present at the grain boundaries. On the other hand, the target of grain size
The holding time was set to 2 hours or less in order to satisfy ASTMGS No. ≦ 3. The cooling condition after the holding must be a condition capable of preventing the intermetallic compounds and carbides from precipitating at the grain boundaries by cooling to room temperature at a cooling rate of air cooling or higher. Particularly, it is desirable that the cooling rate between 980 and 730 ° C at which the above-mentioned precipitates are easily deposited is 10 ° C / min or more.

【0059】時効処理条件:本発明の時効硬化型ニッケ
ル基合金材では、0.2 %耐力が825 MPa(120 ksi)以上
を満足させるのが望ましい。この目標特性を達成するた
め、CとNの含有量を低値に抑制し、析出強化に寄与す
る有効Ti、Nb量を増加させているので、通常予想される
よりも、δ相の粒界析出ノーズが短時間側にシフトして
いる。したがって、図5に示すように、時効処理温度は
析出ノーズの内側となる 775〜800 ℃の高温側を避け、
680〜730 ℃の温度範囲とした。
Aging treatment conditions: In the age hardening type nickel-base alloy material of the present invention, it is desirable that the 0.2% proof stress satisfies 825 MPa (120 ksi) or more. In order to achieve this target property, the contents of C and N are suppressed to low values, and the effective Ti and Nb amounts that contribute to precipitation strengthening are increased. The deposition nose has shifted to the short side. Therefore, as shown in FIG. 5, the aging temperature should be set to avoid the high temperature side of 775 to 800 ° C, which is the inside of the precipitation nose,
The temperature range was 680 to 730 ° C.

【0060】時効時間が5時間未満では十分な強度が得
られない。一方、10時間を超えると加熱コストが嵩むば
かりでなく、γ’相とγ”相が粗大化し、延性と靱性を
低下させる。その上、金属間化合物や炭化物が粒界に析
出し、延性、靱性および耐食性を劣化させる。
If the aging time is less than 5 hours, sufficient strength cannot be obtained. On the other hand, if the heating time exceeds 10 hours, not only the heating cost will increase, but also the γ'phase and the γ "phase will be coarsened, and the ductility and toughness will be reduced. In addition, intermetallic compounds and carbides will precipitate at grain boundaries, and Deteriorates toughness and corrosion resistance.

【0061】[0061]

【実施例】【Example】

<供試材>表2に示す組成の合金を製造し、熱間鍛伸で
直径50mmφの丸棒にした。
<Sample Material> An alloy having the composition shown in Table 2 was manufactured and hot-forged into a round bar having a diameter of 50 mmφ.

【0062】[0062]

【表2】 [Table 2]

【0063】<試験法>組織観察では、粒度判定および
透過型電子顕微鏡により粒界析出物の同定を行った。機
械的性質では、直径6mmφ×30mmGLの試験片による室温
引張試験、5mm×10mm−2mmVノッチの試験片による0
℃のシャルピー衝撃試験および硬さ試験(HRC)を行
った。耐食性試験は下記の方法で行い、孔食、粒界腐
食、硫化水素中での応力腐食割れを評価した。
<Test Method> In the structure observation, grain boundary precipitates were identified by grain size determination and a transmission electron microscope. In terms of mechanical properties, a room temperature tensile test using a test piece with a diameter of 6 mmφ × 30 mm GL and a 0 mm test with a test piece of 5 mm × 10 mm-2 mm V notch
A Charpy impact test and hardness test (HRC) at 0 ° C were performed. The corrosion resistance test was carried out by the following method to evaluate pitting corrosion, intergranular corrosion, and stress corrosion cracking in hydrogen sulfide.

【0064】孔食試験では、JIS G0578 に規定されてい
る溶液 (6%FeCl3)に50℃で24時間浸漬後、孔食発生の
有無を観察した。粒界腐食試験では、ASTM A262 Practi
ce Bに記載されている溶液〔 2.5%Fe2(SO4)3 +50%H2
SO4 〕を沸騰させ 120時間浸漬後、腐食減量を測定し
た。応力腐食割れ試験では、4点曲げ試験片に0.2 %耐
力の100 %の応力を負荷し、25%NaCl+ 0.5%CH3COOH
+8atmH2S+1g/リットルS(硫黄)の溶液に 180℃で
14日間浸漬後、割れの有無を確認した。
In the pitting corrosion test, after immersing in a solution (6% FeCl 3 ) specified in JIS G0578 at 50 ° C. for 24 hours, the presence or absence of pitting corrosion was observed. In the intergranular corrosion test, ASTM A262 Practi
The solution described in ce B [2.5% Fe 2 (SO 4 ) 3 + 50% H 2
SO 4 ] was boiled and immersed for 120 hours, and then the corrosion weight loss was measured. In the stress corrosion cracking test, a 4-point bending test piece is loaded with 100% stress of 0.2% proof stress, and 25% NaCl + 0.5% CH 3 COOH.
+ 8atmH 2 S + 1g / liter S (sulfur) solution at 180 ℃
After immersion for 14 days, the presence or absence of cracks was confirmed.

【0065】(試験1)1025℃×5分WQで溶体化後 700
℃×8hAC の時効処理を施し、粒界析出物の同定、機械
試験および耐食性試験を行った。結果を表3に示す。
(Test 1) After solution heat treatment at 1025 ° C. for 5 minutes WQ 700
After aging treatment at ℃ × 8hAC, identification of grain boundary precipitates, mechanical test and corrosion resistance test were performed. The results are shown in Table 3.

【0066】[0066]

【表3】 [Table 3]

【0067】表3から明らかなように、本発明で定める
条件で製造された合金材は、強度と靱性を損ねることな
く、優れた耐食性を維持できることがわかる。
As is clear from Table 3, the alloy material produced under the conditions defined by the present invention can maintain excellent corrosion resistance without impairing the strength and toughness.

【0068】(試験2)供試材No.1に表4に示す溶体化
条件と、表5に示す時効処理条件とを適宜組み合わせて
処理した。表6に試験結果を示す。
(Test 2) The sample material No. 1 was treated by appropriately combining the solution heat treatment conditions shown in Table 4 and the aging treatment conditions shown in Table 5. Table 6 shows the test results.

【0069】[0069]

【表4】 [Table 4]

【0070】[0070]

【表5】 [Table 5]

【0071】[0071]

【表6】 [Table 6]

【0072】表6から明らかなように、本発明で定める
条件で製造された合金材は、強度と靱性を損ねることな
く、優れた耐食性を維持できることがわかる。
As is clear from Table 6, the alloy material produced under the conditions defined by the present invention can maintain excellent corrosion resistance without impairing the strength and toughness.

【0073】[0073]

【発明の効果】本発明によれば、優れた強度、延性、靱
性および耐食性を有する時効硬化型ニッケル基合金材を
得ることができる。この合金材は、特に結晶粒界に金属
間化合物および炭化物が存在していないので高耐食性を
有し、油井、化学工業、地熱発電などの硫化水素、二酸
化炭素および塩素イオンを含む環境下で用いる構造部材
用として好適である。
According to the present invention, it is possible to obtain an age hardening type nickel base alloy material having excellent strength, ductility, toughness and corrosion resistance. This alloy material has high corrosion resistance because intermetallic compounds and carbides do not exist in the crystal grain boundaries, and is used in environments including hydrogen sulfide, carbon dioxide and chlorine ions such as in oil wells, chemical industry, and geothermal power generation. It is suitable for structural members.

【図面の簡単な説明】[Brief description of drawings]

【図1】回帰計算で得られた溶体化後のR〔Ti〕eq. と
〔C〕+〔N〕との関係を示す図である。
FIG. 1 is a diagram showing a relationship between R [Ti] eq. And [C] + [N] after solution treatment obtained by regression calculation.

【図2】本発明の合金材におけるR〔Ti〕eq. と〔Ti〕
eq. との関係を示す図である。
FIG. 2 shows R [Ti] eq. And [Ti] in the alloy material of the present invention.
It is a figure which shows the relationship with eq.

【図3】孔食発生率に及ぼす溶体化後のR〔Ti〕eq. と
〔C〕+〔N〕との関係を示す図である。
FIG. 3 is a diagram showing the relationship between R [Ti] eq. And [C] + [N] after solution treatment, which affects the pitting corrosion occurrence rate.

【図4】ニッケル基合金材の特性に及ぼす時効処理条件
の影響を示す図である。
FIG. 4 is a diagram showing the effect of aging treatment conditions on the properties of a nickel-based alloy material.

【図5】時効処理条件によるδ相とM6C との析出領域を
示す図である。
FIG. 5 is a diagram showing a precipitation region of a δ phase and M 6 C depending on an aging treatment condition.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量%で、Ni:48〜55%、Cr:17〜25%、
Ti: 0.4〜2.5 %、Nb:4〜6%、Al: 0.3〜0.8 %お
よびMo単独またはMo+W: 2.5%≦〔Mo+(1/2) W〕≦
5%を含有し、更にB:0〜0.01%およびCu:0〜2%
の1種以上を含み、残部がFeおよび不可避不純物からな
り、不純物中のCは0.01%以下、Nは0.01%以下、Siは
0.3%以下、Mnは 0.3%以下、Pは 0.015%以下および
Sは 0.005%以下であり、結晶粒界において金属間化合
物および炭化物の生成が防止されている組織を有するこ
とを特徴とする強度と耐食性に優れた時効硬化型ニッケ
ル基合金材。
1. By weight%, Ni: 48-55%, Cr: 17-25%,
Ti: 0.4 to 2.5%, Nb: 4 to 6%, Al: 0.3 to 0.8% and Mo alone or Mo + W: 2.5% ≦ [Mo + (1/2) W] ≦
5%, B: 0-0.01% and Cu: 0-2%
1 or more of the above, the balance consisting of Fe and unavoidable impurities, C in the impurities is 0.01% or less, N is 0.01% or less, Si is
0.3% or less, Mn is 0.3% or less, P is 0.015% or less, and S is 0.005% or less, and the strength is characterized by having a structure in which the formation of intermetallic compounds and carbides is prevented at grain boundaries. Age-hardening nickel-based alloy material with excellent corrosion resistance.
【請求項2】重量%で、Ni:48〜55%、Cr:17〜25%、
Ti: 0.4〜2.5 %、Nb:4〜6%、Al: 0.3〜0.8 %お
よびMo単独またはMo+W: 2.5%≦〔Mo+(1/2) W〕≦
5%を含有し、更にB:0〜0.01%およびCu:0〜2%
の1種以上を含み、残部がFeおよび不可避不純物からな
り、不純物中のCは0.01%以下、Nは0.01%以下、Siは
0.3%以下、Mnは 0.3%以下、Pは 0.015%以下および
Sは 0.005%以下であり、かつ下記式で求められるTi
当量と、下記式で求められるR値との関係が下記式
またはを満足し、結晶粒界において金属間化合物およ
び炭化物の生成が防止されている組織を有することを特
徴とする強度と耐食性に優れた時効硬化型ニッケル基合
金材。 Ti当量=Ti(%) +0.52Nb(%) ・・・・・・・・・・・・・・・ R= 2.3〔C(%) +N(%) 〕+65〔C(%) +N(%) 〕2 ・・・ Ti当量≦3.5 のとき、R≦(0.02×Ti当量)・・・・・・・・ Ti当量>3.5 のとき、R≦0.07・・・・・・・・・・・・・・
2. By weight%, Ni: 48-55%, Cr: 17-25%,
Ti: 0.4 to 2.5%, Nb: 4 to 6%, Al: 0.3 to 0.8% and Mo alone or Mo + W: 2.5% ≦ [Mo + (1/2) W] ≦
5%, B: 0-0.01% and Cu: 0-2%
1 or more of the above, the balance consisting of Fe and unavoidable impurities, C in the impurities is 0.01% or less, N is 0.01% or less, Si is
0.3% or less, Mn is 0.3% or less, P is 0.015% or less and S is 0.005% or less, and Ti calculated by the following formula
Excellent strength and corrosion resistance, characterized in that the relationship between the equivalent weight and the R value calculated by the following formula satisfies the following formula or Age hardening type nickel base alloy material. Ti equivalent = Ti (%) + 0.52Nb (%) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ R = 2.3 [C (%) + N (%)] +65 [C (%) + N (% )] 2・ ・ ・ When Ti equivalent ≦ 3.5, R ≦ (0.02 × Ti equivalent) ・ ・ ・ ・ ・ ・ When Ti equivalent> 3.5, R ≦ 0.07 ・ ・ ・ ・ ・ ・...
【請求項3】重量%で、Ni:48〜55%、Cr:17〜25%、
Ti: 0.4〜2.5 %、Nb:4〜6%、Al: 0.3〜0.8 %お
よびMo単独またはMo+W: 2.5%≦〔Mo+(1/2) W〕≦
5%を含有し、更にB:0〜0.01%およびCu:0〜2%
の1種以上を含み、残部がFeおよび不可避不純物からな
り、不純物中のCは0.01%以下、Nは0.01%以下、Siは
0.3%以下、Mnは 0.3%以下、Pは 0.015%以下および
Sは 0.005%以下である素材ニッケル基合金を、 980〜
1080℃で1分〜2時間加熱保持した後、空冷以上の冷却
速度で室温まで冷却する溶体化処理を施し、次いで 680
〜730 ℃で5〜10時間加熱保持する時効処理を施し、結
晶粒界において金属間化合物および炭化物の生成が防止
されている組織とすることを特徴とする強度と耐食性に
優れた時効硬化型ニッケル基合金材の製造方法。
3. By weight%, Ni: 48-55%, Cr: 17-25%,
Ti: 0.4 to 2.5%, Nb: 4 to 6%, Al: 0.3 to 0.8% and Mo alone or Mo + W: 2.5% ≦ [Mo + (1/2) W] ≦
5%, B: 0-0.01% and Cu: 0-2%
1 or more of the above, the balance consisting of Fe and unavoidable impurities, C in the impurities is 0.01% or less, N is 0.01% or less, Si is
980-based material nickel-based alloys with 0.3% or less, Mn 0.3% or less, P 0.015% or less and S 0.005% or less
After heating and holding at 1080 ℃ for 1 minute to 2 hours, solution heat treatment is performed to cool to room temperature at a cooling rate higher than air cooling, and then 680
Age-hardening nickel with excellent strength and corrosion resistance, characterized by having a structure in which the formation of intermetallic compounds and carbides is prevented at grain boundaries by performing an aging treatment by heating and holding at ~ 730 ° C for 5-10 hours. Method for manufacturing base alloy material.
【請求項4】重量%で、Ni:48〜55%、Cr:17〜25%、
Ti: 0.4〜2.5 %、Nb:4〜6%、Al: 0.3〜0.8 %お
よびMo単独またはMo+W: 2.5%≦〔Mo+(1/2) W〕≦
5%を含有し、更にB:0〜0.01%およびCu:0〜2%
の1種以上を含み、残部がFeおよび不可避不純物からな
り、不純物中のCは0.01%以下、Nは0.01%以下、Siは
0.3%以下、Mnは 0.3%以下、Pは 0.015%以下および
Sは 0.005%以下であり、かつ下記式で求められるTi
当量を有する素材ニッケル基合金を、 980〜1080℃で1
分〜2時間加熱保持した後、空冷以上の冷却速度で室温
まで冷却する溶体化処理を施し、次いで 680〜730 ℃で
5〜10時間加熱保持する時効処理を施し、下記式で求
められるR値が下記式またはを満足し、結晶粒界に
おいて金属間化合物および炭化物の生成が防止されてい
る組織とすることを特徴とする強度と耐食性に優れた時
効硬化型ニッケル基合金材の製造方法。 Ti当量=Ti(%) +0.52Nb(%) ・・・・・・・・・・・・・・・ R= 2.3〔C(%) +N(%) 〕+65〔C(%) +N(%) 〕2 ・・・ Ti当量≦3.5 のとき、R≦(0.02×Ti当量)・・・・・・・・ Ti当量>3.5 のとき、R≦0.07・・・・・・・・・・・・・・
4. By weight%, Ni: 48-55%, Cr: 17-25%,
Ti: 0.4 to 2.5%, Nb: 4 to 6%, Al: 0.3 to 0.8% and Mo alone or Mo + W: 2.5% ≦ [Mo + (1/2) W] ≦
5%, B: 0-0.01% and Cu: 0-2%
1 or more of the above, the balance consisting of Fe and unavoidable impurities, C in the impurities is 0.01% or less, N is 0.01% or less, Si is
0.3% or less, Mn is 0.3% or less, P is 0.015% or less and S is 0.005% or less, and Ti calculated by the following formula
Equivalent weight material nickel-based alloy
After heating for 2 minutes to hold for 2 minutes, solution treatment is performed to cool to room temperature at a cooling rate of air cooling or higher, and then aging treatment is performed by heating and holding at 680 to 730 ° C for 5 to 10 hours. Satisfying the following formula or, and having a structure in which the formation of intermetallic compounds and carbides at grain boundaries is prevented, a method for producing an age-hardening nickel-based alloy material having excellent strength and corrosion resistance. Ti equivalent = Ti (%) + 0.52Nb (%) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ R = 2.3 [C (%) + N (%)] +65 [C (%) + N (% )] 2・ ・ ・ When Ti equivalent ≦ 3.5, R ≦ (0.02 × Ti equivalent) ・ ・ ・ ・ ・ ・ When Ti equivalent> 3.5, R ≦ 0.07 ・ ・ ・ ・ ・ ・...
JP12754094A 1994-06-09 1994-06-09 Age-hardened nickel-base alloy material excellent in strength and corrosion resistance and method for producing the same Expired - Fee Related JP3198807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12754094A JP3198807B2 (en) 1994-06-09 1994-06-09 Age-hardened nickel-base alloy material excellent in strength and corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12754094A JP3198807B2 (en) 1994-06-09 1994-06-09 Age-hardened nickel-base alloy material excellent in strength and corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07331368A true JPH07331368A (en) 1995-12-19
JP3198807B2 JP3198807B2 (en) 2001-08-13

Family

ID=14962544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12754094A Expired - Fee Related JP3198807B2 (en) 1994-06-09 1994-06-09 Age-hardened nickel-base alloy material excellent in strength and corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3198807B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503366A (en) * 2007-11-19 2011-01-27 ハンチントン、アロイス、コーポレーション Ultra-high strength alloy for harsh oil and gas environments and manufacturing method
JP2011157566A (en) * 2010-01-29 2011-08-18 Global Nuclear Fuel-Japan Co Ltd Method for manufacturing ni-based superalloy, and method for producing nuclear fuel assembly
WO2013188001A1 (en) * 2012-06-11 2013-12-19 Huntington Alloys Corporation High-strength corrosion-resistant tubing for oil and gas completion and drilling applications, and process for manufacturing thereof
US9618121B2 (en) 2007-03-09 2017-04-11 Federal-Mogul Corporation Metal gasket
US10702923B2 (en) 2014-07-23 2020-07-07 Ihi Corporation Method of manufacturing ni alloy part
CN115449725A (en) * 2022-08-10 2022-12-09 四川英拓金属材料有限公司 Heat treatment method for improving impact toughness of nickel-based high-temperature alloy material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110856A (en) * 1983-11-21 1985-06-17 Sumitomo Metal Ind Ltd Production of precipitation hardening nickel-base alloy
JPS62167839A (en) * 1986-01-20 1987-07-24 Mitsubishi Heavy Ind Ltd Ni base alloy and its manufacture
JPH0633206A (en) * 1992-07-14 1994-02-08 Toshiba Corp Method for heat-treating ni-base alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110856A (en) * 1983-11-21 1985-06-17 Sumitomo Metal Ind Ltd Production of precipitation hardening nickel-base alloy
JPS62167839A (en) * 1986-01-20 1987-07-24 Mitsubishi Heavy Ind Ltd Ni base alloy and its manufacture
JPH0633206A (en) * 1992-07-14 1994-02-08 Toshiba Corp Method for heat-treating ni-base alloy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9618121B2 (en) 2007-03-09 2017-04-11 Federal-Mogul Corporation Metal gasket
JP2011503366A (en) * 2007-11-19 2011-01-27 ハンチントン、アロイス、コーポレーション Ultra-high strength alloy for harsh oil and gas environments and manufacturing method
US9017490B2 (en) 2007-11-19 2015-04-28 Huntington Alloys Corporation Ultra high strength alloy for severe oil and gas environments and method of preparation
US10100392B2 (en) 2007-11-19 2018-10-16 Huntington Alloys Corporation Ultra high strength alloy for severe oil and gas environments and method of preparation
JP2011157566A (en) * 2010-01-29 2011-08-18 Global Nuclear Fuel-Japan Co Ltd Method for manufacturing ni-based superalloy, and method for producing nuclear fuel assembly
WO2013188001A1 (en) * 2012-06-11 2013-12-19 Huntington Alloys Corporation High-strength corrosion-resistant tubing for oil and gas completion and drilling applications, and process for manufacturing thereof
US10253382B2 (en) 2012-06-11 2019-04-09 Huntington Alloys Corporation High-strength corrosion-resistant tubing for oil and gas completion and drilling applications, and process for manufacturing thereof
US10702923B2 (en) 2014-07-23 2020-07-07 Ihi Corporation Method of manufacturing ni alloy part
US11273493B2 (en) 2014-07-23 2022-03-15 Ihi Corporation Method of manufacturing Ni alloy part
CN115449725A (en) * 2022-08-10 2022-12-09 四川英拓金属材料有限公司 Heat treatment method for improving impact toughness of nickel-based high-temperature alloy material

Also Published As

Publication number Publication date
JP3198807B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
JP6336367B2 (en) Ultra-high strength alloy for harsh oil and gas environments and manufacturing method
JP5225855B2 (en) High-strength corrosion-resistant alloy for oil patch application and method for producing the same
KR20170020483A (en) Nickel-chromium-iron-molybdenum corrosion resistant alloy and article of manufacture and method of manufacturing thereof
JP6267618B2 (en) Bolt steel and bolts
JP2000178682A (en) Steel for oil well excellent in sulfide stress corrosion cracking resistance
JP6477252B2 (en) Austenitic heat-resistant alloy and heat-resistant pressure-resistant member
JP2014043616A (en) Duplex stainless steel, and manufacturing method thereof
CN109790602B (en) Steel
JP2019077911A (en) Steel member and manufacturing method of steel member
JP6506978B2 (en) Method of manufacturing NiCrMo steel and NiCrMo steel material
JPH07331368A (en) Age hardening nickel-base alloy material, excellent in strength and corrosion resistance, and its production
JPH0114992B2 (en)
JPH09118919A (en) Manufacture of steel product excellent in seawater corrosion resistance
JPS602653A (en) Production of precipitation hardening type nickel-base alloy
JP2672437B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH10245656A (en) Martensitic stainless steel excellent in cold forgeability
JPS6119764A (en) Two-phase stainless steel excellent in toughness
US5116570A (en) Stainless maraging steel having high strength, high toughness and high corrosion resistance and it&#39;s manufacturing process
JP6657917B2 (en) Maraging steel
JPH07179943A (en) Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JP7534102B2 (en) NiCrMo steel and its manufacturing method
JP3525843B2 (en) High strength low alloy heat resistant steel
JPH0931604A (en) High corrosion resistant stainless steel excellent in torsional strength characteristic
JPS61223155A (en) Highly corrosion resistant ni-base alloy and its manufacture
JP2672430C (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees