JPS619543A - Titanium alloy having superior crevice corrosion resistance - Google Patents

Titanium alloy having superior crevice corrosion resistance

Info

Publication number
JPS619543A
JPS619543A JP12935484A JP12935484A JPS619543A JP S619543 A JPS619543 A JP S619543A JP 12935484 A JP12935484 A JP 12935484A JP 12935484 A JP12935484 A JP 12935484A JP S619543 A JPS619543 A JP S619543A
Authority
JP
Japan
Prior art keywords
crevice corrosion
alloy
corrosion resistance
alloys
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12935484A
Other languages
Japanese (ja)
Other versions
JPS6256219B2 (en
Inventor
Chihiro Taki
千博 滝
Hideo Sakuyama
秀夫 作山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP12935484A priority Critical patent/JPS619543A/en
Publication of JPS619543A publication Critical patent/JPS619543A/en
Publication of JPS6256219B2 publication Critical patent/JPS6256219B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a Ti alloy having superior crevice corrosion resistance in a halide soln., especially seawater by adding a prescribed amount of Ru to Ti. CONSTITUTION:This Ti alloy consists of 0.005-<0.5wt% Ru and the balance Ti. The alloy has much superior crevice corrosion resistance as compared with conventional Ti-Pd and Ti-Ni alloys which are considered to be alloys having superior crevice corrosion resistance. It is important that the Ti-Ru alloy has much superior crevice corrosion resistance as compared with the Ti-Pd alloy in spite of the very low Ru content. Since Pd is much more expensive than Ru, the effect of this invention is very remarkable. In case of the Ti-Ni alloy, a large amount of Ni provides crevice corrosion resistance, but only about 0.3wt% Ni added to Ti deteriorates the workability.

Description

【発明の詳細な説明】 この出願の発明はハロゲン化物の溶液、特に海水におけ
る優れた耐すきま腐食性を有するチタン合金に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention of this application relates to a titanium alloy having excellent crevice corrosion resistance in halide solutions, particularly seawater.

一般に鉄、鋼等の金属は海水等のハロゲン化物溶液に激
しく侵蝕されるが、純チタン又はチタン合金は海水に対
する高い耐食性を有する°ので、海水等を使用する工業
的設備に広く使用されている。しかしながら、このよう
に通常極めて耐食性が高いといわれている純チタンやチ
タン合金でも、海水中のすきま腐食を受けやすいという
重大な材料上の問題を有している。すきま腐食は2つの
金属表面間あるいはテフロンガスケット材の如き非金属
との間や海水中で使用する容器、管材等の設備の接ぎ宇
部で特に発生する腐食でおる。このすきま腐食はチタン
の隣接部位に電位差を起す濃淡電池に関係がToj)。
In general, metals such as iron and steel are severely corroded by halide solutions such as seawater, but pure titanium or titanium alloys have high corrosion resistance against seawater, so they are widely used in industrial equipment that uses seawater, etc. . However, even pure titanium and titanium alloys, which are generally said to have extremely high corrosion resistance, have a serious material problem of being susceptible to crevice corrosion in seawater. Crevice corrosion is a type of corrosion that occurs particularly between two metal surfaces or non-metallic surfaces such as Teflon gaskets, and at joints in equipment such as containers and pipes used in seawater. This crevice corrosion is related to concentration batteries that create a potential difference between adjacent parts of titanium.

腐食を受けるγノード部位と周縁のカソード部位を形成
し、これらの部位の面積比率が拡大するに従って腐食は
一層促進される。
A γ node region and a peripheral cathode region are formed, which are subject to corrosion, and as the area ratio of these regions increases, corrosion is further accelerated.

純チタンを容器や管、板等圧加工して海水接触箇所に使
用する場合には、使用する構造にすきま腐食が発生しな
いように2例えばボルト締めせずに溶接して接合するな
どの工夫を必要とした。しかし、耐海水設備にすき間腐
食が完全に発生しないようにすることは難しく、根本的
解決策とはいえなかった。又、 HOI、馬SO4等の
酸性溶液で耐全面腐食性が向上するチタン合金。
When using pure titanium in containers, pipes, or plates that are subjected to isopressure processing in areas that come into contact with seawater, take measures to prevent crevice corrosion from occurring in the structure used, such as by welding the joints instead of bolting them. I needed it. However, it is difficult to completely prevent crevice corrosion from occurring in seawater-resistant equipment, and this cannot be considered a fundamental solution. In addition, titanium alloys have improved general corrosion resistance in acidic solutions such as HOI and SO4.

例えばOo、Ou、HftMo、N’b、Ta、V、Z
r等を数パーセント添加した合金の使用も考えたが、こ
れらの合金はすきま腐食に対して純チタンと同程度であ
シ、酸性水溶液に対する耐食性(全面腐食に対する)が
即耐すき間腐食に有効であるとはいえなかった。これら
の中で耐すきま腐食性に優れた数少ない合金としてTt
−pb (パラジウム)及びTi−Ni合金が知られて
いる(特公昭46−21086号公報)。
For example, Oo, Ou, HftMo, N'b, Ta, V, Z
We considered using alloys with a few percent of r added, but these alloys have the same resistance to crevice corrosion as pure titanium, and their corrosion resistance to acidic aqueous solutions (versus general corrosion) is not effective for immediate crevice corrosion resistance. I couldn't say that there was. Among these, Tt is one of the few alloys with excellent crevice corrosion resistance.
-pb (palladium) and Ti-Ni alloys are known (Japanese Patent Publication No. 46-21086).

しかしながら、前者の合金は添加する元素であるP(l
の値段が非常に高く、α15饅程度添加しないと耐すき
ま腐食の効果がでないこともあって、耐すきま腐食にす
ぐれてはいても工業用材料としては問題がある。
However, in the former alloy, the added element P(l
It is very expensive, and the crevice corrosion resistance is not effective unless approximately α15 is added, so even though it has excellent crevice corrosion resistance, it is still a problem as an industrial material.

また後者の合金はプレス成形性、絞シ性など加工性が著
しく悪くなシ、さらに再結晶温度も上昇するので製造上
の問題点があり、海水の設備に使用する材料として好適
なものとはいい難い。
In addition, the latter alloy has extremely poor workability such as press formability and drawability, and also has manufacturing problems because the recrystallization temperature increases, so it is not suitable as a material for use in seawater equipment. Good and difficult.

本出願の発明者等は、このようなすきま腐食の問題に鑑
み、αo o s wt−〜α5 wt1未満のルテニ
ウム(Ru)と残部チタン及び不可避不純物からなる耐
すきま腐食性に優れたチタン合金を開発した。耐すきま
腐食のためのルテニウムの添加は少量で著しく効果が上
がるので、チタン合金を安価に製造でき、tた加工性も
良好である。
In view of the problem of crevice corrosion, the inventors of the present application have developed a titanium alloy with excellent crevice corrosion resistance, which is composed of ruthenium (Ru) with less than αo o s wt-~α5 wt1, the balance being titanium, and unavoidable impurities. developed. Since the addition of ruthenium for crevice corrosion resistance is significantly effective even in small amounts, titanium alloys can be manufactured at low cost and have good workability.

上記本発明のチタン合金でルテニウムの添加量の下限を
αo o s vt−とするのは、との添加量未満では
すきま腐食発生防止に対する効果が非常に小さく実用的
でないためであり、α05wt16上このましくはα0
1 wt嘩以上が必要とされる。またルテニウム添加量
の上限を(15wt 16未満とするのは、これ以上の
添加量では加工性が低下し、また添加するルテニウムに
費用がかかシすぎて好ましくないからである。
The reason why the lower limit of the amount of ruthenium added in the titanium alloy of the present invention is set to αo o s vt- is that if the amount added is less than , the effect on preventing the occurrence of crevice corrosion is very small and is not practical. Preferably α0
1 wt fight or higher is required. The reason why the upper limit of the amount of ruthenium added is set to less than 15wt16 is because if the amount added is more than this, the workability deteriorates and the added ruthenium is undesirably expensive.

較において耐すきま腐食性の試験を行い9本発明合金の
有効性を説明する。
In comparison, a crevice corrosion resistance test was conducted to explain the effectiveness of the alloy of the present invention.

上記腐食試験に供する合金はいずれも耐すきま腐食には
優れているので通常行われているチタン合金板/チタン
合金板又はチタン合金板/テフロン板を単にボルトで締
めつけて腐食試験を行うだけではすきま腐食は非常に発
生しにくい。そこで発泡スチロールをトリクロールエチ
レンにとかしたものをTi−Ni合金、 Ti−I’d
合金及び本発明合金であるTi−Ru合金の材料表面に
塗布し、これらをそれぞれ対向させてボルトで締めつけ
、すきま腐食試験に供した。
All the alloys used in the above corrosion tests have excellent resistance to crevice corrosion, so it is not possible to simply tighten titanium alloy plates/titanium alloy plates or titanium alloy plates/Teflon plates with bolts and conduct corrosion tests, which is normally done. Corrosion is very unlikely to occur. Therefore, Ti-Ni alloy, Ti-I'd, was created by dissolving Styrofoam in trichlorethylene.
It was applied to the surfaces of the alloy and the Ti-Ru alloy, which is the alloy of the present invention, and these were opposed to each other and tightened with bolts, and subjected to a crevice corrosion test.

腐食液はMail濃度1%、p’H6,1で沸とう状態
の腐食環境で試験を行った。その結果を第1表に示す。
The test was conducted in a boiling corrosive environment with a Mail concentration of 1% and a pH of 6.1. The results are shown in Table 1.

これらの試料は、すきま腐食の発生し易い厳しい条件下
におかれているので1通常すきま腐食に優れている材料
でも場合により1日を経てすきま腐食の発生がみられる
ものもあ石。
These samples are subjected to harsh conditions where crevice corrosion is likely to occur; therefore, even materials that are normally excellent at crevice corrosion may show crevice corrosion after a day.

第1表に示すように耐すきま腐食に優れている従来のα
15 wtl Pd大入シフ合金(試料番号41)では
、1E3の耐すきま腐食効果がみられるが、2日目以降
ではすきま腐食が発生する。
As shown in Table 1, conventional α has excellent crevice corrosion resistance.
The 15 wtl Pd large Schiff alloy (sample number 41) shows a 1E3 crevice corrosion resistance effect, but crevice corrosion occurs after the second day.

また同様に従来のa 6 wtll Ni人#)T1合
金(試料番号42)では、1日目ですでにすきま腐食が
発生する。
Similarly, in the conventional a6wtllNi alloy (sample number 42), crevice corrosion occurs already on the first day.

またα8wt!!Mi入シT1合金(試料番号43)で
は、1日目耐すきま腐食性を有するが、2日目ですきま
腐食が発生する。これに対し本発明合金ではaOO5w
t’l Ru人t)T1合金(試料番号ム4)で1日目
に変色はあるが、完全なすきま腐食の発生は認められな
い。又、aOj wtlRu人pTi合金(試料番号崖
5)では1日目では完全にすきま腐食は発生しない。そ
してこれは従来耐すきま腐食に優れているとされている
P(1人9 T1合金(A1)及びα8 wtll N
i入fiTi合金(n5)’と同等の耐すきま腐食性を
有するものである。さらに□・Ruがo、、o2.α0
3.α04.α05wt16と増加するに従って耐すき
ま腐食性は前記従来合金に比べかくだんの耐すきま腐食
性を有するととKなる。
α8 wt again! ! The Mi-containing T1 alloy (sample number 43) has crevice corrosion resistance on the first day, but crevice corrosion occurs on the second day. On the other hand, in the alloy of the present invention, aOO5w
Although there is discoloration on the first day in the T1 alloy (sample number 4), no complete crevice corrosion is observed. In addition, crevice corrosion does not occur completely on the first day in the aOj wtlRu pTi alloy (sample number 5). And this is P (19 T1 alloy (A1) and α8 wtll N, which are conventionally considered to have excellent crevice corrosion resistance.
It has crevice corrosion resistance equivalent to that of i-filled fiTi alloy (n5)'. Furthermore, □・Ru is o,, o2. α0
3. α04. As α05wt16 increases, the crevice corrosion resistance becomes K, which is higher than that of the conventional alloy.

ことでさらに重要なととはRuの添加が極めて少ない量
でPil入シT1合金よシも優れた耐すきま腐食性を有
することである。例えばα15vt−M入?) T1合
金と本発明のα01 wtl Ru入Jll Ti合金
は同等の耐す1!ま腐食性をもつものであるが、その添
加量はpa入、9 Ti合金では本発明合金の15倍の
量となっている。pbがRuよルもはるかに高価表材料
であることを考え合せると本発明の効果は極めて顕著で
ある。
What is even more important is that even with a very small amount of Ru added, the T1 alloy with Pil has excellent crevice corrosion resistance. For example, α15vt-M? ) The T1 alloy and the α01 wtl Ru Jll Ti alloy of the present invention have equivalent resistance 1! Although it is corrosive, the amount added in the 9 Ti alloy is 15 times that of the alloy of the present invention. Considering that Pb is a much more expensive surface material than Ru, the effects of the present invention are extremely remarkable.

また81人1) r1合金では多量にN1が含有されな
いと前記第1表に示すような耐すきま腐食性の効果は発
生しない。ところが実際上、Tiにα5 wt%程度の
N1が含有されるとすでに加工の難しさがでてくるもの
であるが、 Niがa8wtsにもなると加工性は著し
く悪化する。したがって本発明合金との比較では耐すき
ま腐食性やみならず加工性の面においても劣るものであ
る。
In addition, unless a large amount of N1 is contained in the r1 alloy, the crevice corrosion resistance effect shown in Table 1 will not occur. However, in practice, when Ti contains about α5 wt% of N1, processing becomes difficult, but when Ni reaches a8wts, processability deteriorates significantly. Therefore, compared to the alloy of the present invention, it is inferior not only in crevice corrosion resistance but also in workability.

本発明合金においては、ごく微量である卸05wtLs
のRuの添加で、すでにPfL人J) T1合金と近似
する効果を有するもので有効である。
In the alloy of the present invention, a very small amount of 05wtLs
With the addition of Ru, it is already effective as it has an effect similar to that of PfL T1 alloy.

Ruが増加するにつれて耐すきま腐食性は高くなってい
くが、やはυα5 wtlG以上になると加工性が悪く
なシ、また価格も上昇していくので。
As the Ru content increases, the crevice corrosion resistance increases, but as the Ru content exceeds υα5 wtlG, the workability becomes poor and the price also increases.

この点からみてα5 wt−未満とすべきである。From this point of view, it should be less than α5 wt-.

以上2本発明合金はハロゲン化物溶液特に海水における
すきま腐食に強い抵抗性を有するとともに加工性もよく
、シかも安価に製造できる優れたチタン合金である。
The above-mentioned two alloys of the present invention are excellent titanium alloys that have strong resistance to crevice corrosion in halide solutions, especially seawater, have good workability, and can be manufactured at low cost.

Claims (1)

【特許請求の範囲】[Claims] 0.005wt%〜0.5wt%未満のルテニウムと残
部チタン及び不可避的不純物からなる耐すきま腐食性に
優れたチタン基合金。
A titanium-based alloy with excellent crevice corrosion resistance, consisting of 0.005 wt% to less than 0.5 wt% of ruthenium, the balance being titanium, and unavoidable impurities.
JP12935484A 1984-06-25 1984-06-25 Titanium alloy having superior crevice corrosion resistance Granted JPS619543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12935484A JPS619543A (en) 1984-06-25 1984-06-25 Titanium alloy having superior crevice corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12935484A JPS619543A (en) 1984-06-25 1984-06-25 Titanium alloy having superior crevice corrosion resistance

Publications (2)

Publication Number Publication Date
JPS619543A true JPS619543A (en) 1986-01-17
JPS6256219B2 JPS6256219B2 (en) 1987-11-25

Family

ID=15007524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12935484A Granted JPS619543A (en) 1984-06-25 1984-06-25 Titanium alloy having superior crevice corrosion resistance

Country Status (1)

Country Link
JP (1) JPS619543A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2198144A (en) * 1986-10-31 1988-06-08 Sumitomo Metal Ind Method of improving the resistance of ti-based alloys to corrosion
US6334913B1 (en) * 1998-12-28 2002-01-01 Kobe Steel, Ltd. Corrosion-resistant titanium alloy
JP2006142622A (en) * 2004-11-18 2006-06-08 Mitsubishi Materials Corp Composite metal porous body and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5660253B2 (en) 2013-01-25 2015-01-28 新日鐵住金株式会社 Titanium alloy with excellent corrosion resistance in environments containing bromine ions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123322A (en) * 1977-04-04 1978-10-27 Nat Res Inst Metals Corrosionn resistant titanium alloy containing ruthenium or silver

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123322A (en) * 1977-04-04 1978-10-27 Nat Res Inst Metals Corrosionn resistant titanium alloy containing ruthenium or silver

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2198144A (en) * 1986-10-31 1988-06-08 Sumitomo Metal Ind Method of improving the resistance of ti-based alloys to corrosion
US4859415A (en) * 1986-10-31 1989-08-22 Sumitomo Metal Industries, Ltd. Method of improving the resistance of Ti-based alloys to corrosion in deep-well environments
GB2198144B (en) * 1986-10-31 1991-06-26 Sumitomo Metal Ind Method of improving the resistance of ti-based alloys to corrosion
US6334913B1 (en) * 1998-12-28 2002-01-01 Kobe Steel, Ltd. Corrosion-resistant titanium alloy
JP2006142622A (en) * 2004-11-18 2006-06-08 Mitsubishi Materials Corp Composite metal porous body and its manufacturing method

Also Published As

Publication number Publication date
JPS6256219B2 (en) 1987-11-25

Similar Documents

Publication Publication Date Title
US5529642A (en) Nickel-based alloy with chromium, molybdenum and tantalum
JP5390934B2 (en) Titanium alloy material and structural member, and radioactive waste container
JP5660253B2 (en) Titanium alloy with excellent corrosion resistance in environments containing bromine ions
JP2000512345A (en) Nickel-chromium-molybdenum-alloy
RU2418086C2 (en) Titanium alloy with improved corrosion resistance and durability
JPS5835589B2 (en) Aluminum alloy laminated material for heat exchangers
JPS619543A (en) Titanium alloy having superior crevice corrosion resistance
Troselius Corrosion resistance of Type 18Cr2MoTi stainless steel
JPH0689423B2 (en) Titanium alloy with excellent corrosion resistance
JPH059503B2 (en)
JPS6148548A (en) Ti alloy having high pitting corrosion resistance in environment containing bromine ion
US5238647A (en) Titanium alloys with excellent corrosion resistance
JPS62199744A (en) Titanium alloy having superior crevice corrosion resistance
JPS61127844A (en) Titanium alloy having superior corrosion resistance
JPS61194142A (en) Titanium alloy having superior corrosion resistance
JPS629661B2 (en)
JPS5928622B2 (en) Austenitic stainless steel for high temperature and low chlorine concentration environments
JPS61179836A (en) Highly corrosion resistant austenitic stainless steel having high strength
JPS5817247B2 (en) High chromium alloy with good corrosion resistance and weldability against mixed acids consisting of nitric acid and hydrofluoric acid
JPS6039143B2 (en) Pitting corrosion resistant aluminum alloy
US3268327A (en) Alloys with high resistance to sea water corrosion
EP4124670A1 (en) High chromium and silicon-rich corrosion resistant steel and article comprising the same
US3591368A (en) Copper alloy for use at high temperatures
JP3483773B2 (en) Hot water related equipment and electrical / mechanical parts using a copper-based alloy with excellent corrosion resistance and hot workability
JPS61257446A (en) High tensile and corrosion resistant titanium alloy