JPS6210494B2 - - Google Patents

Info

Publication number
JPS6210494B2
JPS6210494B2 JP8505980A JP8505980A JPS6210494B2 JP S6210494 B2 JPS6210494 B2 JP S6210494B2 JP 8505980 A JP8505980 A JP 8505980A JP 8505980 A JP8505980 A JP 8505980A JP S6210494 B2 JPS6210494 B2 JP S6210494B2
Authority
JP
Japan
Prior art keywords
formula
reaction
group
dialkoxy
butyne
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8505980A
Other languages
Japanese (ja)
Other versions
JPS5711938A (en
Inventor
Akira Fujita
Nobuo Takayama
Keiichi Takagi
Kunio Kojo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Hasegawa Co Ltd
Original Assignee
T Hasegawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Hasegawa Co Ltd filed Critical T Hasegawa Co Ltd
Priority to JP8505980A priority Critical patent/JPS5711938A/en
Publication of JPS5711938A publication Critical patent/JPS5711938A/en
Publication of JPS6210494B2 publication Critical patent/JPS6210494B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、−−ノネナヌル、−−
−−ノナゞ゚ナヌルの劂き銙気成分を包含
する䞋蚘匏(A)、 䜆し匏䞭、はC1〜C16のアルキル基、C2〜
C16のアルケニル基、C3〜C16のアルキニル基お
よびアリヌル基よりなる矀からえらばれた基を瀺
し、はハロゲン、メシル及びトシルよりなる矀
からえらばれた基を瀺す、 で衚わされる−−アルケナヌル類の補造
䞭間䜓ずしお有甚な䞋蚘匏(1)、 䜆し匏䞭、は匏(A)に぀いおのべたず同矩であ
り、R′はC1〜C3のアルキル基を瀺す、 で衚わされる・−ゞアルコキシ−−アルキ
ン類の補法に関する、曎に詳しくは、䞋蚘匏(2)、 䜆し匏䞭、R′はC1〜C3のアルキル基を瀺す、 で衚わされる・−ゞアルコキシ−−ブチン
ず、グリニダヌル詊薬もしくはアルカリ金属アミ
ドずを䜜甚させ、生成物ず䞋蚘匏(3) − (3) 䜆し匏䞭、はC1〜C16のアルキル基、C2〜
C16のアルケニル基、C3〜C16のアルキニル基お
よびアリヌル基よりなる矀からえらばれた基を瀺
し、はハロゲン、メシル及びトシルよりなる矀
からえらばれた基を瀺す、 で衚わされるアルキル化剀ずを反応させるこずを
特城ずする䞋蚘匏(1) 䜆し匏䞭、及びR′は䞊蚘したず同矩であ
る、 で衚わされる・−ゞアルコキシ−−アルキ
ン類の補法に関する。 前蚘匏(A)に包含される−−ノネナヌ
ル、−−−−ノナゞ゚ナヌルは倩然
源の西瓜粟油より単離された化合物であり、西瓜
粟油の重芁な銙気成分の぀であ぀お、銙料調合
基材ずしお著しく銙気を高める䟡倀の高いもので
ある。 埓来、前蚘匏(A)で衚わされる化合物に包含され
る埌蚘(A)′化合物の合成に関しお、Helv.Chim.
Acta.46巻、1792頁1963幎には、䞋蚘工皋
匏、
The present invention provides (Z)-3-nonenal, (Z)-3-
The following formula (A) includes a fragrance component such as (Z)-6-nonadienal, However, in the formula, R is a C 1 -C 16 alkyl group, C 2 -
It is represented by ( The following formula (1) useful as a production intermediate for Z)-3-alkenals, However, in the formula, R has the same meaning as described above for formula (A), and R' represents a C 1 to C 3 alkyl group. More specifically, the following formula (2), However, in the formula, R' represents a C 1 - C 3 alkyl group. By reacting 4,4-dialkoxy-1-butyne represented by the following with a Grignard reagent or an alkali metal amide, the product and the following formula ( 3) R-X (3) However, in the formula, R is a C1 - C16 alkyl group, C2-
Alkyl represented by a group selected from the group consisting of a C 16 alkenyl group, a C 3 to C 16 alkynyl group, and an aryl group, and X represents a group selected from the group consisting of halogen, mesyl, and tosyl. The following formula (1) is characterized by reacting with a curing agent. However, in the formula, R and R' have the same meanings as above, and relates to a method for producing 1,1-dialkoxy-3-alkynes represented by (Z)-3-nonenal and (Z)-3-(Z)-6-nonadienal included in the above formula (A) are compounds isolated from watermelon essential oil, which is a natural source, and are important compounds in watermelon essential oil. It is one of the aroma components and has high value as a base material for perfume preparation, as it significantly enhances the aroma. Conventionally, Helv.Chim.
Acta. vol. 46 , p. 1792 (1963) contains the following process formula,

【衚】 に埓぀お、䞊蚘化合物を合成する方法が蚘茉され
おいる。 䞊蚘埓来法で甚いるHC≡−CHCHOCH3
は高䟡な原料である䞍利益があるほかに、前蚘匏
(1)に包含される匏(1)′化合物の合成に二工皋を必
芁ずする難点がある。曎に、該埓来法では、䞊蚘
の高䟡に぀く原料化合物から䞊蚘R″−≡−
CHCHOCH3の収率が47〜73、この化合物か
ら䞊蚘匏(1)′化合物の収率が72であ぀お、䞊蚘
原料化合物から匏(1)′化合物の収率は玄53皋床
ず䜎収率である。曎に、匏R″−≡−CH
CHOCH3から匏(1)′化合物の圢成には、䞍郜合な
異性化反応を䌎うおそれがあり、この点でもトラ
ブルがさけ難い。 本発明者等は、䞊述の劂き埓来法の欠陥を克服
しお䞊蚘匏(1)′化合物を包含する前蚘匏(1)䞭間䜓
の改善補法を提䟛すべく研究を行぀た。 その結果、たずえば、プロパギルハラむドずオ
ルトギ酞゚ステルずから高収率䞔぀容易に合成で
きる前蚘匏(2)の・−ゞアルコキシ−−ブチ
ンから、䞀工皋操䜜で、前蚘匏(1)の・−ゞア
ルコキシ−−アルキン類が玄90もしくはそれ
以䞊の高収率で䞔぀䞍郜合な異性化反応のトラブ
ルを䌎うこずなしに容易に合成できるこずを発芋
した。 埓぀お、本発明の目的は前蚘匏(1)・−ゞア
ルコキシ−−アルキン類を工業的に有利に補造
できる改善方法を提䟛するにある。 本発明の䞊蚘目的及び曎に倚くの他の目的なら
びに利点は、以䞋の蚘茉から䞀局明らかずなるで
あろう。 本発明方法によれば、前蚘匏(2)・−ゞアル
コキシ−−ブチンず、グリニダヌル詊薬もしく
はアルカリ金属アミドずを䜜甚させ、生成物ず前
蚘匏(3)アルキル化剀ずを反応させるこずにより、
䞀工皋操䜜で、前蚘匏(1)・−ゞアルコキシ−
−アルキン類を高収率、高玔床をも぀お補造す
るこずができる。斯くお埗られる匏(1)化合物は、
それ自䜓公知の方法によ぀お、リンドラヌ觊媒
還元觊媒の存圚䞋に接觊氎玠還元するこずに
より、䞋蚘匏(B)で衚わされる−−アルケ
ナヌルゞアルキルアセタヌルに転化したのち、酞
性觊媒の存圚䞋に加氎分解しお前蚘匏(A)の
−−アルケナヌル類を補造するのに利甚でき
る。この公知工皋を加えお、本発明方法を図匏的
に瀺すず、以䞋のように瀺すこずができる。
According to the table, methods for synthesizing the above compounds are described. HC≡C-CH=CHOCH 3 used in the above conventional method
In addition to the disadvantage of being an expensive raw material, the formula
There is a drawback that two steps are required to synthesize the compound of formula (1)′ included in (1). Furthermore, in the conventional method, the above R″-C≡C-
The yield of CH=CHOCH 3 is 47-73%, the yield of the above formula (1)' compound from this compound is 72%, and the yield of the formula (1)' compound from the above raw material compound is about 53%. degree and low yield. Furthermore, the formula R″-C≡C-CH=
The formation of the compound of formula (1)' from CHOCH 3 may involve an undesirable isomerization reaction, and troubles are also difficult to avoid in this respect. The present inventors conducted research in order to overcome the deficiencies of the conventional methods as described above and provide an improved method for producing the intermediates of the formula (1), including the compounds of the formula (1)'. As a result, for example, from 4,4-dialkoxy-1-butyne of the formula (2), which can be easily synthesized in high yield from propargyl halide and orthoformic acid ester, the formula (1) can be synthesized in one step. It has been discovered that 1,1-dialkoxy-3-alkynes can be easily synthesized in high yields of about 90% or more and without the trouble of inconvenient isomerization reactions. Therefore, an object of the present invention is to provide an improved method for industrially advantageously producing the 1,1-dialkoxy-3-alkynes of the formula (1). The above objects and many other objects and advantages of the present invention will become more apparent from the following description. According to the method of the present invention, the 4,4-dialkoxy-1-butyne of the formula (2) is allowed to react with a Grignard reagent or an alkali metal amide, and the product is reacted with the alkylating agent of the formula (3). By this,
In one step operation, the formula (1) 1,1-dialkoxy-
3-Alkynes can be produced with high yield and high purity. The compound of formula (1) thus obtained is
After being converted into (Z)-3-alkenal dialkyl acetal represented by the following formula (B) by catalytic hydrogen reduction in the presence of Lindlar catalyst (reduction catalyst) by a method known per se, the acidic (Z) of the above formula (A) by hydrolysis in the presence of a catalyst
- Can be used to produce 3-alkenals. In addition to this known step, the method of the present invention can be schematically illustrated as follows.

【衚】 匏(B) 匏(A)
(匏䞭、R、R′Xは前蚘したず同矩)
䞊蚘匏(2)・−ゞアルコキシ−−ブチン
は、䟋えば、プロパルギルブロマむドをアルミニ
りム及びオルト蟻酞゚ステルず反応させお容易に
補造するこずができる。 本発明方法によれば、䞊述のようにしお埗るこ
ずのできる匏(2)・−ゞアルコキシ−−ブチ
ンずグリニダヌル詊薬もしくはアルカリ金属アミ
ンずを䜜甚させ、生成物ず匏(3)アルキル化剀ずを
反応せしめるこずにより、目的ずする匏(1)・
−ゞアルコキシ−−アルキン類を容易に埗るこ
ずができる。 反応は、溶媒䞭グリニダヌル詊薬もしくはアル
カリ金属アミド溶液に、匏(2)・−ゞアルコキ
シ−−ブチンを添加接觊させ、さらに匏(3)アル
キル化剀を添加接觊させお行うこずができる。こ
の反応は、䞀工皋操䜜で、順次、匏(2)・−ゞ
アルコキシ−−ブチンずグリニダヌル詊薬もし
くはアルカリ金属アミド、次いで匏(3)アルキル化
剀を接觊せしめればよく、接觊手段は適宜に遞択
できる。 反応は、䟋えば、玄−80℃〜玄150℃の劂き
広い枩床範囲で行うこずができ、奜たしくは玄−
70℃〜玄70℃の劂き枩床を䟋瀺するこずができ
る。反応時間は反応詊薬の皮類、反応時間などに
よ぀おも適宜に遞択されるが、䟋えば、玄〜玄
10時間皋床の範囲の反応時間を䟋瀺できる。反応
モル比も適宜に遞択でき、䟋えば、匏(2)・−
ゞアルコキシ−−ブチンモル圓り玄0.5〜玄
10、より奜たしくは、玄〜玄1.5モル皋床のグ
リニダヌル詊薬もしくはアルカリ金属アミド、及
び・−ゞアルコキシ−−ブチン圓り玄0.5
〜玄10モル、より奜たしくは玄〜玄1.5モル皋
床のアルキル化剀の䜿甚量を、䟋瀺するこずがで
きる。 䞊蚘匏(2)・−ゞアルコキシ−−ブチンの
具䜓䟋ずしおは、䟋えば、 ・−ゞメトキシ−−ブチン ・−ゞ゚トキシ−−ブチン ・−ゞプロピルオキシ−−ブチン の劂き化合物を䟋瀺するこずができる。又、グリ
ニダヌル詊薬の䟋ずしおは、たずえば、メチルマ
グネシりムクロリド、゚チルマグネシりムブロミ
ド、゚チルマグネシりムクロリド、アリルマグネ
シりムクロリドなどを䟋瀺でき、曎に、アルカリ
金属アミドの䟋ずしおは、䟋えば、リチりムアミ
ド、ナトリりムアミド、カリりムアミド、などを
䟋瀺するこずができる。 䞊蚘反応で甚いる溶媒の具䜓䟋ずしおは、䟋え
ば、ゞ゚チル゚ヌテル、ゞむ゜プロピル゚ヌテ
ル、ゞブチル゚ヌテル、ゞメトキシ゚タン、ゞグ
リム、テトラヒドロフラン、ゞオキサン等の゚ヌ
テル系溶媒たた䟋えば、ベンれン、トル゚ン、
−ヘキサン等の炭化氎玠系溶媒たた䟋えば、
液䜓アンモニア等を挙げるこずができる。これら
の溶媒は単独でも皮以䞊䜵甚しおでも甚いるこ
ずができる。これらの溶媒の䜿甚量には特別の制
玄はないが、原料の匏(2)化合物に察しお、䟋え
ば、玄〜玄200重量倍皋床、䞀局奜たしくは玄
〜玄50重量倍皋床の䜿甚量を䟋瀺するこずがで
きる。 䞊蚘反応の終了埌、䟋えば反応生成物を飜和塩
化アンモニア氎䞭に泚入し、反応液を分解し、適
圓な溶媒で抜出し、溶媒局を氎掗し、也燥埌濃瞮
するこずにより匏(1)化合物を高収率、高玔床で埗
るこずができる。曎に望むならば、枛圧蒞留する
こずによりさらに粟補するこずができる。 䞊述のようにしお、本発明方法で埗られる匏(1)
・−ゞアルコキシ−−アルキン類は、䟋え
ば、前蚘図匏に瀺したようにしお、それ自䜓公知
の手段により、還元觊媒の存圚䞋に接觊氎玠還元
しお前蚘匏(B)の−−アルケナヌルゞアル
キルアセタヌルに転化し、さらに、酞性觊媒の存
圚䞋に加氎分解しお、前蚘匏(A)の−−ア
ルケナヌル、䟋えば−−ノネナヌル、
−−−−ノナゞ゚ナヌルの劂き銙料
物質の補造に有利に利甚できる。 䞊蚘匏(B)化合物の補造は、䟋えば、匏(1)化合物
を、䞍掻性有機溶媒䞭、被毒したパラゞりム等の
劂き還元觊媒の存圚䞋に、接觊氎玠還元反応する
こずにより、奜収率で優れた遞択率をも぀お容易
に行うこずができる。反応は宀枩でも充分に進行
し、䟋えば、玄℃〜玄40℃皋床の枩床で行うこ
ずができ、玄10℃〜玄30℃の枩床範囲の採甚が䞀
局奜たしい。又、反応は垞圧でも充分に進行する
が、加圧条件を採甚するこずもでき、玄〜玄20
Kgcm2皋床の圧力範囲がしばしば採甚される。 䞊蚘接觊還元反応においお䜿甚するのに適した
被毒したパラゞりム等の觊媒ずしおは、䟋えば、
酢酞鉛で被毒したパラゞりムリンドラヌ觊媒
及びキノリン等を添加したパラゞりム−硫酞バリ
りム等を挙げるこずができる。これらの觊媒の䜿
甚量は、原料の匏(1)化合物に察しお、䟋えば玄
0.1〜玄20重量皋床、䞀局奜たしくは玄0.5〜玄
10重量皋床が最もしばしば採甚される。 又、䞊蚘接觊氎玠還元反応においお䜿甚される
䞍掻性溶媒ずしおは、䟋えば、メタノヌル、゚タ
ノヌル、−プロパノヌル、む゜プロピルアルコ
ヌル、酢酞゚チル、ヘキサン及び石油゚ヌテル等
を挙げるこずができる。これらの溶媒は単独もし
くは皮以䞊の混合物であ぀おも差し぀かえな
い。これらの溶媒の䜿甚量には特別な制玄はない
が、䟋えば、原料の匏(1)化合物に察しお玄〜玄
300重量倍皋床、奜たしくは玄10〜玄100重量倍皋
床がしばしば採甚される。接觊氎玠還元反応埌
は、甚いた觊媒を別分離し、液を氎掗、也燥
埌濃瞮するこずにより前蚘匏(B)の化合物を奜収
率、優れた遞択率で埗るこずができる。曎に望む
ならば、枛圧蒞留するこずによりさらに粟補する
こずができる。 又、前蚘匏(A)の−−アルケナヌル類を
前蚘匏(B)の−−アルケナヌルゞアルキル
アセタヌル類から補造するには、酞性觊媒の存圚
䞋、適圓なる溶媒䞭、加氎分解するこずによ぀
お、高収率か぀奜遞択率をも぀お容易に補造する
こずができる。この加氎分解反応は、䟋えば玄
゜〜玄50℃皋床の枩床範囲、奜たしくは玄10゜〜
箄35℃皋床の枩床範囲が採甚される。反応時間は
反応枩床等によ぀お適宜に倉曎でき、䟋えば玄10
〜玄50時間皋床の反応時間を䟋瀺するこずができ
る。該加氎分解反応に甚いられる酞性觊媒の具䜓
䟋ずしおは、䟋えば、硫酞、塩酞、リン酞、パラ
トル゚ンスルホン酞、ベンれンスルホン酞、メタ
ンスルホン酞、トリクロロ酢酞、ゞクロロ酢酞、
モノクロロ酢酞、トリフルオロ酢酞、ゞフルオロ
酢酞、モノフルオロ酢酞、シナり酞、ギ酞などの
他に、䟋えばピリゞン塩酞塩の劂き共圹酞、匷酞
性むオン亀換暹脂などが䟋瀺できる。これらの䜿
甚量は、原料の匏(B)化合物に察しお玄0.1〜玄
倍モル皋床、奜たしくは、玄0.1〜玄0.5倍モル皋
床がしばしば採甚される。該反応に甚いられる溶
媒ずしおは、氎、メタノヌル、゚タノヌル等の極
性溶媒の他に、䟋えば、ベンれン、トル゚ン、ヘ
キサン等の炭化氎玠系の溶媒、たた䟋えば、ゞ゚
チル゚ヌテル、ゞむ゜プロピル゚ヌテル、ゞメト
キシ゚タン、ゞメトキシメタン、テトラヒドロフ
ラン、ゞオキサン等の゚ヌテル系溶媒を挙げるこ
ずができる。これらの溶媒は、単独でも皮以䞊
䜵甚しおでも䜿甚するこずができ、その䜿甚量に
は、特別な制玄はないが、前蚘匏(B)化合物に察し
お玄〜玄50重量倍皋床、䞀局奜たしくは玄〜
箄30重量倍皋床の䜿甚量を䟋瀺するこずができ
る。䞊蚘加氎分解反応終了埌、䟋えば、反応生成
物を氎䞭に泚入し、適圓な溶媒で抜出し、炭
酞ナトリりム氎溶液で溶媒局を掗浄、぀いで氎
掗、也燥埌、濃瞮するこずにより前蚘匏(A)の
−−アルケナヌル類を高収率、高玔床で埗
るこずができる。曎に望むならば、䟋えば枛圧蒞
留やカラムクロマト等の手段によりさらに粟補す
るこずができる。 以䞋実斜䟋により本発明数態様に぀いお曎に詳
しく説明する。 参考䟋  ・−ゞ゚トキシ−−ブチンの合成 反応容噚にテトラヒドロフラン20ml、アルミニ
りムチツプ2.5を仕蟌み、60〜65℃の枩床で玄
30分間撹拌しながら10のプロパルギルブロマむ
ドを滎䞋しお反応を行な぀た。滎䞋終了埌60〜65
℃でさらに時間反応を続けたのち、反応液を10
℃たで冷华した。冷华埌、10〜20℃の枩床で玄30
分間撹拌しながらオルトギ酞゚チル15を滎䞋し
お反応を行な぀た。滎䞋終了埌宀枩䞋で時間撹
拌し反応を完結させた。反応液を飜和塩化アンモ
ニりム氎溶液100ml䞭に泚入し、゚ヌテルで抜出
した。゚ヌテル局を氎掗し、分離粟補し、玔粋な
沞点50〜51℃mmHgを有する・−ゞ゚ト
キシ−−ブチンを9.5埗た。理論収率84 実斜䟋  ・−ゞ゚トキシ−−ヘキシンの合成 反応容噚に液䜓アンモニアを仕蟌み、−35
〜−40℃の枩床で玄40分間撹拌しながら27.6の
金属ナトリりム及び硝酞第二鉄ずを加え、ナトリ
りムアミドを生成させた。反応液䞭に−35〜−40
℃の枩床で玄30分間撹拌しながら142の・
−ゞ゚トキシ−−ブチンを滎䞋し、滎䞋終了埌
さらに−35〜−40℃の枩床で時間撹拌反応し
た。次に反応液䞭に−35〜−40℃30分間撹拌しな
がら130の臭化゚チルを滎䞋し、滎䞋終了埌さ
らに−35〜−40℃の枩床で時間撹拌反応した。
反応終了埌液䜓アンモニアを回収し、残枣を飜和
塩化アンモニりム氎溶液䞭に泚入し゚ヌテル抜出
した。垞法に埓い、分離粟補を行ない、沞点85〜
86℃15mmHgを有する玔粋な・−ゞ゚トキ
シ−−ヘキシン154を埗た。理論収率91 実斜䟋  ・−ゞ゚トキシ−・−ノナゞむンの合
成 反応容噚にテトラヒドロフラン30ml、金属マグ
ネシりムチツプ4.8を仕蟌み、氎冷䞋、32.8
の臭化゚チル−30mlのテトラヒドロフランの混合
液を撹拌しながら宀枩で滎䞋する。滎䞋埌、28.4
の・−ゞ゚トキシ−−ブチン−30mlのテ
トラヒドロフランの混合液を撹拌しながら宀枩で
滎䞋する。滎䞋埌、さらに、テトラヒドロフラン
を還流䞋で時間撹拌反応させる。その埌、20
の−ブロモ−−ペンチン−30mlのテトラヒド
ロフランの混合液を撹拌しながら宀枩で滎䞋す
る。滎䞋終了埌、さらに、宀枩で時間撹拌反応
させる。反応終了埌、飜和塩化アンモニりム氎溶
液䞭に泚入し、゚ヌテルを抜出する。垞法に埓
い、分離粟補を行い、沞点113〜115℃mmHg
を有する玔粋な・−ゞ゚トキシ−・−ノ
ナゞむン26を埗る。理論収率89 参考䟋  ・−ゞ゚トキシ−・−・−ノ
ナゞ゚ンの合成 オヌトクレヌプ䞭に・−ゞ゚トキシ−・
−ノナゞむン25、メタノヌル240ml、キノリ
ン3.2、リンドラヌ觊媒3.2を仕蟌み宀枩䞋、
最高氎玠圧10Kgcm2で理論量の氎玠吞収があるた
で撹拌反応する。反応終了埌、反応液から觊媒を
別し、液からメタノヌルを回収する。残枣に
゚ヌテル50mlを加え、氎掗、塩酞氎掗、氎
掗、飜和重そう氎掗、氎掗する。垞法に埓い、分
離粟補を行い、沞点91〜93℃mmHgを有する
玔粋な・−ゞ゚トキシ−シス、シス−・
−ノナゞ゚ン23を埗る。理論収率90 参考䟋  ・−・−ノナゞ゚ナヌルの合成 反応容噚に0.5N塩酞氎溶液30ml、・−ゞ
゚トキシ−シス、シス−・−ノナゞ゚ン
を仕蟌み、宀枩䞋、20時間撹拌反応する。反応終
了埌゚ヌテル抜出する。垞法に埓い、分離粟補を
行い、沞点70〜72℃mmHgを有する玔粋なシ
ス、シス−・−ノナゞ゚ナヌル1.5を埗
る。理論収率75
[Table] Formula (B) Formula (A)
(In the formula, R and R'X have the same meanings as above)
The above formula (2) 4,4-dialkoxy-1-butyne can be easily produced, for example, by reacting propargyl bromide with aluminum and orthoformate. According to the method of the present invention, 4,4-dialkoxy-1-butyne of the formula (2), which can be obtained as described above, is reacted with a Grignard reagent or an alkali metal amine, and the product and the alkyl of the formula (3) are reacted. By reacting with a compounding agent, the desired formula (1) 1.1
-Dialkoxy-3-alkynes can be easily obtained. The reaction can be carried out by adding 4,4-dialkoxy-1-butyne of formula (2) to a Grignard reagent or alkali metal amide solution in a solvent, and then adding and contacting an alkylating agent of formula (3). . This reaction can be carried out in one step by sequentially contacting 4,4-dialkoxy-1-butyne of the formula (2) with a Grignard reagent or an alkali metal amide, and then with the alkylating agent of the formula (3). can be selected as appropriate. The reaction can be carried out over a wide temperature range, for example from about -80°C to about +150°C, preferably at about -
Temperatures such as 70°C to about +70°C may be exemplified. The reaction time is appropriately selected depending on the type of reaction reagent, reaction time, etc., but for example, from about 1 to about
An example of a reaction time range is about 10 hours. The reaction molar ratio can also be selected appropriately, for example, formula (2) 4・4-
About 0.5 to about 1 mole of dialkoxy-1-butyne
10, more preferably about 1 to about 1.5 moles of Grignard reagent or alkali metal amide, and about 0.5 moles per 4,4-dialkoxy-1-butyne.
The amount of alkylating agent used can be exemplified from about 10 moles to about 10 moles, more preferably from about 1 to about 1.5 moles. Specific examples of the above formula (2) 4,4-dialkoxy-1-butyne include: 4,4-dimethoxy-1-butyne 4,4-diethoxy-1-butyne 4,4-dipropyloxy-1 - Compounds such as butyne may be exemplified. Examples of Grignard reagents include methylmagnesium chloride, ethylmagnesium bromide, ethylmagnesium chloride, allylmagnesium chloride, and examples of alkali metal amides include lithium amide, sodium amide, potassium amide, etc. Amide, etc. can be exemplified. Specific examples of the solvent used in the above reaction include ether solvents such as diethyl ether, diisopropyl ether, dibutyl ether, dimethoxyethane, diglyme, tetrahydrofuran, and dioxane;
Hydrocarbon solvents such as n-hexane; also, for example,
Examples include liquid ammonia. These solvents can be used alone or in combination of two or more. There is no particular restriction on the amount of these solvents to be used, but for example, they may be used in an amount of about 1 to about 200 times, more preferably about 5 to about 50 times, the weight of the compound of formula (2) as a raw material. Quantities can be exemplified. After the completion of the above reaction, for example, the reaction product is poured into saturated ammonium chloride water, the reaction solution is decomposed, extracted with an appropriate solvent, the solvent layer is washed with water, dried and concentrated to obtain the compound of formula (1). It can be obtained in high yield and high purity. If desired, further purification can be achieved by distillation under reduced pressure. As described above, formula (1) obtained by the method of the present invention
1,1-Dialkoxy-3-alkynes can be converted to (Z )-3-alkenal dialkyl acetal and further hydrolyzed in the presence of an acidic catalyst to convert (Z)-3-alkenal of the formula (A), such as (Z)-3-nonenal,
It can be advantageously used in the production of perfume substances such as (Z)-3-(Z)-6-nonadienal. The above formula (B) compound can be produced, for example, by subjecting the formula (1) compound to a catalytic hydrogen reduction reaction in an inert organic solvent in the presence of a reduction catalyst such as poisoned palladium. can be easily carried out with excellent selectivity. The reaction proceeds satisfactorily even at room temperature, and can be carried out, for example, at a temperature of about 5°C to about 40°C, and more preferably a temperature range of about 10°C to about 30°C. Although the reaction proceeds satisfactorily under normal pressure, pressurized conditions can also be used, and
Pressure ranges of the order of Kg/cm 2 are often employed. Catalysts such as poisoned palladium suitable for use in the above catalytic reduction reaction include, for example:
Palladium poisoned with lead acetate (Rindler catalyst)
and palladium-barium sulfate to which quinoline or the like is added. The amount of these catalysts to be used is, for example, approximately
About 0.1 to about 20% by weight, more preferably about 0.5 to about
A content of around 10% by weight is most often employed. Examples of the inert solvent used in the catalytic hydrogen reduction reaction include methanol, ethanol, n-propanol, isopropyl alcohol, ethyl acetate, hexane, and petroleum ether. These solvents may be used alone or in a mixture of two or more. There is no particular restriction on the amount of these solvents used, but for example, about 5 to about
About 300 times the weight, preferably about 10 to about 100 times the weight, is often employed. After the catalytic hydrogen reduction reaction, the catalyst used is separated, the liquid is washed with water, dried, and concentrated, whereby the compound of formula (B) can be obtained in good yield and excellent selectivity. If desired, further purification can be achieved by distillation under reduced pressure. In addition, in order to produce the (Z)-3-alkenals of the formula (A) from the (Z)-3-alkenal dialkyl acetals of the formula (B), in the presence of an acidic catalyst, in a suitable solvent. , can be easily produced with high yield and good selectivity by hydrolysis. This hydrolysis reaction is, for example, about 0
Temperature range from ゜~about 50℃, preferably about 10゜~
A temperature range of approximately 35°C is adopted. The reaction time can be changed appropriately depending on the reaction temperature, etc., for example, about 10
An example of a reaction time is about 50 hours. Specific examples of acidic catalysts used in the hydrolysis reaction include sulfuric acid, hydrochloric acid, phosphoric acid, para-toluenesulfonic acid, benzenesulfonic acid, methanesulfonic acid, trichloroacetic acid, dichloroacetic acid,
In addition to monochloroacetic acid, trifluoroacetic acid, difluoroacetic acid, monofluoroacetic acid, oxalic acid, formic acid, etc., examples include conjugate acids such as pyridine hydrochloride, strong acidic ion exchange resins, and the like. The amount of these used is about 0.1 to about 5
About twice the molar amount, preferably about 0.1 to about 0.5 times the molar amount, is often employed. Solvents used in the reaction include polar solvents such as water, methanol, and ethanol, as well as hydrocarbon solvents such as benzene, toluene, and hexane, and examples such as diethyl ether, diisopropyl ether, dimethoxyethane, and dimethoxy. Examples include ether solvents such as methane, tetrahydrofuran, and dioxane. These solvents can be used alone or in combination of two or more, and there are no special restrictions on the amount used, but it is about 5 to about 50 times the weight of the compound of formula (B) above. , more preferably from about 3 to
An example of an amount used is about 30 times the weight. After the completion of the above hydrolysis reaction, for example, the reaction product is poured into water, extracted with an appropriate solvent, the solvent layer is washed with a 5% aqueous sodium carbonate solution, then washed with water, dried, and concentrated to obtain the formula (A ) (Z)-3-alkenals can be obtained in high yield and purity. If desired, it can be further purified by means such as vacuum distillation or column chromatography. Hereinafter, several embodiments of the present invention will be explained in more detail with reference to Examples. Reference Example 1 Synthesis of 4,4-diethoxy-1-butyne 20 ml of tetrahydrofuran and 2.5 g of aluminum chips were placed in a reaction vessel and heated at a temperature of 60 to 65°C.
The reaction was carried out by dropping 10 g of propargyl bromide while stirring for 30 minutes. 60-65 after completion of dripping
After continuing the reaction at ℃ for another hour, the reaction solution was diluted to 10
Cooled to ℃. After cooling, at a temperature of 10-20℃ about 30
While stirring for minutes, 15 g of ethyl orthoformate was added dropwise to carry out the reaction. After the dropwise addition was completed, the mixture was stirred at room temperature for 1 hour to complete the reaction. The reaction solution was poured into 100 ml of saturated ammonium chloride aqueous solution and extracted with ether. The ether layer was washed with water, separated and purified to obtain 9.5 g of pure 4,4-diethoxy-1-butyne having a boiling point of 50-51°C/7 mmHg. (Theoretical yield 84%) Example 1 Synthesis of 1,1-diethoxy-3-hexyne Charge liquid ammonia 1 into a reaction vessel, and -35
27.6 g of sodium metal and ferric nitrate were added while stirring for about 40 minutes at a temperature of ˜-40° C. to form sodium amide. -35 to -40 in the reaction solution
4.4 g of 142 g while stirring for about 30 minutes at a temperature of ℃.
-Diethoxy-1-butyne was added dropwise, and after the addition was completed, the reaction was further stirred at a temperature of -35 to -40°C for 1 hour. Next, 130 g of ethyl bromide was added dropwise into the reaction solution while stirring for 30 minutes at -35 to -40°C, and after the dropwise addition was completed, the reaction was further stirred at a temperature of -35 to -40°C for 1 hour.
After the reaction was completed, liquid ammonia was collected, and the residue was poured into a saturated aqueous ammonium chloride solution and extracted with ether. Separate and purify according to conventional methods to obtain a boiling point of 85~
154 g of pure 1,1-diethoxy-3-hexyne with a temperature of 86°C/15 mmHg were obtained. (Theoretical yield 91%) Example 2 Synthesis of 1,1-diethoxy-3,6-nonadiyne 30 ml of tetrahydrofuran and 4.8 g of metal magnesium chips were placed in a reaction vessel, and 32.8 g was added under water cooling.
A mixture of ethyl bromide and 30 ml of tetrahydrofuran is added dropwise at room temperature with stirring. After dripping, 28.4
A mixture of g of 4,4-diethoxy-1-butyne and 30 ml of tetrahydrofuran was added dropwise at room temperature with stirring. After the dropwise addition, tetrahydrofuran is further stirred and reacted under reflux for 2 hours. Then 20g
A mixture of 1-bromo-2-pentyne and 30 ml of tetrahydrofuran was added dropwise at room temperature with stirring. After completion of the dropwise addition, the mixture is further stirred and reacted at room temperature for 1 hour. After the reaction is completed, the mixture is poured into a saturated aqueous ammonium chloride solution to extract ether. Separate and purify according to conventional methods, boiling point 113-115℃/3mmHg
26 g of pure 1,1-diethoxy-3,6-nonadiyne having the following properties are obtained. (Theoretical yield 89%) Reference example 2 Synthesis of 1,1-diethoxy-(Z).(Z)-3,6-nonadiene 1,1-diethoxy-3.
Prepare 25 g of 6-nonadiyne, 240 ml of methanol, 3.2 g of quinoline, and 3.2 g of Lindlar catalyst at room temperature.
The reaction is stirred at a maximum hydrogen pressure of 10 kg/cm 2 until the theoretical amount of hydrogen is absorbed. After the reaction is completed, the catalyst is separated from the reaction solution and methanol is recovered from the solution. Add 50 ml of ether to the residue, wash with water, wash with 5% hydrochloric acid, wash with water, wash with saturated heavy acid, and wash with water. Separation and purification were performed according to conventional methods to obtain pure 1,1-diethoxy-cis, cis-3,6 having a boiling point of 91-93℃/3 mmHg.
- Obtain 23 g of nonadiene. (Theoretical yield 90%) Reference example 3 Synthesis of (Z)・(Z)-3・6-nonadienal In a reaction vessel, 30 ml of 0.5N hydrochloric acid aqueous solution, 3 g of 1・1-diethoxy-cis, cis-3・6-nonadiene
and react with stirring at room temperature for 20 hours. After the reaction is complete, extract with ether. Separation and purification is performed according to a conventional method to obtain 1.5 g of pure cis, cis-3,6-nonadienal having a boiling point of 70-72°C/3 mmHg. (Theoretical yield 75%)

Claims (1)

【特蚱請求の範囲】  䞋蚘匏(2)、 䜆し匏䞭、R′はC1〜C3のアルキル基を瀺す、 で衚わされる・−ゞアルコキシ−−ブチン
ず、グリニダヌル詊薬もしくはアルカリ金属アミ
ドずを䜜甚させ、生成物ず䞋蚘匏(3) − (3) 䜆し匏䞭、はC1〜C16のアルキル基、C2〜
C16のアルケニル基、C3〜C16のアルキニル基お
よびアリヌル基よりなる矀からえらばれた基を瀺
し、はハロゲン、メシル及びトシルよりなる矀
から遞ばれた基を瀺す、 で衚わされるアルキル化剀ずを反応させるこずを
特城ずする䞋蚘匏(1) 䜆し匏䞭、及びR′は䞊蚘したず同矩であ
る、 で衚わされる・−ゞアルコキシ−−アルキ
ン類の補法。
[Claims] 1. The following formula (2), However, in the formula, R' represents a C 1 - C 3 alkyl group. By reacting 4,4-dialkoxy-1-butyne represented by the following with a Grignard reagent or an alkali metal amide, the product and the following formula ( 3) R-X (3) However, in the formula, R is a C1 - C16 alkyl group, C2-
represents a group selected from the group consisting of a C 16 alkenyl group, a C 3 to C 16 alkynyl group, and an aryl group, and X represents a group selected from the group consisting of halogen, mesyl, and tosyl; The following formula (1) is characterized by reacting with a curing agent. However, in the formula, R and R' have the same meaning as above. A method for producing 1,1-dialkoxy-3-alkynes represented by:
JP8505980A 1980-06-25 1980-06-25 Preparation of 1,1-dialkoxy-3-alkynes Granted JPS5711938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8505980A JPS5711938A (en) 1980-06-25 1980-06-25 Preparation of 1,1-dialkoxy-3-alkynes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8505980A JPS5711938A (en) 1980-06-25 1980-06-25 Preparation of 1,1-dialkoxy-3-alkynes

Publications (2)

Publication Number Publication Date
JPS5711938A JPS5711938A (en) 1982-01-21
JPS6210494B2 true JPS6210494B2 (en) 1987-03-06

Family

ID=13848059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8505980A Granted JPS5711938A (en) 1980-06-25 1980-06-25 Preparation of 1,1-dialkoxy-3-alkynes

Country Status (1)

Country Link
JP (1) JPS5711938A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1190715B (en) * 1982-03-04 1988-02-24 Montedison Spa PROCESS FOR THE PREPARATION OF THE COMPOUND 1-DECILOSSI-4 ((7-BONE-4-OCTINYL) -BONE) -BENZENE
IT1190714B (en) * 1982-03-04 1988-02-24 Montedison Spa PROCESS FOR THE PREPARATION OF THE COMPOUND 1-DECILOSSI-4 - ((7-BONE-4-OCTINYL) -BONE) -BENZENE
JPS5925347A (en) * 1982-08-03 1984-02-09 T Hasegawa Co Ltd Preparation of 1,1-dialkoxy-3-alkynes

Also Published As

Publication number Publication date
JPS5711938A (en) 1982-01-21

Similar Documents

Publication Publication Date Title
US6770789B2 (en) Process for trifluoromethylation of sulfates
JP3575705B2 (en) Method for producing gingerol and shogaol
JPS6210494B2 (en)
JPS62201842A (en) Manufacture of 3-hydroxycyclopent-4-ene-1-ones
JP3386596B2 (en) Method for producing 5 (E), 8 (Z), 11 (Z) -tetradecatrien-2-one
EP0126470B1 (en) Process for the preparation of tamoxifen
JPH0466216B2 (en)
JPS6212770B2 (en)
JP2013540736A (en) New process
JPS623827B2 (en)
SU573483A1 (en) Method of preparing tetrahydropyranols
JPH0514695B2 (en)
JPS6313975B2 (en)
JPS64378B2 (en)
JP2680683B2 (en) Method for producing solanesylamine derivative
JPS6148815B2 (en)
JPS5919535B2 (en) Method for producing r-ionone and its derivatives
JP2545289B2 (en) Method for producing γ-ionones
JPS6234025B2 (en)
JP4064645B2 (en) New production method of polysubstituted cycloalkenes
JPS5858335B2 (en) Alpha - Chikanacetone no Seizouhou
RU2023131280A (en) METHOD FOR OBTAINING BTK INHIBITORS
JPH0316932B2 (en)
JPH07145098A (en) Alkoxyl group-containing compound
JPH0631202B2 (en) Solanofuran manufacturing method