JPH0514695B2 - - Google Patents

Info

Publication number
JPH0514695B2
JPH0514695B2 JP59136380A JP13638084A JPH0514695B2 JP H0514695 B2 JPH0514695 B2 JP H0514695B2 JP 59136380 A JP59136380 A JP 59136380A JP 13638084 A JP13638084 A JP 13638084A JP H0514695 B2 JPH0514695 B2 JP H0514695B2
Authority
JP
Japan
Prior art keywords
methyl
same manner
mol
reaction
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59136380A
Other languages
Japanese (ja)
Other versions
JPS6115853A (en
Inventor
Koichi Kanehira
Yoshiji Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP59136380A priority Critical patent/JPS6115853A/en
Publication of JPS6115853A publication Critical patent/JPS6115853A/en
Publication of JPH0514695B2 publication Critical patent/JPH0514695B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は2−置換−5−メチル−4−ヘキセン
−1−アールの製造方法に関し、詳しくはアルデ
ヒドと1−ハロゲノ−3−メチル−2−ブテンと
カ性アルカリ、水及び相間移動触媒の存在下に反
応させ、ついで得られた反応混合物を酸処理する
ことにより2−置換−5−メチル−4−ヘキセン
−1−アールを製造する方法に関する。 本発明の方法により製造される2−置換−5−
メチル−4−ヘキセン−1−アールは香料の香気
成分又はその合成原料として有用な化合物〔油化
学、第31巻、第295〜299頁(1982年)参照〕。 〔従来の技術〕 従来、2−置換−5−メチル−4−ヘキセン−
1−アールは下記の方法(1)、(2)、(3)又は(4)により
製造されることが知られている。 〔Bull.Soc.Chim.France,2618(1964)参照)〕 〔Tetrahedron Letters,No.15,1273(1973)参
照〕 〔Tetrahedron Letters,No.5491(1978)参照〕 〔油化学、第31巻、第295頁(1982年)参照〕 〔発明が解決しようとする問題点〕 上記の従来法(1)では、135℃の高温で30時間と
長時間反応させる必要があり、しかも目的とする
アルデヒドの収率が23%と低い。従来法(2)では2
−エチル−1−ヘキセニル 3−メチル−2−ブ
テニルエーテルが多量に副生し、しかも目的とす
るアルデヒドとの分離が困難である。また従来法
(3)では反応試剤である水素化カリウム、テトラヒ
ドロフラン(THF)が高価である。さらに従来
法(4)では水素化リチウムアルミニウム、ピリジニ
ウムクロロクロメートなどの反応試剤が高価であ
り、しかも反応工程が長い。従つて、これらの従
来法はいずれも2−置換−5−メチル−4−ヘキ
セン−1−アール−の有利な製造方法ではない。 本発明の目的は、高純度の2−置換−5−メチ
ル−4−ヘキセン−1−アールを安価にしかも好
収率で製造し得る方法を提供することにある。 〔問題点を解決するための手段〕 本発明によれば、上記の目的は、一般式 (式中、R1及びR2は同一又は異なり各々低級ア
ルキル基若しくは低級アルケニル基を表わすか、
又はR1とR2が一緒になつて
[Industrial Application Field] The present invention relates to a method for producing 2-substituted-5-methyl-4-hexen-1-al, and more specifically, the present invention relates to a method for producing 2-substituted-5-methyl-4-hexen-1-al, in particular, an aldehyde, 1-halogeno-3-methyl-2-butene, a caustic alkali, The present invention relates to a method for producing 2-substituted-5-methyl-4-hexen-1-al by reacting in the presence of water and a phase transfer catalyst, and then treating the resulting reaction mixture with an acid. 2-substituted-5- produced by the method of the invention
Methyl-4-hexen-1-al is a compound useful as an aroma component of perfumes or a raw material for its synthesis [see Oil Chemistry, Vol. 31, pp. 295-299 (1982)]. [Prior art] Conventionally, 2-substituted-5-methyl-4-hexene-
It is known that 1-R is produced by the following method (1), (2), (3) or (4). [See Bull.Soc.Chim.France, 2618 (1964)] [See Tetrahedron Letters, No. 15, 1273 (1973)] [See Tetrahedron Letters, No. 5491 (1978)] [See Oil Chemistry, Vol. 31, p. 295 (1982)] [Problems to be solved by the invention] In the conventional method (1) above, it is necessary to carry out the reaction at a high temperature of 135°C for a long time of 30 hours. Moreover, the yield of the target aldehyde is as low as 23%. In the conventional method (2), 2
A large amount of -ethyl-1-hexenyl 3-methyl-2-butenyl ether is produced as a by-product, and furthermore, it is difficult to separate it from the target aldehyde. Also, conventional method
In (3), the reaction reagents potassium hydride and tetrahydrofuran (THF) are expensive. Furthermore, in the conventional method (4), reaction reagents such as lithium aluminum hydride and pyridinium chlorochromate are expensive, and the reaction process is long. Therefore, none of these conventional methods is an advantageous method for producing 2-substituted-5-methyl-4-hexene-1-al-. An object of the present invention is to provide a method for producing highly pure 2-substituted-5-methyl-4-hexen-1-al at low cost and with a good yield. [Means for Solving the Problems] According to the present invention, the above object is achieved by solving the general formula (In the formula, R 1 and R 2 are the same or different and each represents a lower alkyl group or a lower alkenyl group,
Or R 1 and R 2 together

【式】鎖を表わす。ここ で、X1、X2及びX3は同一又は異なり各々水素原
子又は低級アルキル基を表わし、Y1及びY2
各々水素原子を表わすか又はこれらが一緒になつ
て単結合を表わす。) で示されるアルデヒドと1−ハロゲノ−3−メチ
ル−2−ブテンとをカ性アルカリ、水及び相間移
動触媒の存在下に反応させ、ついで得られた有機
生成物を酸処理することを特徴とする一般式 (式中、R1及びR2は前記定義のとおりである。)
で示される2−置換−5−メチル−4−ヘキセン
−1−アールの製造方法を提供することによつて
達成される。 上記の一般式におけるR1及びR2を詳しく説明
する。R1及びR2は同一又は異なり各々メチル基、
エチル基、n−プロピル基、i−プロピル基、n
−ブチル基、i−ブチル基、sec−ブチル基、n
−ペンチル基、n−ヘキシル基などの低級アルキ
ル基;若しくはビニル基、1−プロペニル基、2
−プロペニル基、1−ブテニル基、2−ブテニル
基、3−ブテニル基などの低級アルケニル基を表
わすか、又はR1とR2が一緒になつて
[Formula] Represents a chain. Here, X 1 , X 2 and X 3 are the same or different and each represents a hydrogen atom or a lower alkyl group, and Y 1 and Y 2 each represent a hydrogen atom or together represent a single bond. ) and 1-halogeno-3-methyl-2-butene in the presence of a caustic alkali, water and a phase transfer catalyst, and then the resulting organic product is treated with an acid. general formula to (In the formula, R 1 and R 2 are as defined above.)
This is achieved by providing a method for producing 2-substituted-5-methyl-4-hexen-1-al represented by: R 1 and R 2 in the above general formula will be explained in detail. R 1 and R 2 are the same or different, each a methyl group,
Ethyl group, n-propyl group, i-propyl group, n
-butyl group, i-butyl group, sec-butyl group, n
-lower alkyl group such as pentyl group, n-hexyl group; or vinyl group, 1-propenyl group, 2
-represents a lower alkenyl group such as a propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, or R 1 and R 2 taken together

〔実施例〕〔Example〕

以下、実施例により本発明を説明するが、本発
明はこれらの実施例により限定されるものではな
い。 実施例 1 2,2,5−トリメチル−5−ヘキセン−1
−アールの合成 水酸化ナトリウム340g(8.50mol)、水340ml、
ベンゼン400ml及びヨウ化テトラブチルアンモニ
ウム31.4g(85mmol)の混合溶液中に、1−ク
ロロ−3−メチル−2−ブテン760g(7.27m
mol)とイソブチルアルデヒド639g(8.86mol)
との混合液を60〜70℃の温度で8時間かけて滴下
した。滴下終了後、70℃で2時間撹拌した。この
反応混合物に水1.5を加え、析出している食塩
を溶解させたのち、有機層と水層とに分液した。
有機層から溶媒を留去し、その残留物に2規定硫
酸300mlとテトラヒドロフラン300mlを加えて90分
間加熱還流させた。この反応混合物からジエチル
エーテルで生成物を抽出した。抽出液を水、チオ
硫酸ナトリウム水溶液、炭酸水素ナトリウム水溶
液及び飽和食塩水で順次洗滌し、無水硫酸マグネ
シウムで乾燥したのち、これにより溶媒を留去し
た。その残渣を減圧下に蒸留することにより、68
℃/20mmHgの留分として2,2,5−トリメチ
ル−5−ヘキセン−1−アール(純度95%)を
642g(4.58mol)得た。収率63%。生成物の
NMRスペクトルを次に示す。1 HNMRスペクトル(90MHz)δCCl4 HMS:0.95(s、
3H);1.53、1.64(each s、6H);2.03(d,J
=7Hz、2H);4.83〜5.12(m、1H);9.36(s、
1H) 実施例 2 2−エチル−2,5−ジメチル−4−ヘキセン
−1−アールの合成 実施例1においてイソプチルアルデヒド639g
(8.86mol)の代りに2−メチルブタナール763g
(8.86mol)を用いる以外は同様にして反応させ、
ついで反応混合物を同様にして処理したのち、得
られた残渣を減圧下に蒸留することにより、88〜
89℃/20mmHgの留分として2−エチル−2,5
−ジメチル−4−ヘキセン−1−アール(純度90
%)を606g(3.93mol)得た。収率54%。生成
物のNMRスペクトルを次に示す。1 HNMRスペクトル(90MHz)δCCl4 HMS:0.79(t、J
=7Hz、3H);0.95、(s、3H);1.31〜1.52
(m、2H);1.59、1.68(each s、6H);2.08
(d、J=7Hz、2H);4.85〜5.15(m、1H);
9.43(s、1H) 実施例 3 2,5−ジメチル−2−プロピル−4−ヘキ
セン−1−アールの合成 実施例1においてイソプチルアルデヒド639g
(8.86mol)の代りに2−メチルペンタナール728
g(7.27mol)を用いる以外は同様にして反応さ
せ、ついで反応混合物を同様にして処理したの
ち、得られた残渣を減圧下に蒸留することによ
り、45℃/0.1mmHgの留分として2,5−ジメチ
ル−2−プロピル−4−ヘキセン−1−アール
(純度96%)を820g(4.87mol)得た。収率67
%。生成物のNMRスペクトルを次に示す。1 HNMRスペクトル(90MHz)δCCl4 HMS:0.69〜1.03
(m、3H);0.94(S、3H);1.03〜1.53(m、
4H);1.57〜1.67(each s、6H);2.07(d、J
=7Hz、2H);4.85〜5.15(m、1H);9.40(s、
1H) 実施例 4 2−ブチル−2−エチル−5−メチル−4−
ヘキセン−1−アールの合成 実施例1においてイソブチルアルデヒド639g
(8.86mol)の代りに2−エチルヘキサナール
1136g(8.86mol)を用いる以外は同様にして反
応させ、ついで反応混合物を同様にして処理した
のち、得られた残渣を減圧下に蒸留することによ
り、67℃/0.4mmHgの留分として2−ブチル−2
−エチル−5−メチル−4−ヘキセン−1−アー
ル(純度95%)を742g(3.78mol)得た。収率
52%。生成物のNMRスペクトルを次に示す。1 HNMRスペクトル(90MHz)δCCl4 HMS:1.75(t、J
=7Hz、3H);0.77〜1.54、(m、8H);1.47
(q、J=7Hz2H);1.60、1.67(each s、
6H);2.14(d、J=7Hz、2H);4.85〜5.10
(m、1H);9.40(s、1H) 実施例 5 1−(3−メチル−2−ブテニル)−3−シクロ
ヘキセンカルブアルデヒドの合成 実施例1においてイソプチルアルデヒド639g
(8.86mol)の代りに3−975g(8.86mol)を用
いる以外は同様にして反応させ、ついで反応混合
物を同様にして処理したのち、得られた残渣を減
圧下に蒸留することにより、65℃/0.9mmHgの留
分として1−(3−メチル−2−ブテニル)−3−
シクロヘキセカンカルブアルデヒド(純度92%)
を621g(3.49mol)得た。収率48%。生成物の
NMRスペクトルを次に示す。1 HNMRスペクトル(90MHz)δCCl4 HMS:1.57、1.67
(each s、6H);1.59〜1.86(m、2H);1.89〜
2.30(m、6H);4.89〜5.17(m、1H);5.63(bs、
2H);9.50(s、1H) 実施例 6 1−(3−メチル−2−ブテニル)シクロヘキ
サンカルブアルデヒドの合成 実施例1においてイソブチルアルデヒド639g
(8.86mol)の代りにシクロヘキサンカルブアル
デヒド994g(8.86mol)を用いる以外は同様に
して反応させ、ついで反応混合物を同様にして処
理したのち、得られた残渣を減圧下に蒸留するこ
とにより、67℃/0.9mmHgの留分として1−(3
−メチル−2−ブテニル)シクロヘキサカルブア
ルデヒド(純度94%)を680g(3.78mol)得た。
収率52%。生成物のNMRスペクトルを次に示
す。1 HNMRスペクトル(90MHz)δCCl4 HMS:1.31〜1.67
(m、10H);1.54、1.66(each s、6H);2.05
(d、J=7Hz、2H);4.88〜5.15(m、1H);
9.48(s、1H) 実施例 7 1−(3−メチル−2−ブテニル)−6−メチ
ル−3−シクロヘキセンカルブアルデヒドの合
実施例1においてイソブチルアルデヒド639g
(8.86mol)の代りに6−メチル−3−シクロヘ
キセンカルブアルデヒド1100g(8.86mol)を用
いる以外は同様にして反応させ、ついで反応混合
物を同様にして処理したのち、得られた残渣を減
圧下に蒸留することにより、60℃/0.5mmHgの留
分として1−(3−メチル−2−ブテニル)−6−
メチル−3−シクロヘキセンカルブアルデヒド
(純度93%)を685g(3.56mol)得た。収率49
%。生成物のNMRスペクトルを次に示す。1 HNMRスペクトル(90MHz)δCCl4 HMS:1.09(d、J
=7Hz、3H);1.55、1.64(each s、6H);
1.88〜2.29(m、7H);4.90〜5.18(m、1H);
5.57(bs、2H);9.50(s、1H) 実施例 8 1−(3−メチル−2−ブテニル)−3−メチル
−3−シクロヘキセンカルブアルデヒドの合成 実施例1においてイソブチルアルデヒド639g
(8.86mol)の代りに3−メチル−3−シクロヘ
キセンカルブアルデヒド1100g(8.86mol)を用
いる以外は同様にして反応させ、ついで反応混合
物を同様にして処理したのち、得られた残渣を減
圧下に蒸留することにより、61℃/0.5mmHgの留
分として1−(3−メチル−2−ブテニル)−3−
メチル−3−シクロヘキセンカルブアルデヒド
(純度95%)を495g(3.92mol)得た。収率54
%。生成物のNMRスペクトルを次に示す。1 HNRスペクトル(90MHzσCcl4 HMS:1.40〜1.55(m、
2H);1.54、1.63、1.69(each s、9H);1.87〜
2.31(m、6H);4.89〜5.20(m、1H);5.49(bs、
1H);9.45(s、1H) 実施例 9 1−(3−メチル−2−ブテニル)−4−(2−
メチルプロピル)−3−シクロヘキセンカルブ
アルデヒドの合成 実施例1においてイソブチルアルデヒド639g
(8.86mol)の代りに4−(2−メチルプロピル)
−3−シクロヘキセンカルブアルデヒド1473g
(8.86mol)を用いる以外は同様にして反応させ、
ついで反応混合物を同様にして処理したのち、得
られた残渣を減圧下に蒸留することにより、91〜
92℃/0.5mmHgの留分として1−(3−メチル−
2−ブテニル)−4−(2−メチルプロピル)−3
−シクロヘキセンカルブアルデヒド(純度95%)
を1022g(4.36mol)得た。収率60%。生成物の
NMRスペクトルを次に示す。1 HNRスペクトル(90MHz)σCCl4 HMS:0.98(d、J
=7Hz,6H);1.26〜1.53(m、3H);1.55,
1.67(eachs,6H);1.85〜2.29(m,8H);4.89
〜5.18(m、1H);5.61(bs、1H);9.54(s、
1H) 実施例 10〜18 実施例1においてヨウ化テトラブチルアンモニ
ウムの代りに第1表に示す相間移動触媒を用いる
以外は同様にして反応させ、ついで反応混合物を
同様にして処理した。得られた2,2,5−トリ
メチル−4−ヘキセン−1−アールの純度と収率
を第1表に示す。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples. Example 1 2,2,5-trimethyl-5-hexene-1
−Synthesis of R Sodium hydroxide 340g (8.50mol), water 340ml,
In a mixed solution of 400 ml of benzene and 31.4 g (85 mmol) of tetrabutylammonium iodide, 760 g (7.27 mmol) of 1-chloro-3-methyl-2-butene was added.
mol) and isobutyraldehyde 639g (8.86mol)
was added dropwise over 8 hours at a temperature of 60 to 70°C. After the dropwise addition was completed, the mixture was stirred at 70°C for 2 hours. After adding 1.5 g of water to this reaction mixture to dissolve the precipitated common salt, the mixture was separated into an organic layer and an aqueous layer.
The solvent was distilled off from the organic layer, 300 ml of 2N sulfuric acid and 300 ml of tetrahydrofuran were added to the residue, and the mixture was heated under reflux for 90 minutes. The product was extracted from the reaction mixture with diethyl ether. The extract was washed successively with water, an aqueous sodium thiosulfate solution, an aqueous sodium bicarbonate solution, and a saturated saline solution, dried over anhydrous magnesium sulfate, and then the solvent was distilled off. By distilling the residue under reduced pressure, 68
2,2,5-trimethyl-5-hexene-1-al (purity 95%) as a fraction at °C/20 mmHg.
642g (4.58mol) was obtained. Yield 63%. of the product
The NMR spectrum is shown below. 1 HNMR spectrum (90MHz) δ CCl4 HMS : 0.95 (s,
3H); 1.53, 1.64 (each s, 6H); 2.03 (d, J
=7Hz, 2H); 4.83-5.12 (m, 1H); 9.36 (s,
1H) Example 2 Synthesis of 2-ethyl-2,5-dimethyl-4-hexen-1-al In Example 1, 639 g of isobutyraldehyde
(8.86mol) instead of 2-methylbutanal 763g
The reaction was carried out in the same manner except that (8.86 mol) was used,
The reaction mixture was then treated in the same manner and the resulting residue was distilled under reduced pressure to give 88-
2-ethyl-2,5 as a fraction at 89℃/20mmHg
-dimethyl-4-hexene-1-al (purity 90
%) was obtained (606 g (3.93 mol)). Yield 54%. The NMR spectrum of the product is shown below. 1 HNMR spectrum (90MHz) δ CCl4 HMS : 0.79 (t, J
=7Hz, 3H); 0.95, (s, 3H); 1.31~1.52
(m, 2H); 1.59, 1.68 (each s, 6H); 2.08
(d, J=7Hz, 2H); 4.85-5.15 (m, 1H);
9.43 (s, 1H) Example 3 Synthesis of 2,5-dimethyl-2-propyl-4-hexen-1-al In Example 1, 639 g of isobutyraldehyde
(8.86mol) instead of 2-methylpentanal728
The reaction was carried out in the same manner except that 2.0 g (7.27 mol) was used, and then the reaction mixture was treated in the same manner, and the resulting residue was distilled under reduced pressure to obtain 2. 820 g (4.87 mol) of 5-dimethyl-2-propyl-4-hexen-1-al (purity 96%) was obtained. Yield 67
%. The NMR spectrum of the product is shown below. 1HNMR spectrum (90MHz) δ CCl4 HMS : 0.69-1.03
(m, 3H); 0.94 (S, 3H); 1.03~1.53 (m,
4H); 1.57-1.67 (each s, 6H); 2.07 (d, J
=7Hz, 2H); 4.85-5.15 (m, 1H); 9.40 (s,
1H) Example 4 2-butyl-2-ethyl-5-methyl-4-
Synthesis of hexene-1-al In Example 1, 639 g of isobutyraldehyde
(8.86mol) instead of 2-ethylhexanal
The reaction was carried out in the same manner except that 1136 g (8.86 mol) was used, and the reaction mixture was then treated in the same manner, and the resulting residue was distilled under reduced pressure to obtain 2- Butyl-2
-Ethyl-5-methyl-4-hexen-1-al (purity 95%) was obtained in an amount of 742 g (3.78 mol). yield
52%. The NMR spectrum of the product is shown below. 1 HNMR spectrum (90MHz) δ CCl4 HMS : 1.75 (t, J
=7Hz, 3H); 0.77-1.54, (m, 8H); 1.47
(q, J=7Hz2H); 1.60, 1.67 (each s,
6H); 2.14 (d, J=7Hz, 2H); 4.85-5.10
(m, 1H); 9.40 (s, 1H) Example 5 Synthesis of 1-(3-methyl-2-butenyl)-3-cyclohexenecarbaldehyde In Example 1, 639 g of isobutyraldehyde
The reaction was carried out in the same manner except that 3-975 g (8.86 mol) was used instead of 3-975 g (8.86 mol), and the reaction mixture was then treated in the same manner. /0.9mmHg fraction 1-(3-methyl-2-butenyl)-3-
Cyclohexecanecarbaldehyde (92% purity)
621g (3.49mol) of was obtained. Yield 48%. of the product
The NMR spectrum is shown below. 1 HNMR spectrum (90MHz) δ CCl4 HMS : 1.57, 1.67
(each s, 6H); 1.59~1.86 (m, 2H); 1.89~
2.30 (m, 6H); 4.89-5.17 (m, 1H); 5.63 (bs,
2H); 9.50 (s, 1H) Example 6 Synthesis of 1-(3-methyl-2-butenyl)cyclohexanecarbaldehyde In Example 1, 639 g of isobutyraldehyde
The reaction was carried out in the same manner except that 994 g (8.86 mol) of cyclohexanecarbaldehyde was used instead of 67 1-(3 as a fraction of °C/0.9mmHg
-Methyl-2-butenyl) cyclohexacarbaldehyde (purity 94%) was obtained in an amount of 680 g (3.78 mol).
Yield 52%. The NMR spectrum of the product is shown below. 1HNMR spectrum (90MHz) δ CCl4 HMS : 1.31~1.67
(m, 10H); 1.54, 1.66 (each s, 6H); 2.05
(d, J=7Hz, 2H); 4.88-5.15 (m, 1H);
9.48 (s, 1H) Example 7 Synthesis of 1-(3-methyl-2-butenyl)-6-methyl-3-cyclohexenecarbaldehyde In Example 1, 639 g of isobutyraldehyde
The reaction was carried out in the same manner except that 1100 g (8.86 mol) of 6-methyl-3-cyclohexenecarbaldehyde was used instead of 6-methyl-3-cyclohexenecarbaldehyde (8.86 mol), and the reaction mixture was then treated in the same manner. By distillation, 1-(3-methyl-2-butenyl)-6-
685 g (3.56 mol) of methyl-3-cyclohexenecarbaldehyde (purity 93%) was obtained. Yield 49
%. The NMR spectrum of the product is shown below. 1 HNMR spectrum (90MHz) δ CCl4 HMS : 1.09 (d, J
=7Hz, 3H); 1.55, 1.64 (each s, 6H);
1.88-2.29 (m, 7H); 4.90-5.18 (m, 1H);
5.57 (bs, 2H); 9.50 (s, 1H) Example 8 Synthesis of 1-(3-methyl-2-butenyl)-3-methyl-3-cyclohexenecarbaldehyde In Example 1, 639 g of isobutyraldehyde
The reaction was carried out in the same manner except that 1100 g (8.86 mol) of 3-methyl-3-cyclohexenecarbaldehyde was used instead of 3-methyl-3-cyclohexenecarbaldehyde (8.86 mol), and the reaction mixture was then treated in the same manner. By distillation, 1-(3-methyl-2-butenyl)-3-
495 g (3.92 mol) of methyl-3-cyclohexenecarbaldehyde (purity 95%) was obtained. Yield 54
%. The NMR spectrum of the product is shown below. 1 HNR spectrum (90MHzσ Ccl4 HMS : 1.40~1.55 (m,
2H); 1.54, 1.63, 1.69 (each s, 9H); 1.87~
2.31 (m, 6H); 4.89-5.20 (m, 1H); 5.49 (bs,
1H); 9.45 (s, 1H) Example 9 1-(3-methyl-2-butenyl)-4-(2-
Synthesis of methylpropyl)-3-cyclohexenecarbaldehyde In Example 1, 639 g of isobutyraldehyde
(8.86mol) instead of 4-(2-methylpropyl)
-3-Cyclohexenecarbaldehyde 1473g
The reaction was carried out in the same manner except that (8.86 mol) was used,
The reaction mixture was then treated in the same manner and the resulting residue was distilled under reduced pressure to give 91-
1-(3-methyl-
2-butenyl)-4-(2-methylpropyl)-3
- Cyclohexenecarbaldehyde (95% purity)
1022g (4.36mol) of was obtained. Yield 60%. of the product
The NMR spectrum is shown below. 1 HNR spectrum (90MHz) σ CCl4 HMS : 0.98 (d, J
=7Hz, 6H); 1.26-1.53 (m, 3H); 1.55,
1.67 (eachs, 6H); 1.85-2.29 (m, 8H); 4.89
~5.18 (m, 1H); 5.61 (bs, 1H); 9.54 (s,
1H) Examples 10 to 18 The reaction was carried out in the same manner as in Example 1 except that the phase transfer catalyst shown in Table 1 was used instead of tetrabutylammonium iodide, and the reaction mixture was then treated in the same manner. Table 1 shows the purity and yield of the obtained 2,2,5-trimethyl-4-hexen-1-al.

【表】【table】

【表】【table】

【表】 実施例 19〜25 実施例1において2規定硫酸300mlの代りに第
2表に示す酸を用いる以外は同様にして反応さ
せ、ついで反応混合物を同様にして処理した。得
られた2,2,5−トリメチル−4−ヘキセン−
1−アールの純度と収率を第2表に示す。
[Table] Examples 19-25 The reaction was carried out in the same manner as in Example 1 except that the acids shown in Table 2 were used instead of 300 ml of 2N sulfuric acid, and then the reaction mixture was treated in the same manner. The obtained 2,2,5-trimethyl-4-hexene-
The purity and yield of 1-R are shown in Table 2.

【表】 比較例 1〜5 実施例1〜5において酸処理を行わない以外は
同様にして反応させ、反応混合物を同様にして処
理した。得られたアルデヒドの純度と収率を第3
表に示す。
[Table] Comparative Examples 1 to 5 Reactions were carried out in the same manner as in Examples 1 to 5 except that the acid treatment was not performed, and the reaction mixtures were treated in the same manner. The purity and yield of the obtained aldehyde were measured in the third
Shown in the table.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば上記の実施例から明らか
なとおり高純度の一般式()で示される2−置
換−5−メチル−4−ヘキセン−1−アールを安
価にしかも好収率で製造することができる。
According to the method of the present invention, as is clear from the above examples, highly purified 2-substituted-5-methyl-4-hexen-1-al represented by the general formula () can be produced at low cost and in a good yield. be able to.

Claims (1)

【特許請求の範囲】 1 一般式【式】 (式中、R1及びR2は同一又は異なり各々低級ア
ルキル基若しくは低級アルケニル基を表わすか、
又はR1とR2が一緒になつて
【式】鎖を表わす。ここ で、X1、X2及びX3は同一又は異なり各々水素原
子又は低級アルキル基を表わし、Y1及びY2
各々水素原子を表わすか又はこれらが一緒になつ
て単結合を表わす。) で示されるアルデヒドと1−ハロゲノ−3−メチ
ル−2−ブテンとをカ性アルカリ、水及び相間移
動触媒の存在下に反応させ、ついで得られた有機
生成物を酸処理することを特徴とする一般式 (式中、R1及びR2は前記定義のとおりである。)
で示される2−置換−5−メチル−4−ヘキセン
−1−アールの製造方法。
[Claims] 1 General formula [Formula] (wherein R 1 and R 2 are the same or different and each represents a lower alkyl group or a lower alkenyl group,
Or R 1 and R 2 together represent a chain. Here, X 1 , X 2 and X 3 are the same or different and each represents a hydrogen atom or a lower alkyl group, and Y 1 and Y 2 each represent a hydrogen atom or together represent a single bond. ) and 1-halogeno-3-methyl-2-butene in the presence of a caustic alkali, water and a phase transfer catalyst, and then the resulting organic product is treated with an acid. general formula to (In the formula, R 1 and R 2 are as defined above.)
A method for producing 2-substituted-5-methyl-4-hexen-1-al represented by
JP59136380A 1984-06-29 1984-06-29 Production of 2-substituted-5-methyl-4-hexen-1-al Granted JPS6115853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59136380A JPS6115853A (en) 1984-06-29 1984-06-29 Production of 2-substituted-5-methyl-4-hexen-1-al

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59136380A JPS6115853A (en) 1984-06-29 1984-06-29 Production of 2-substituted-5-methyl-4-hexen-1-al

Publications (2)

Publication Number Publication Date
JPS6115853A JPS6115853A (en) 1986-01-23
JPH0514695B2 true JPH0514695B2 (en) 1993-02-25

Family

ID=15173798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59136380A Granted JPS6115853A (en) 1984-06-29 1984-06-29 Production of 2-substituted-5-methyl-4-hexen-1-al

Country Status (1)

Country Link
JP (1) JPS6115853A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201013474D0 (en) 2010-08-11 2010-09-22 Givaudan Sa Organic compounds

Also Published As

Publication number Publication date
JPS6115853A (en) 1986-01-23

Similar Documents

Publication Publication Date Title
JPS5840960B2 (en) Interconversion method between hydroxycholesterol stereoisomers
JP3575705B2 (en) Method for producing gingerol and shogaol
JPS646189B2 (en)
JPH0514695B2 (en)
JPS6113696B2 (en)
JPS62201842A (en) Manufacture of 3-hydroxycyclopent-4-ene-1-ones
JP3386596B2 (en) Method for producing 5 (E), 8 (Z), 11 (Z) -tetradecatrien-2-one
JP4399885B2 (en) Method for producing 4-methyltetrafluorobenzyl alcohol derivative
JPS6210494B2 (en)
JPH0466216B2 (en)
JPH0112750B2 (en)
JP2622747B2 (en) Method for producing cis-7-decene-4-olide
JP5170987B2 (en) Novel fluorine-containing unsaturated silyl ether compound and method for producing fluorine-containing unsaturated alcohol derivative using the compound as an intermediate
JPS6313975B2 (en)
JPS623827B2 (en)
JPS6148815B2 (en)
JP2791572B2 (en) Macrocyclic compound and method for producing the same
JPS6254413B2 (en)
JPS637170B2 (en)
JPS6234025B2 (en)
JPS6154772B2 (en)
JPH0348909B2 (en)
JP3922607B2 (en) Process for producing p- or m-hydroxyalkylbenzene and intermediates thereof
JP2002212149A (en) METHOD FOR PRODUCING TETRAALKYLAMMONIUM FLUORIDE AND METHOD FOR PRODUCING beta-HYDROXYKETONE BY USING THE SAME
JPH0465065B2 (en)