JPH0465065B2 - - Google Patents

Info

Publication number
JPH0465065B2
JPH0465065B2 JP8263085A JP8263085A JPH0465065B2 JP H0465065 B2 JPH0465065 B2 JP H0465065B2 JP 8263085 A JP8263085 A JP 8263085A JP 8263085 A JP8263085 A JP 8263085A JP H0465065 B2 JPH0465065 B2 JP H0465065B2
Authority
JP
Japan
Prior art keywords
formula
compound
cis
reaction
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8263085A
Other languages
Japanese (ja)
Other versions
JPS61243041A (en
Inventor
Tsuneo Kawanobe
Minoru Iwamoto
Yasuhiro Katsuta
Hiroshi Tamura
Kunio Kojo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Hasegawa Co Ltd
Original Assignee
T Hasegawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Hasegawa Co Ltd filed Critical T Hasegawa Co Ltd
Priority to JP8263085A priority Critical patent/JPS61243041A/en
Publication of JPS61243041A publication Critical patent/JPS61243041A/en
Publication of JPH0465065B2 publication Critical patent/JPH0465065B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

(a) 産業䞊の利甚分野 本発明は、銙料物質ずしお有甚なむリス様銙気
を有する±シス−γ−むロンの新芏な補法に
関する。 曎に詳しくは、本発明は䞋蚘匏(2) で衚わされるシス−γ−メチルシクロシトラヌル
を有機溶媒䞭で䞋蚘匏 で衚わされるアセチリデントリプニルホスホラ
ンず接觊させるこずを特城ずする䞋蚘匏(1) で衚わされる±−シス−γ−むロンの補法に
関する。 (b) 埓来の技術 倩然むリス油䞭のKey芳銙物質ずしおは、䟋え
ば−シス−α−むロン、−−トランス−
α−むロン、−β−むロン、−シス−γ
−むロン、−−シス−γ−むロンなどが知られ
おいる。本発明の䞊蚘匏(1)±−シス−γ−む
ロンは、倩然むリス油䞭には、その存圚が知られ
おない。本出願人は、先に、トランス䜓を生成を
䌎わずに、䞊蚘匏(1)で衚わされる±−シス−
γ−むロンのみを遞択的に補造できる方法を確立
し、又、該匏(1)化合物が倩然むリス油に匹敵する
銙気を有する特性があるこずを明らかにしお既
に、特願昭59−65094号特開昭60−209562号公
報、特願昭59−217414号特開昭61−97251号公
報においお提案した。又、他の提案ずしお、
Agric.Biol.Chem.47(3)581〜5861983に、
±−トランス−γ−むロンず±−シス−γ
−むロンが混合物ずしお圢成できるこずが知られ
おいる。 曎に、本発明方法における原料である䞊蚘匏(2)
シス−γ−メチルシクロシトラヌルの異性䜓であ
る䞋蚘匏(2)′ で衚わされるトランス−γ−メチルシクロシトラ
ヌルから本発明方法における匏(1)目的化合物
±−シス−γ−むロンの異性䜓である±−
トランス−γ−むロンを補造する䞋蚘匏で瀺され
る方法が提案されおいる特公昭59−19535号。 (c) 発明が解決しようずする問題点 䞊蚘埓来提案Agric.Biol.Chem.では、トラ
ンス−䜓、シス−䜓の混合物が圢成され、シス−
䜓を遞択的に圢成できないトラブルに加えお、シ
ス−䜓の生成割合が、トランス−䜓シス−䜓
ず極めお䜎いずいう䞍利益がある。曎に、
極めお耇雑䞔぀倚工皋を芁する操䜜が必芁な䞍利
益、曎には、高䟡な原料を必芁ずし又、収率が䜎
く工業的実斜に適さないなどの䞍利益がある。 又、䞊蚘本発明者の前蚘特願昭59−65094号及
び特願昭59−217414号の先願提案によれば、トラ
ンス−䜓が生成するこずなく遞択的に䞊蚘匏(1)シ
ス−䜓化合物を埗るこずのできる利点があるが、
その工皋短瞮の改善が望たれる。 曎に䞊蚘特公昭59−19535号の提案は、トラン
ス−䜓のγ−むロンを埗る方法であるが、極䜎枩
の反応枩床−78℃が芁求され、又、収率が䜎
い難点がある。 (d) 問題点を解決するための手段 本発明者らは、䞊述の埓来提案の問題点を解決
すべく特に䞊蚘匏(2)のシス−γ−メチルシクロシ
トラヌルから䞊蚘匏(1)の±−シス−γ−むロ
ンを合成する方法に぀いお研究を行぀おきた。そ
の結果、䞊蚘匏(2)シス−γ−メチルシクロシトラ
ヌルを有機溶媒䞭でアセチリデントリプニルホ
スホラン
(a) Industrial Application Field The present invention relates to a novel method for producing (±)cis-γ-iron having an iris-like odor useful as a fragrance substance. More specifically, the present invention is based on the following formula (2) cis-γ-methylcyclocitral represented by the following formula in an organic solvent: The following formula (1) characterized by contacting with acetylidene triphenylphosphorane represented by The present invention relates to a method for producing (±)-cis-γ-iron represented by (b) Prior art Key aroma substances in natural iris oil include (+)-cis-α-ylon, (-)-trans-
α-Iron, (+)-β-Iron, (+)-cis-γ
-iron, (-)-cis-γ-iron, and the like are known. The presence of the above formula (1)(±)-cis-γ-yron of the present invention in natural iris oil is not known. The present applicant has previously developed the (±)-cis-
We established a method for selectively producing only γ-ilon, and also revealed that the compound of formula (1) has a characteristic of having an aroma comparable to that of natural iris oil, and we have already published Japanese Patent Application No. 59-65094. (Japanese Unexamined Patent Publication No. 60-209562) and Japanese Patent Application No. 59-217414 (Japanese Unexamined Patent Publication No. 61-97251). Also, as another suggestion,
Agric.Biol.Chem., 47(3)581-586 (1983).
(±)-trans-γ-iron and (±)-cis-γ
- It is known that irons can be formed as mixtures. Furthermore, the above formula (2) which is a raw material in the method of the present invention
The following formula (2)' is an isomer of cis-γ-methylcyclocitral From trans-γ-methylcyclocitral represented by the formula (1) in the method of the present invention, the target compound (±)- which is an isomer of cis-γ-ylon (±)-
A method of producing trans-γ-yron as shown by the following formula has been proposed (Japanese Patent Publication No. 19535/1983). (c) Problems to be solved by the invention In the above conventional proposal (Agric.Biol.Chem.), a mixture of trans- and cis-isomers is formed, and cis-
In addition to the problem of not being able to selectively form cis-isomers, the ratio of cis-isomers to trans-isomers: cis-isomers = trans-isomers: cis-isomers =
There is a disadvantage that the ratio is extremely low at 9:1. Furthermore,
There are disadvantages such as extremely complicated and multi-step operations, and further disadvantages such as the need for expensive raw materials and low yields, making it unsuitable for industrial implementation. Furthermore, according to the earlier proposal of the present inventor in the aforementioned Japanese Patent Application No. 59-65094 and Japanese Patent Application No. 59-217414, the cis-isomer of the above formula (1) can be selectively produced without producing the trans-isomer. Although it has the advantage of being able to obtain compounds,
Improvements in shortening the process are desired. Furthermore, the proposal of Japanese Patent Publication No. 59-19535 is a method for obtaining trans-form γ-ylon, but it requires an extremely low reaction temperature (-78°C) and has the drawbacks of low yield. (d) Means for Solving the Problems In order to solve the problems of the above-mentioned conventional proposals, the present inventors particularly attempted to convert cis-γ-methylcyclocitral of the above formula (2) into (1) of the above formula (1). We have been conducting research on methods for synthesizing ±)-cis-γ-iron. As a result, the above formula (2) cis-γ-methylcyclocitral was converted into acetylidene triphenylphosphorane in an organic solvent.

【匏】ず接觊さ せるこずにより、䞀挙に本発明目的化合物の匏(1)
±−シス−γ−むロンを容易に䞔぀奜収率で合
成できるこずを発芋した。この反応を反応工皋図
で瀺すず以䞋のように衚わすこずができる。 䞊蚘工皋図においお、匏(2)の原料化合物シス−
γ−メチルシクロシトラヌルは、本発明者らによ
぀お初めお合成された埓来文献未蚘茉の化合物で
あ぀お、埌述するようにしお、たずえば、−
−トリメチル−−シクロヘキセン
−−むル−メチルアルコヌルから工皋で容
易に合成するこずができる。該匏(2)化合物は、そ
れ自䜓も銙気銙味賊䞎乃至倉調剀ずしお広い利甚
分野で有甚な化合物であり、該匏(2)化合物、その
補法及びその利甚は、本願ず同日付けの同䞀出願
人の出願に係わる特願昭60−82629号特開昭61
−243035号公報の䞻題である。 匏(2)シス−γ−メチルシクロシトラヌルずの反
応に甚いるアセチリデントリプニルホスホラン
は、䟋えば、クロルアセトンずトリプニホスフ
むンより埗るこずができるホスホニりム塩をアル
カリで凊理するこずによ぀お容易に埗るこずがで
きる。 本発明方法によれば、匏(1)±−シス−γ−
むロンは、匏(2)シス−γ−メチルシクロシトラヌ
ルず該アセチリデントリプニルホスホランを、
有機溶媒䞭で接觊させるこずにより容易に圢成す
るこずができる。 この反応は、䟋えば玄−30℃〜玄200℃皋床の
枩床範囲、奜たしくは玄0°〜玄150℃皋床の枩床
範囲の適圓な枩床条件䞋、及び䟋えば玄〜玄30
時間皋床の反応時間範囲、奜たしくは玄〜玄20
時間皋床の範囲の適圓な反応時間条件䞋で行うこ
ずができる。 反応の実斜に際しお、アセチリデントリプニ
ルホスホランの䜿甚量は適宜に遞択倉曎できる
が、䞊蚘匏(1)化合物に察し、䟋えば玄〜玄10モ
ル皋床、より奜たしくは玄〜玄モル皋床の範
囲の䜿甚量を䟋瀺するこずができる。たた、有機
溶媒ずしおは、䟋えばトル゚ン、アセトニトリ
ル、テトロヒドロフラン、ゞメトキシ゚タン、゚
ヌテル、ゞグラむムなどが䟋瀺できる。これら有
機溶媒の䜿甚量は適宜遞択しお行うこずができる
が、䞊蚘匏(1)化合物に察しお䟋えば玄〜玄100
重量倍皋床、より奜たしくは玄〜玄20重量倍皋
床の範囲を䟋瀺するこずができる。反応終了埌は
垞法に埓぀お埌凊理しお䞊蚘匏(1)化合物を容易に
䞔぀奜収率で埗るこずができる。 本発明方法で甚いる匏(2)シス−γ−メチルシク
ロシトラヌルは、たずえば、䞋蚘匏(3) 䜆し匏䞭、R′及びR″はそれぞれ䜎玚アルキル
基を瀺すか、或はR′及びR″は䞀緒にな぀お䜎玚
アルキレン基を瀺す、 で衚わされるシス−−−メチレン−
−トリメチルシクロヘキサン−−むル−
−ゞアルキルもしくは−アルキレンアセトニト
リルを、有機溶媒䞭で硝酞銀ず接觊させるこずに
より補造するこずができる。そしお該匏(3)化合物
は、䟋えば、䞋蚘匏(4) で衚わされるそれ自䜓合成容易な−
−トリメチル−−シクロヘキセン−−む
ルメチルアルコヌルを、有機溶媒䞭、塩基の存
圚䞋に、ハロゲン化剀、メシル化剀もしくはトシ
ル化剀ず反応させお圢成できる䞋匏(4) 䜆し匏䞭、はハロゲンたずえばBrCl
メシルオキシ基OMsもしくはトシルオキシ
基OTsを瀺す、 で衚わされる−−トリメチル−
−シクロヘキセン−−むルメチレンハラむド
もしくはメシレヌトたたはトシレヌトを、有機溶
媒䞭、塩基の存圚䞋に、−ゞ䜎玚アルキル
−もしくは䜎玚アルキレン−アミノアセトニトリ
ルず反応させお容易に埗るこずができる。 䞊蚘態様に埓぀お匏(2)シス−γ−メチルシクロ
シトラヌルを補造する合成䟋の䞀䟋を工皋図で瀺
すず、以䞋のように衚わすこずができる。 䞊蚘匏(4)の−−トリメチル−
−シクロヘキセン−−むル−メチレンハラむ
ドの合成は、䞊蚘匏(5)−−トリメ
チル−−シクロヘキセン−−むル−メチル
アルコヌルを奜たしくは有機溶媒䞭、塩基の存圚
䞋に、ハロゲン化剀、メシル化剀もしくはトシル
化剀ず反応させるこずにより容易に行うこずがで
きる。 反応は、䟋えば、玄−78°〜玄150℃皋床の枩
床条件䞋に、䟋えば、玄〜玄時間皋床の反応
時間で奜たしく行うこずができる。 反応に䜿甚する有機溶媒の具䜓䟋ずしおは、䟋
えば゚ヌテル、テトラヒドロフランなどの劂き゚
ヌテル類を䟋瀺するこずができる。これら有機溶
媒の䜿甚量には栌別の制玄はなく適宜に遞択すれ
ば良いが、匏(5)化合物に察しお、䟋えば、玄〜
箄10重量倍皋床の範囲の䜿甚料を奜たしく䟋瀺で
きる。又、反応に䜿甚するハロゲン化剀、メシル
化剀、トシル化剀の䟋ずしおは、䟋えば䞉臭化リ
ン、䞉塩化リン、メタンスルホニルクロリド、
−トル゚ンスルホニルクロリドなどを挙げるこず
ができる。䞊蚘工皋図の䟋では、ハロゲン化剀ず
しお䞉臭化リンを甚いた䟋で瀺されおいる。これ
ら剀の䜿甚量も適宜に遞択倉曎できるが、䟋えば
䞊蚘匏(5)に察しお、玄〜玄モル皋床の範囲の
䜿甚量を奜たしく䟋瀺するこずができる。曎に、
塩基ずしおは、䟋えばピリゞン、トリ゚チルアミ
ンなどの劂き有機塩基を䟋瀺するこずができる。
䞊蚘工皋図の䟋ではピリゞンを甚いた䟋で瀺され
おいる。これら塩基の䜿甚量は適宜に遞択すれば
良く、䟋えば匏(5)化合物に察しお、玄0.1〜玄
モル皋床の範囲の䜿甚量を奜たしく挙げるこずが
できる。反応終了埌は、䟋えば、有機局を氎掗
浄、䞭和など埌凊理し、溶媒を留去した埌、蒞
留、カラムクロマトの劂き手段を甚いお粟補し、
匏(4)化合物を容易に埗るこずができる。 䟋えば、䞊述のようにしお埗るこずのできる䞊
蚘匏(4)化合物から䞊蚘匏(3)で衚わされる−
−メチレン−−トリメチルシクロヘキ
サン−−むル−−ゞアルキルもしくは
アルキレンアミノアセトニトリルを合成するに
は、䟋えば、匏(4)化合物を有機溶媒䞭、炭酞カリ
りム、炭酞ナトリりム、炭酞リチりム、氎酞化ナ
トリりム、氎酞化カリりム、氎酞化リチりム、氎
酞化バリりムなどの劂き塩基の存圚䞋に−
ゞ䜎玚アルキルもしくは䜎玚アルキレン−アミノ
アセトニトリルず反応させお容易に合成するこず
ができる。 反応は、䟋えば玄−78〜玄200℃皋床の枩床
条件䞋、䟋えば玄0.5〜玄48時間皋床の反応時間
で奜たしく行うこずができる。 䞊蚘反応に際しお䜿甚する−ゞ䜎玚アル
キルもしくは䜎玚アルキレン−アミノアセトニト
リルの䜿甚量ずしおは、䞊蚘匏(4)化合物に察し
お、䟋えば、玄〜玄モル皋床の範囲の䜿甚量
を奜たしく挙げるこずがでいる。又、塩基の䜿甚
量ずしおは、䞊蚘匏(4)化合物に察しお䟋えば、玄
0.1〜玄10モル皋床の範囲の䜿甚量を奜たしく挙
げるこずができる。又、有機溶媒ずしおは、ゞメ
チルフオルムアミド、テトラヒドロフラン、アセ
トニトリル、ゞメチルスルホキシド、トル゚ン、
゚ヌテル、ゞオキサンなどが䟋瀺できる。これら
有機溶媒の䜿甚量には栌別の制玄はなく、適宜遞
択すればよく、匏(4)化合物に察しお䟋えば玄〜
箄100重量倍皋床の範囲の䜿甚量を奜たしく䟋瀺
するこずができる。反応終了埌は、䟋えば、ヘキ
サン、゚ヌテル、トル゚ンの劂き有機溶媒で反応
生成物を抜出し、氎掗、也燥し、カラムクロマ
ト、蒞留などの手段で粟補しお匏(3)化合物を容易
に埗るこずができる。 本発明で甚いる原料匏(2)化合物のシス−γ−メ
チルシクロシトラヌルは、䟋えば䞊述のようにし
お埗るこずのできる匏(3)化合物を有機溶媒䞭で硝
酞銀ず接觊させるこずにより容易に合成するこず
ができる。 反応は、奜たしくは有機溶媒䞭で行われ、䟋え
ば、テトラヒドロフラン、゚ヌテルなどの劂き有
機溶媒が奜たしく利甚できる。反応枩床および反
応時間は䜿甚する溶媒によ぀お適宜に遞択できる
が、䟋えば玄−20〜玄50皋床の反応枩床及び、
䟋えば、玄〜玄48時間皋床の反応時間を䟋瀺す
るこずができる。有機溶媒の䜿甚量ずしおは、䟋
えば匏(3)化合物に察しお、玄〜玄100重量倍皋
床の範囲の䜿甚量を奜たしく䟋瀺するこずができ
る。 䞊蚘反応に甚いる硝酞銀の䜿甚量は適宜に遞択
倉曎できるが、匏(3)化合物に察しおは、䟋えば、
箄0.1〜玄10モル皋床の範囲を䟋瀺するこずがで
きる。反応終了埌は、生成した結晶を陀去し、有
機局を分離し、也燥しお蒞留、カラムクロマトな
どの劂き手段で粟補するこずにより、匏(2)原料化
合物を容易に埗るこずができる。 䞊述した匏(2)化合物の補造䟋においお䜿甚する
匏(5)化合物は、同䞀出願人の出願に係わる特開昭
57−134428号に蚘茉された化合物であ぀お、該特
開昭57−134428号に開瀺された方法で補造できる
が、本願ず同日付けの同䞀出願人の出願に係わる
改良方法特願昭60−82628号、特開昭61−
243034号公報によ぀おさらに有利に補造するこ
ずができ、奜たしい。 該改良方法によれば、䞋蚘工皋図に瀺した匏(b)
で衚わされる−トリメチル−−シク
ロヘキセン−−カルバルデヒドを氎玠化するこ
ずによ぀お、䞊蚘匏(5)化合物を容易に補造するこ
ずができる。該匏(b)化合物の補造態様を包含した
工皋図を以䞋に瀺す。 䞊蚘匏(5)化合物の合成法に぀いお、䞊蚘工皋図
に埓぀お以䞋に曎に詳しく説明する。 䞊蚘工皋図においお、匏(d)−トルメ
チル−−ヒドロキシメチレンシクロヘキサノン
は、垂堎で入手容易若しくは合成容易な−
ゞメチルヘキサノンを、䟋えば、氎玠化ナトリり
ムの存圚䞋に臭化メチルでメチル化し、次いでナ
トリりムメトキサむドの存圚䞋でギ酞゚チルず反
応させるこずにより容易に合成できる。 匏(d)化合物から匏(c)−トルメチル−
−−゚トキシ゚トキシメチレンシキロヘ
キサノンを埗るには、匏(d)化合物を酞の存圚䞋に
゚チルビニル゚ヌテルず反応させるこずにより容
易に合成するこずができる。この反応に䜿甚する
酞ずしおは、䟋えばリン酞、硫酞、塩酞、−ト
ル゚ンスルホン酞などを挙げるこずができる。こ
れら酞類の䜿甚量ずしおは、酞の皮類によ぀おも
異なるが、匏(d)化合物に察しお䟋えば、。玄0.5〜
箄10皋床の範囲を奜たしく䟋瀺するこずができ
る。又、゚チルビニル゚ヌテルの䜿甚量は適宜遞
択するこずができるが、䟋えば、匏(d)化合物に察
しお玄〜玄10モル皋床の範囲を挙げるこずがで
きる。反応は、䟋えば玄0°〜玄50℃皋床の枩床条
件䞋に䟋えば玄〜玄時間皋床の条件䞋で容易
に行うこずができる。反応終了埌は、たずえば、
重炭酞ナトリりム氎溶液䞭に泚入し、硫酞マグネ
シりムで也燥し、濃瞮しお匏(c)化合物を埗るこず
ができる。 䞊蚘匏(b)−トリメチル−−シクロ
ヘキセン−−カルバルデヒドを合成するには、
䟋えば䞊述のようにしお合成するこずのできる匏
(c)化合物を溶媒䞭、還元詊薬の存圚䞋に氎玠化す
るこずにより容易に合成するこずができる。反応
枩床及び反応時間は適圓に遞択できるが、䟋えば
玄〜玄50℃皋床、玄〜玄時間皋床を䟋瀺す
るこずができる。溶媒ずしおは、䟋えば゚タノヌ
ル、氎、む゜プロピルアルコヌル、゚ヌテル、
THFを挙げるこずができる。これら有機溶媒の
䜿甚量も適宜に遞択できるが䟋えば匏(c)化合物に
察しお玄0.5〜玄重量皋床の範囲を䟋瀺する
こずができる。又、還元詊薬ずしおは、䟋えば、
氎玠化ホり玠ナトリりム、氎玠化アルミニりムリ
チりムなどを䟋瀺するこずができる。これら還元
詊薬の䜿甚量ずしおは、匏(c)化合物に察しお䟋え
ば、玄1/4〜玄モル皋床の範囲を挙げるこずが
できる。反応終了埌は垞法に埓぀お埌凊理しお匏
(b)化合物を容易に合成するこずができる。 匏(5)−−トリメチル−−シク
ロヘキセン−−むル−メチルアルコヌルを合
成するには、䟋えば䞊述のようにしお埗るこずの
できる匏(b)化合物を、䟋えば有機溶媒䞭、還元詊
薬の存圚䞋に、氎玠化するこずにより容易に合成
するこずができる。反応条件及び反応方法は、䞊
述の匏(c)化合物から匏(b)化合物を合成する方法に
぀いお述べたずころに準じお行うこずにより匏(5)
化合物を容易に合成するこずができる。 (e) 実斜䟋及び参考䟋 参考䟋 原料匏(2)化合物の合成䟋− (1) −ゞメチルアセトニトリルの合成。 ゞメチルアミン50氎溶液90g䞭に氎冷䞋50
グリコノニトリル氎溶液114gを加え時間宀枩
で攪拌する。゚ヌテルを加え食塩で塩析埌抜出を
行なう。抜出埌は硫酞マグネシりムで也燥凊理埌
蒞留し、目的物を埗る。67g 沞点 130〜135℃760mmHg 収率 80 (2) −−トリメチル−−シクロ
ヘキセン−−むルメチレンブロミド匏(4)の
合成。 −−トリメチル−−シクロヘ
キセン−−むルメチルアルコヌル匏(5)15.4g
0.1モルをピリゞン1gずずもに也燥゚ヌテル
100ml䞭に仕蟌む。氷氎济で冷华内枩を10±℃
に保぀。同枩床で䞉臭化リン10.8g0.04モルを
滎䞋する。滎䞋終了埌時間攪拌を続け䞀倜攟眮
する。 反応液を氷氎䞭に泚入、゚ヌテル局を分離、食
塩氎掗、重゜ヌ氎䞭和、硫酞マグネシりム也燥凊
理、濃瞮を行なう。シリカゲルカラムクロマトに
より粟補する。 Rf0.731−ヘキサン酢゚チ
16g収率70ワコヌゲル−200 150、−
ヘキサン酢゚チ (3) シス−−−メチレン−−ト
リメチルシクロヘキサン−−むル−
ゞメチルアセトニトリル匏(3)の合成。 匏(4)2.3g10ミリモル、−ゞメチルアミ
ノアセトニトリル0.84g10ミリモル炭酞カリり
ム2.2g16ミリモルをDMF12mlずずもに50mlフ
ラスコに仕蟌みアルゎン䞋24時間、宀枩䞋攪拌反
応する。終了埌−ヘキサン100mlを加え氎掗を
行なう。硫酞マグネシりム也燥凊理、濃瞮埌シリ
カゲルカラムクロマトするこずによりRf0.602
−ヘキサン酢゚チを有する匏(3)
1.8gを埗た。収率82 (4) シス−γ−メチルシクロトラヌル匏(2)の合成 匏(3)12gを0.5芏定硝酞銀150ml、テトラヒドロ
フラン240ml、゚ヌテル120mlずずもに仕蟌み、宀
æž©äž‹24時間攪拌する。焌成した結晶をロ過し埗ら
れた有キ局を分離、硫酞マグネシりム無氎で
也燥する。゚バポレヌタヌで濃瞮埌残液を枛圧䞋
に粟留するこずにより沞点54〜56℃mmHg
を有するシス−γ−メチルシクロシトラヌル匏(2)
5.3gを埗た。収率58.8 IR306017201640895cm-1 実斜䟋 匏(1)化合物の合成䟋−  ±−シス−γ−むロンの合成 クロルアセトン32.5、トリプニルホスフむ
ン100gをクロロホルム䞭45分加熱し゚ヌテルに
泚ぐ。生成した結晶を集め112gのアセトニトリ
ルトリプニルホスホニりムクロラむドを埗る。
アセトニルトリプニルホスホニりムクロラむド
130gを10の炭酞ナトリりム氎溶液ず時
間攪拌する。埗られた、アセチリデントリプニ
ルホスホラン107をメタノヌル−氎より再結し、
99gの玔品を埗た。 䞊述のようにしお埗られたアセチリデントリフ
゚ニルホスホラン318gをトル゚ン䞭に溶解
させる。この䞭にシス−γ−メチルシクロトラヌ
ル匏(2)50gを加え24時間加熱還流する。終了埌ト
ル゚ンを゚バポレヌタヌで留去し、残枣に−ヘ
キサンを加え抜出を行なう。抜出埌を合わせ濃瞮
埌、残液を枛圧䞋に蒞留しお沞点110°〜113℃
mmHgを有する±−シス−γ−むロン51g
82.5を埗た。  ±−シス−γ−むロンの合成 実斜䟋に斌いおトル゚ンの代りにアセトニト
リルを甚いた他は実斜䟋ず同様に行぀お、±
−シス−γ−むロン57.5g93を埗た。 (f) 効果 本発明の方法によれば、トランス−䜓を生成す
るこずなく遞択的に±−シス−γ−むロンを
合成するこずができるこずに加えお、埓来提案の
工皋数にくらべお倧巟に短瞮された工皋数で合成
可胜であり、又安䟡で䞔぀奜収率で合成できる利
点がある。
By contacting with [Formula], the formula (1) of the object compound of the present invention can be obtained at once.
It has been discovered that (±)-cis-γ-ylon can be synthesized easily and in good yield. This reaction can be expressed as follows in a reaction process diagram. In the above process diagram, the starting compound of formula (2) is
γ-Methylcyclocitral is a compound that was synthesized for the first time by the present inventors and has not been described in any literature.
It can be easily synthesized from (3,3,4-trimethyl-1-cyclohexen-1-yl)-methyl alcohol in three steps. The compound of formula (2) is itself a compound useful in a wide range of fields as an aroma and flavor imparting or modulating agent, and the compound of formula (2), its production method, and its use are disclosed by the same applicant dated the same date as the present application. Patent Application No. 1982-82629 (Japanese Unexamined Patent Publication No. 1983
-243035). Acetylidene triphenylphosphorane used in the reaction with cis-γ-methylcyclocitral (formula (2)) can be easily prepared by treating a phosphonium salt, which can be obtained from chloroacetone and triphenyphosphine, with an alkali. can be obtained. According to the method of the present invention, the formula (1) (±)-cis-γ-
Iron has the formula (2) cis-γ-methylcyclocitral and the acetylidene triphenylphosphorane,
It can be easily formed by contacting in an organic solvent. This reaction is carried out under appropriate temperature conditions, e.g., in a temperature range of about -30°C to about 200°C, preferably in a temperature range of about 0°C to about 150°C, and for example, about 1 to about 30°C.
Reaction times range from about 5 to about 20 hours, preferably from about 5 to about 20 hours.
The reaction can be carried out under any suitable reaction time conditions, ranging for hours. When carrying out the reaction, the amount of acetylidene triphenylphosphorane to be used can be selected and changed as appropriate, but it is, for example, about 1 to about 10 mol, more preferably about 1 to about 5 mol, based on the compound of formula (1) above. Examples include usage amounts in the range of . Examples of organic solvents include toluene, acetonitrile, tetrahydrofuran, dimethoxyethane, ether, and diglyme. The amount of these organic solvents to be used can be selected as appropriate, but for example, about 1 to about 100
An example of the range is about twice the weight, more preferably about 1 to about 20 times the weight. After the reaction is completed, the compound of formula (1) can be easily obtained in a good yield by post-treatment according to a conventional method. The formula (2) cis-γ-methylcyclocitral used in the method of the present invention is, for example, the following formula (3) However, in the formula, R' and R'' each represent a lower alkyl group, or R' and R'' together represent a lower alkylene group, and cis-2-(2-methylene-5, 6,
6-trimethylcyclohexan-1-yl)-N,
N-dialkyl or -alkylene acetonitrile can be prepared by contacting it with silver nitrate in an organic solvent. The compound of formula (3) is, for example, the compound of formula (4) below. 1-(3,3,
The following formula (4) can be formed by reacting 4-trimethyl-1-cyclohexen-1-yl) methyl alcohol with a halogenating agent, mesylating agent, or tosylating agent in an organic solvent in the presence of a base. However, in the formula, X is a halogen such as Br, Cl, I,
1-(3,3,4-trimethyl-1) representing mesyloxy group (OMs) or tosyloxy group (OTs)
-cyclohexen-1-yl) methylene halide or mesylate or tosylate can be easily obtained by reacting with N,N-dilower alkyl- or lower alkylene-aminoacetonitrile in an organic solvent in the presence of a base. An example of a synthesis example for producing cis-γ-methylcyclocitral of formula (2) according to the above embodiment can be expressed as follows in a process diagram. 1-(3,3,4-trimethyl-1 of the above formula (4)
-Cyclohexen-1-yl)-methylene halide is synthesized by adding 1-(3,3,4-trimethyl-1-cyclohexen-1-yl)-methyl alcohol of the above formula (5) to a base, preferably in an organic solvent. This can be easily carried out by reacting with a halogenating agent, mesylating agent, or tosylating agent in the presence of a halogenating agent, a mesylating agent, or a tosylating agent. The reaction can preferably be carried out, for example, at a temperature of about -78° to about +150°C, for a reaction time of about 1 to about 5 hours. Specific examples of the organic solvent used in the reaction include ethers such as ether and tetrahydrofuran. There are no particular restrictions on the amount of these organic solvents to be used, and they may be selected as appropriate;
A preferable example is a usage amount in a range of about 10 times the weight. Further, examples of the halogenating agent, mesylating agent, and tosylating agent used in the reaction include phosphorus tribromide, phosphorus trichloride, methanesulfonyl chloride, p
-Toluenesulfonyl chloride and the like can be mentioned. In the example of the process diagram above, phosphorus tribromide is used as the halogenating agent. The amount of these agents to be used can be selected and changed as appropriate, and for example, a preferable example of the amount to be used is about 1 to about 3 moles for the above formula (5). Furthermore,
Examples of the base include organic bases such as pyridine and triethylamine.
In the example of the process diagram above, pyridine is used. The amount of these bases to be used may be selected appropriately, for example, about 0.1 to about 2
Preferred amounts are in the molar range. After completion of the reaction, for example, the organic layer is subjected to post-treatment such as washing with water and neutralization, and after distilling off the solvent, it is purified using means such as distillation and column chromatography.
The compound of formula (4) can be easily obtained. For example, from the compound of formula (4) that can be obtained as described above, 2-(2
-methylene-5,6,6-trimethylcyclohexan-1-yl)-N,N-dialkyl or alkyleneaminoacetonitrile, for example, the compound of formula (4) is mixed with potassium carbonate, sodium carbonate, N,N- in the presence of a base such as lithium carbonate, sodium hydroxide, potassium hydroxide, lithium hydroxide, barium hydroxide, etc.
It can be easily synthesized by reacting with di-lower alkyl or lower alkylene-aminoacetonitrile. The reaction can preferably be carried out at a temperature of about -78 to about +200°C for a reaction time of about 0.5 to about 48 hours, for example. The amount of N,N-dilower alkyl or lower alkylene-aminoacetonitrile used in the above reaction is preferably in the range of, for example, about 1 to about 2 moles based on the compound of formula (4) above. I can list them. In addition, the amount of the base to be used is, for example, about
The amount used can preferably range from about 0.1 to about 10 moles. In addition, as an organic solvent, dimethylformamide, tetrahydrofuran, acetonitrile, dimethyl sulfoxide, toluene,
Examples include ether and dioxane. The amount of these organic solvents to be used is not particularly limited and may be selected as appropriate.
A preferred example of the amount used is about 100 times the weight. After the reaction is completed, the reaction product is extracted with an organic solvent such as hexane, ether, or toluene, washed with water, dried, and purified by means such as column chromatography or distillation to easily obtain the compound of formula (3). I can do it. Cis-γ-methylcyclocitral, the raw material compound of formula (2) used in the present invention, can be easily synthesized, for example, by contacting the compound of formula (3), which can be obtained as described above, with silver nitrate in an organic solvent. be able to. The reaction is preferably carried out in an organic solvent, and organic solvents such as tetrahydrofuran, ether, etc. are preferably used. The reaction temperature and reaction time can be appropriately selected depending on the solvent used, but for example, a reaction temperature of about -20 to about +50 and,
For example, a reaction time of about 2 to about 48 hours can be exemplified. The amount of the organic solvent to be used is preferably in the range of about 1 to about 100 times the weight of the compound of formula (3). The amount of silver nitrate used in the above reaction can be selected and changed as appropriate, but for the compound of formula (3), for example,
A range of about 0.1 to about 10 moles can be exemplified. After the reaction is completed, the raw material compound of formula (2) can be easily obtained by removing the generated crystals, separating the organic layer, drying, and purifying it by means such as distillation and column chromatography. The compound of formula (5) used in the production example of the compound of formula (2) mentioned above is a compound of
The compound described in JP-A No. 57-134428 can be produced by the method disclosed in JP-A-57-134428, but an improved method (Japanese Patent Application No. 1983-1989) related to an application filed by the same applicant dated the same date as the present application is −82628, JP-A-61−
243034), which is preferable. According to the improved method, formula (b) shown in the process diagram below
The compound of formula (5) can be easily produced by hydrogenating 3,3,4-trimethyl-1-cyclohexene-1-carbaldehyde. A process diagram including the manufacturing mode of the compound of formula (b) is shown below. The method for synthesizing the compound of formula (5) above will be explained in more detail below according to the process diagram above. In the above process diagram, the formula (d) 2,2,3-tolumethyl-6-hydroxymethylenecyclohexanone is a 2,3-
Dimethylhexanone can be easily synthesized, for example, by methylation with methyl bromide in the presence of sodium hydride, followed by reaction with ethyl formate in the presence of sodium methoxide. Formula (d) compound to formula (c) 2,2,3-tolumethyl-
6-(1-Ethoxyethoxymethylene)cyclohexanone can be easily synthesized by reacting the compound of formula (d) with ethyl vinyl ether in the presence of an acid. Examples of acids used in this reaction include phosphoric acid, sulfuric acid, hydrochloric acid, and p-toluenesulfonic acid. The amount of these acids to be used varies depending on the type of acid, but for example, for the compound of formula (d). Approximately 0.5~
A preferable example is a range of about 10%. Further, the amount of ethyl vinyl ether to be used can be selected as appropriate, and may range, for example, from about 1 to about 10 moles relative to the compound of formula (d). The reaction can be easily carried out, for example, at a temperature of about 0° to about 50°C for about 1 to about 5 hours. After the reaction is complete, for example,
Pouring into aqueous sodium bicarbonate solution, drying over magnesium sulfate, and concentration can provide the compound of formula (c). To synthesize the above formula (b) 3,3,4-trimethyl-1-cyclohexene-1-carbaldehyde,
For example, expressions that can be composed as described above
It can be easily synthesized by hydrogenating the compound (c) in a solvent in the presence of a reducing reagent. Although the reaction temperature and reaction time can be selected appropriately, for example, about 0 to about 50°C and about 1 to about 5 hours can be exemplified. Examples of solvents include ethanol, water, isopropyl alcohol, ether,
THF can be mentioned. The amount of these organic solvents to be used can be selected as appropriate, and for example, it can be in the range of about 0.5 to about 5% by weight based on the compound of formula (c). In addition, as reducing reagents, for example,
Examples include sodium borohydride and lithium aluminum hydride. The amount of these reducing reagents to be used is, for example, about 1/4 to about 2 moles based on the compound of formula (c). After the reaction is completed, post-treatment is carried out according to conventional methods to obtain the formula
(b) The compound can be easily synthesized. To synthesize 1-(3,3,4-trimethyl-1-cyclohexen-1-yl)-methyl alcohol of formula (5), a compound of formula (b) which can be obtained as described above, for example, is It can be easily synthesized by hydrogenation in an organic solvent in the presence of a reducing reagent. The reaction conditions and reaction method were carried out in accordance with the method described above for synthesizing the compound of formula (b) from the compound of formula (c), thereby producing the compound of formula (5).
Compounds can be easily synthesized. (e) Examples and Reference Examples Synthesis example of compound of raw material formula (2): - (1) Synthesis of N,N-dimethylacetonitrile. Dimethylamine 50% in 90g of aqueous solution under water cooling
Add 114 g of glycononitrile aqueous solution and stir at room temperature for 3 hours. Add ether, salt out with common salt, and then perform extraction. After extraction, the desired product is obtained by drying with magnesium sulfate and distillation. 67g Boiling point 130-135℃/760mmHg Yield 80% (2) Synthesis of 1-(3,4,4-trimethyl-1-cyclohexen-1-yl)methylene bromide formula (4). 1-(3,4,4-trimethyl-1-cyclohexen-1-yl)methyl alcohol formula (5) 15.4g
(0.1 mol) with 1 g of pyridine in dry ether
Pour into 100ml. Cooling internal temperature in ice water bath to 10±5℃
Keep it. At the same temperature, 10.8 g (0.04 mol) of phosphorus tribromide is added dropwise. After the addition was completed, stirring was continued for 1 hour and the mixture was left overnight. The reaction solution was poured into ice water, the ether layer was separated, washed with brine, hydrated with heavy sodium sulfate, dried with magnesium sulfate, and concentrated. Purify by silica gel column chromatography. Rf=0.731 (n-hexane/ethyl acetate=3/1)
16g yield 70% (Wakogel C-200 150g, n-
Hexane/ethyl acetate = 9/1) (3) cis-2-(2-methylene-5,6,6-trimethylcyclohexan-1-yl)N,N-
Synthesis of dimethylacetonitrile formula (3). 2.3 g (10 mmol) of formula (4), 0.84 g (10 mmol) of N,N-dimethylaminoacetonitrile, and 2.2 g (16 mmol) of potassium carbonate are charged into a 50 ml flask together with 12 ml of DMF, and reacted under argon for 24 hours with stirring at room temperature. After finishing, add 100ml of n-hexane and wash with water. Rf = 0.602 by drying magnesium sulfate, concentrating, and silica gel column chromatography.
Formula (3) having (n-hexane/ethyl acetate = 3/1)
Obtained 1.8g. Yield 82% (4) Synthesis of cis-γ-methylcyclotoral formula (2) 12 g of formula (3) was charged with 150 ml of 0.5N silver nitrate, 240 ml of tetrahydrofuran, and 120 ml of ether, and stirred at room temperature for 24 hours. The calcined crystals are filtered and the obtained layer is separated and dried over magnesium sulfate (anhydrous). After concentrating with an evaporator, the residual liquid is rectified under reduced pressure to achieve a boiling point of 54-56℃ (2mmHg).
cis-γ-methylcyclocitral with formula (2)
Obtained 5.3g. Yield 58.8% IR: 3060, 1720, 1640, 895 cm -1 Example Synthesis example of compound of formula (1): - 1 Synthesis of (±)-cis-γ-yron 32.5 g of chloroacetone and 100 g of triphenylphosphine Heat in chloroform for 45 minutes and pour into ether. The generated crystals were collected to obtain 112 g of acetonitrile triphenylphosphonium chloride.
Acetonyltriphenylphosphonium chloride
Stir 130 g with 10% aqueous sodium carbonate solution for 8 hours. 107 g of the obtained acetylidene triphenylphosphorane was reconsolidated from methanol-water,
Obtained 99g of pure product. 318 g of acetylidene triphenylphosphorane obtained as described above are dissolved in 3 toluene. 50 g of cis-γ-methylcyclotoral formula (2) was added to the mixture and heated under reflux for 24 hours. After completion of the reaction, toluene is distilled off using an evaporator, and n-hexane is added to the residue for extraction. After the extractions are combined and concentrated, the residual liquid is distilled under reduced pressure to a boiling point of 110° to 113°C/
(±)-cis-γ-iron 51 g (Y
= 82.5%). 2 Synthesis of (±)-cis-γ-ylon The procedure was repeated in the same manner as in Example 1 except that acetonitrile was used instead of toluene, and (±)
-cis-γ-ylon 57.5g (Y=93%) was obtained. (f) Effects According to the method of the present invention, in addition to being able to selectively synthesize (±)-cis-γ-iron without producing a trans-isomer, the method also enables the synthesis of (±)-cis-γ-irones selectively, compared to the number of steps proposed conventionally. It has the advantage that it can be synthesized with a greatly reduced number of steps, and can be synthesized at low cost and with a good yield.

Claims (1)

【特蚱請求の範囲】  䞋蚘匏(2) で衚わされるシス−γ−メチルシクロシトラヌル
を有機溶媒䞭で䞋蚘匏 で衚わされるアセチリデントリプニルホルホラ
ンず接觊させるこずを特城ずする䞋蚘匏(1) で衚わされる±−シス−γ−むロンの補法。
[Claims] 1. The following formula (2) cis-γ-methylcyclocitral represented by the following formula in an organic solvent: The following formula (1) is characterized by contacting with acetylidene triphenyl phorphoran represented by A method for producing (±)-cis-γ-iron represented by
JP8263085A 1985-04-19 1985-04-19 Production of (+-) cis-gamma-irone Granted JPS61243041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8263085A JPS61243041A (en) 1985-04-19 1985-04-19 Production of (+-) cis-gamma-irone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8263085A JPS61243041A (en) 1985-04-19 1985-04-19 Production of (+-) cis-gamma-irone

Publications (2)

Publication Number Publication Date
JPS61243041A JPS61243041A (en) 1986-10-29
JPH0465065B2 true JPH0465065B2 (en) 1992-10-16

Family

ID=13779764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8263085A Granted JPS61243041A (en) 1985-04-19 1985-04-19 Production of (+-) cis-gamma-irone

Country Status (1)

Country Link
JP (1) JPS61243041A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255796A (en) * 1988-08-19 1990-02-26 T Hasegawa Co Ltd Perfume composition and its preparation
US5118865A (en) * 1990-03-26 1992-06-02 Firmenich Sa Cyclic ketones and their use as perfuming ingredients

Also Published As

Publication number Publication date
JPS61243041A (en) 1986-10-29

Similar Documents

Publication Publication Date Title
JPS606332B2 (en) Method for producing a carboxylic acid or sulfinic acid derivative having a perfluoroalkyl group
JPH0465065B2 (en)
US4231962A (en) 3-Phenoxybenzylideneamines and 3-benzylbenzylideneamines
JPS6113696B2 (en)
JP3386596B2 (en) Method for producing 5 (E), 8 (Z), 11 (Z) -tetradecatrien-2-one
JPS6251637A (en) Production of 2-methylene-6,6-dimethyl or 5,6,6-trimethylcyclohexylcarbaldehyde
JPH0136818B2 (en)
JP2001322950A (en) Method for producing 2-alkyleneadamantane
JPH0245614B2 (en)
JPH026422A (en) Production of 3z,6z,8e-dodecatrienol, intermediate used in production thereof and production of the intermediate
JP3376886B2 (en) Method for producing sporokunol A and synthetic intermediate thereof
JPH0761978B2 (en) Manufacturing method of glutaric acid derivative
JPS6251664A (en) Production of gamma-ionone
JPH0244459B2 (en)
JPH0522711B2 (en)
JP4018816B2 (en) Cycloheptenone derivative and method for producing the same, and method for producing cycloheptimidazole derivative using the same
JP2548707B2 (en) Method for producing steroid compound
JPH0348909B2 (en)
JP3340761B2 (en) Process for producing para-tertiary butoxy-α-methylstyrene
JP2001048826A (en) Production of 1-phenyl-1,3-butanedione
JPS5848553B2 (en) β, β, β↓-trihalo↓-α↓-hydroxyethyl-substituted↓-2↓-aroylpyrrole derivative
JPH10182523A (en) Production of 1-substituted-2,2-difluoro-3-butene-1-ol
JPS6252750B2 (en)
JP2002212149A (en) METHOD FOR PRODUCING TETRAALKYLAMMONIUM FLUORIDE AND METHOD FOR PRODUCING beta-HYDROXYKETONE BY USING THE SAME
JPS63188652A (en) Production of 5-hydroxy-2-alkynic acid ester

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term