JPS6148815B2 - - Google Patents

Info

Publication number
JPS6148815B2
JPS6148815B2 JP54170294A JP17029479A JPS6148815B2 JP S6148815 B2 JPS6148815 B2 JP S6148815B2 JP 54170294 A JP54170294 A JP 54170294A JP 17029479 A JP17029479 A JP 17029479A JP S6148815 B2 JPS6148815 B2 JP S6148815B2
Authority
JP
Japan
Prior art keywords
formula
reaction
compound
substituted
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54170294A
Other languages
Japanese (ja)
Other versions
JPS5695143A (en
Inventor
Harue Ryo
Hiroshi Tamura
Kunio Kojo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Hasegawa Co Ltd
Original Assignee
T Hasegawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Hasegawa Co Ltd filed Critical T Hasegawa Co Ltd
Priority to JP17029479A priority Critical patent/JPS5695143A/en
Publication of JPS5695143A publication Critical patent/JPS5695143A/en
Publication of JPS6148815B2 publication Critical patent/JPS6148815B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Seasonings (AREA)
  • Cosmetics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、新鮮なグリヌン・ノヌトもしくは甘
い新鮮なグリヌン・ノヌトを有し、果実系および
グリヌン系のナニヌクな銙気乃至銙味賊䞎乃至倉
調剀ずしお銙料分野においお有甚であり、曎に
又、他の銙料物質の合成䞭間䜓ずしおも有甚な、
埓来文献未蚘茉の䞋蚘匏(1)、 䜆し匏䞭、はC1〜C15のアルキル基およびC8
〜C10のアラルキル基よりなる矀からえらばれた
基を瀺す、 で衚わされる―眮換ノナナヌル類及びその補法
に関する。 本発明者等は、西瓜の銙気乃至銙味成分に぀い
お、倚幎、研究を続けおきた。その結果、䞋蚘匏
(A) で衚わされる―オキ゜ノナナヌルを、西瓜の銙
気乃至銙味のキむ・フレヌバヌずしお倩然の西瓜
から抜出分離するこずに成功し、曎にそれが合成
可胜であるこずを発芋しお、同䞀出願人の出願に
係わる特願昭54―141173号昭和54幎11月日出
願発明の名称「―オキ゜ノナナヌル、その䞭
間䜓ならびにそれらの補法」〔察応特開昭56―
65839号〕に開瀺した。 本発明者等は、曎に研究を続けた結果、䞊蚘匏
(1)で瀺される埓来文献未蚘茉の―眮換ノナナヌ
ル類が合成可胜であるこず、及び該匏(1)化合物が
新鮮なグリヌン・ノヌトもしくは甘い新鮮なグリ
ヌン・ノヌトを有し、果実系ずくに西瓜様および
グリヌン系のナニヌクな銙気銙味賊䞎乃至倉調剀
ずしお優れた持続性を有するこず、斯くお、飲食
物嗜奜品を包含する、化粧品類、保健・衛
生・医薬品類などの広い利甚分野においお、優れ
た持続性銙気銙味賊䞎乃至倉調剀ずしお有甚であ
るこずを発芋した。曎に、該匏(1)化合物は、本願
ず同日付で出願した同䞀出願の係わる埓来文献未
蚘茉の―眮換ノナナヌルのアセタヌル類特願昭
54―170295号、特開昭56―95141号昭和54幎12
月28日出願、発明の名称“―眮換ノナナヌルの
アセタヌル類およびそれらの補法”の補造䞭間
䜓その他の銙料物質の合成䞭間䜓ずしお有甚であ
るこずがわか぀た。 埓぀お、本発明の目的は前蚘匏(1)―眮換ノナ
ナヌル類及びその補法を提䟛するにある。 本発明の前蚘匏(1)化合物の匏䞭、C1〜C15のア
ルキル基及びC8〜C10のアラルキル基よりなる矀
からえらばれる。 このような奜適なアルキル基の具䜓䟋ずしお
は、メチル、゚チル、プロピル、む゜プロピル、
ブチル、む゜ブチル、sec―ブチル、tert―ブチ
ル、ペンチル、む゜ペンチル、tert―ペンチル、
ネオペンチル、―メチルブチル、―ゞメ
チルプロピル、―゚チルプロピル、ヘキシル、
ヘプチル、オクチル、ノニル、デシル、りンデシ
ル、ドデシル、トリデシル、テトラデシル、ペン
タデシルなどの劂きC1〜C15のアルキル基を䟋瀺
できる。又、このような奜適なアラルキル基の具
䜓䟋ずしおは、プニル゚チル、プニルプロピ
ル、プニルブチルなどの劂きC8〜C10のアラル
キル基を䟋瀺するこずができる。 このような匏(1)化合物の具䜓䟋ずしおは、䞋蚘
の劂き埓来文献未蚘茉の化合物を䟋瀺するこずが
できる。 䟋えば、(1)―メトキシノナナヌル、(2)―゚
トキシノナナヌル、(3)―プロポキシノナナヌ
ル、(4)―ブトキシノナナヌル、(5)―ペンチル
オキシノナナヌル、(6)―ヘキシルオキ゜ノナナ
ヌル、(7)―ヘプチルオキシノナナヌル、(8)―
オクチルオキシノナナヌル、(9)―ノニルオキシ
ノナナヌル、(10)―デシルオキシノナナヌル、(11)
―りンデシルオキシノナナヌル、(12)―ドデシ
ルオキシノナナヌル、13―プネチルオキ
シノナナヌル、14―プニルプロピルオキ
シノナナヌル、15―プニルブチルオキシ
ノナナヌル。 䞊蚘䟋瀺の劂き匏(1)化合物は、通垞、透明な油
状物質であ぀お、その代衚䟋に぀いおの物理化孊
恒数は䞋蚘のずおりである。
The present invention has a fresh green note or a sweet fresh green note and is useful in the fragrance field as a unique fruity and green aroma or flavor imparting or modulating agent, and is also useful as a flavor imparting or modulating agent for other flavoring substances. Also useful as a synthetic intermediate for
The following formula (1), which has not been described in conventional literature, However, in the formula, R is a C 1 to C 15 alkyl group and a C 8
This invention relates to a 4-substituted nonanal represented by the following formula, which represents a group selected from the group consisting of -C10 aralkyl groups, and a method for producing the same. The present inventors have continued research on the aroma and flavor components of watermelon for many years. As a result, the following formula
(A) We have succeeded in extracting and separating 4-oxononanal, represented by Japanese Patent Application No. 141173 (filed on November 2, 1974; title of the invention: "4-oxononanal, intermediates thereof, and methods for producing them")
No. 65839]. As a result of further research, the present inventors determined that the above formula
It is possible to synthesize the 4-substituted nonanals represented by (1), which have not been described in the literature, and that the compound of formula (1) has a fresh green note or a sweet fresh green note, and has a fruity aroma, especially a fruit-based one. Unique watermelon-like and green aroma It has excellent sustainability as a flavor imparting or modulating agent, and thus has a wide range of applications such as food and beverages (including luxury goods), cosmetics, health, hygiene, and pharmaceuticals. It was discovered that it is useful as an excellent long-lasting aroma and flavor imparting or flavor modulating agent. Furthermore, the compound of formula (1) is disclosed in a patent application for acetals of 4-substituted nonanal, which has not been described in any prior literature, filed on the same date as the present application.
No. 54-170295, JP-A No. 56-95141; December 1972
It has been found that the present invention is useful as an intermediate for the production of 4-substituted nonanal acetals and their production method (filed on May 28, 2008) and as an intermediate for the synthesis of other fragrance substances. Therefore, an object of the present invention is to provide 4-substituted nonanals of the formula (1) and a method for producing the same. In the formula (1) compound of the present invention, it is selected from the group consisting of a C1 - C15 alkyl group and a C8 - C10 aralkyl group. Specific examples of such suitable alkyl groups include methyl, ethyl, propyl, isopropyl,
Butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, tert-pentyl,
Neopentyl, 1-methylbutyl, 1,2-dimethylpropyl, 1-ethylpropyl, hexyl,
Examples include C1 - C15 alkyl groups such as heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl and the like. Specific examples of such suitable aralkyl groups include C8 to C10 aralkyl groups such as phenylethyl, phenylpropyl, phenylbutyl, and the like. Specific examples of such compounds of formula (1) include the following compounds that have not been described in any prior literature. For example, (1) 4-methoxynonanal, (2) 4-ethoxynonanal, (3) 4-propoxynonanal, (4) 4-butoxynonanal, (5) 4-pentyloxynonanal, (6) )4-hexyloxononanal, (7)4-heptyloxononanal, (8)4-
Octyloxynonanal, (9) 4-nonyloxynonanal, (10) 4-decyloxynonanal, (11)
4-undecyloxynonanal, (12) 4-dodecyloxynonanal, (13) 4-phenethyloxynonanal, (14) 4-phenylpropyloxynonanal, (15) 4-phenylbutyl Oxynonanal. The compound of formula (1) as exemplified above is usually a transparent oily substance, and the physicochemical constants of typical examples thereof are as follows.

【衚】 本発明の匏(1)―眮換ノナナヌル類は、そのニ
ナアンスに差異はあるにせよ、共通しおグリヌン
ノヌト調を有する。䞊蚘䟋瀺化合物に぀いおのグ
リヌンノヌト調を以䞋に䟋瀺する。
[Table] The 4-substituted nonanals of formula (1) of the present invention have a green note tone in common, although there are differences in their nuances. The green note tone of the above-mentioned exemplified compounds is illustrated below.

【衚】 ンノヌト
本発明の前蚘匏(1)の―眮換ノナナヌル類は、
埌蚘図匏に瀺すように、䟋えば、匏(2)の―眮換
――デセン類をオゟンず接觊せしめ、生成物を
還元剀の存圚䞋に還元分解するこずにより補造で
き、該匏(2)化合物は、䟋えば、匏(3)の―デセン
――オヌルを、塩基の存圚䞋、匏(4)のハロゲン
化合物ず接觊せしめるこずにより圢成でき、たた
該匏(3)化合物は、䟋えば、匏(5)の―デセン―
―オンを還元剀ず接觊せしめるこずにより圢成で
き、さらに、該匏(5)化合物は、䟋えば、匏(7)の
―オキ゜オクタン酞アルキルを、塩基の存圚䞋、
匏(6)のハロゲン化アリルず接觊せしめ、曎に、け
ん化、脱炭酞せしめるこずにより圢成するこずが
できる。 䞊蚘図匏䞭、は匏(1)に぀いおのべたず同矩で
あり、R1は䜎玚アルキル基を瀺し、はハロゲ
ン原子を瀺す。 以䞋、䞊蚘図匏で瀺した態様を䟋に、本発明匏
(1)の化合物の補造に぀いお、さらに詳しく説明す
る。 䞊蚘匏(7)の―オキ゜オクタン酞アルキルは、
䟋えば、塩基の存圚䞋に―ヘプタノンを炭酞ゞ
アルキルず反応せしめる公知手法により奜収率、
奜玔床で容易に補造するこずができ、R1の具䜓
䟋ずしおは、メチル、゚チル、プロピル、ブチ
ル、ペンチル、ヘキシルなどの劂きC1〜C6䜎玚
アルキル基を䟋瀺するこずができる。䞊蚘匏(5)の
―デセン――オンは、䟋えば、該匏(7)の―
オキ゜オクタン酞アルキルを、塩基の存圚䞋、䞊
蚘匏(6)のハロゲン化アリルず接觊せしめ、曎に、
けん化、脱炭酞するこずにより、容易に奜収率で
圢成するこずができる。匏(6)化合物ず接觊せしめ
る瞮合反応は、たずえば、䞍掻性有機溶媒䞭、枩
床玄゜〜玄100℃より奜たしくは玄10〜玄30℃
皋床の枩床においお、䟋えば、玄〜玄60時間の
劂き条件で行うこずができる。 該匏(6)化合物ずの瞮合反応に甚いる塩基の具䜓
䟋ずしおは、䟋えば、ナトリりムメトキシド、ナ
トリりム゚トキシド、ナトリりムプロポキシド、
ナトリりムむ゜プロポキシド、ナトリりム―ブ
トキシド、カリりムメトキシド、カリりム゚トキ
シド、カリりム―ブトキシド、氎玠化ナトリり
ム、氎玠化カリりム、氎玠化リチりム、ナトリり
ムアミド、カリりムアミド、リチりムアミド、ブ
チルリチりム、リチりムゞアルキルアミド類等を
挙げるこずができる。これらの塩基の䜿甚量は、
原料の匏(7)化合物モルに察しお玄〜玄モル
皋床で充分であり、䞀局奜たしくは、玄〜玄
1.5モル皋床がしばしば採甚される。 又、䞊蚘瞮合反応に甚いる匏(6)ハロゲン化アリ
ルの䟋ずしおは、塩化アリル、臭化アリル、ペり
化アリルなどを䟋瀺でき、これらの䜿甚量も適宜
に遞択するこずができる。原料の匏(7)化合物モ
ルに察しお、䟋えば玄〜玄モル皋床がしばし
ば採甚される。曎に、䞊蚘瞮合反応においお甚い
られる䞍掻性有機溶媒の具䜓䟋ずしおは、䟋え
ば、メタノヌル、゚タノヌル、プロパノヌル、む
゜プロピルアルコヌル、ブタノヌル、―ブチル
アルコヌル、テトラヒドロフラン、゚ヌテル、
―ゞメトキシ゚タン、ゞオキサン、ベンれ
ン、トル゚ン、キシレン、液䜓アンモニア、ゞメ
チルスルホキシド等を挙げるこずができる。これ
らの溶媒は、単独でも、皮以䞊䜵甚しおでも甚
いるこずができる。これらの溶媒の䜿甚量には特
別な制玄はないが、原料の匏(7)化合物に察しお、
奜たしくは玄〜玄100重量倍皋床、䞀局奜たし
くは、玄〜玄10重量倍皋床の䜿甚量を䟋瀺する
こずができる。 䞊述のようにしお、匏(7)化合物ず匏(6)ハロゲン
化アリルずを接觊させたのち、垞法により、けん
化及び脱炭酞反応を行うこずができる。䟋えば、
䞊述のようにしお圢成される瞮合反応生成物をけ
ん化し、酞の存圚䞋で還流するこずにより脱炭酞
するこずができる。けん化は䟋えば、カセむ゜ヌ
ダ、カセむカリなどの塩基性觊媒ず接觊させ加氎
分解するこずにより行うこずができる。たた脱炭
酞は、䟋えば、塩酞酞性で加熱し、炭酞ガスの発
生を認め、それがやむたで還流するこずにより容
易に行うこずができる。けん化及び脱炭酞反応を
行぀たのち、䟋えば、反応生成物を氎䞭に泚入
し、䞭和し、䟋えば、ベンれンの劂き抜出溶媒で
抜出し、溶媒局を氎掗し、也燥埌、濃瞮するこず
により、匏(5)で衚わされる―デセン――オン
を高収率高玔床で埗るこずができる。曎に望むな
らば、䟋えば、枛圧蒞留やカラムクロマト等の手
段により、さらに粟補するこずも可胜である。 前蚘匏(3)の―デセン――オヌルは、たずえ
ば䞊述のようにしお圢成できる匏(5)―デセン―
―オンを、䟋えば䞍掻性有機溶媒䞭で、適圓な
還元剀ず接觊せしめるこずにより奜収率䞔぀奜遞
択率をも぀お容易に行うこずができる。該反応の
反応枩床は適宜に遞択でき、䟋えば、玄−20〜玄
100℃皋床の枩床範囲、より奜たしくは玄〜玄
30℃皋床の反応枩床を䟋瀺するこずができる。反
応時間は反応枩床等によ぀おも適宜倉曎するこず
ができ、䟋えば、玄〜玄20時間皋床の反応時間
を䟋瀺するこずができる。 䞊蚘の還元反応においお甚いる還元剀の䟋ずし
おは、氎玠化アルミニりムリチりム、氎玠化ホり
玠ナトリりムなどの劂き金属氎玠化物類アルミ
ニりムむ゜プロポキシドなどの劂き金属アルコラ
ヌト類等を䟋瀺するこずができる。又、䞊蚘䞍
掻性有機溶媒の具䜓䟋ずしおは、䟋えば、メタノ
ヌル、゚タノヌル、プロパノヌル、む゜プロピル
アルコヌル、ブタノヌル、氎、゚ヌテル、テトラ
ヒドロフラン、ゞオキサン、ベンれン、ヘキサ
ン、石油゚ヌテル、ペンタン等を挙げるこずがで
きる。これらの溶媒は、単独でも、皮以䞊䜵甚
しお甚いるこずもできる。これらの溶媒の䜿甚量
には特別な制玄はないが、前蚘匏(5)化合物に察し
お玄〜玄50重量倍皋床、䞀局奜たしくは、玄
〜玄10重量倍皋床の䜿甚量を䟋瀺するこずができ
る。䞊蚘反応の終了埌、䟋えば、反応生成物を氎
䞭に泚入し、もしくは觊媒を陀去したあず、䟋え
ばベンれンの劂き抜出溶媒で抜出し、溶媒局を氎
掗し、也燥し、濃瞮するこずにより、匏(3)で衚わ
される―デシン――オヌルを高収率高玔床で
埗るこずができる。曎に望むならば、枛圧蒞留や
カラムクロマト等の手段により、さらに粟補する
こずも可胜である。 本発明の匏(1)の―眮換ノナナヌル類の補造に
甚いる匏(2)の―眮換――デセン類は、䟋えば
䞊述のようにしお埗るこずのできる匏(3)の―デ
シン――オヌルを、たずえば、塩基の存圚䞋、
匏(4)のハロゲン化物ず接觊せしめるこずにより圢
成するこずができる。この反応は、䟋えば、匏(3)
化合物をアルカリ金属塩基によ぀お、そのアルカ
リ金属塩の圢にするもしくは圢にした条件䞋に、
䞍掻性有機溶媒䞭で、匏(4)ハロゲン化物ず接觊せ
しめるこずにより行うこずができる。 䞊蚘匏(2)化合物圢成反応の反応枩床は適宜に遞
択でき、䟋えば、玄℃〜玄100℃皋床の枩床範
囲、より奜たしくは玄20〜玄80℃皋床の反応枩床
を䟋瀺するこずができる。反応時間は反応枩床等
によ぀おも適宜に倉曎するこずができ、䟋えば、
玄〜玄20時間皋床の反応時間を䟋瀺するこずが
できる。 該反応においお甚いられるアルカリ金属塩基の
具䜓䟋ずしおは、䟋えば、氎玠化リチりム、氎玠
化ナトリりム、氎玠化カリりム、氎酞化ナトリり
ム、氎酞化カリりム、もしくは適圓なアルコヌル
䞭のナトリりム、カリりム等を挙げるこずができ
る。これらの塩基の䜿甚量は適宜に遞択でき、䟋
えば、前蚘匏(3)化合物モルに察しお玄〜玄
モル皋床で充分であり、䞀局奜たしくは、玄〜
箄1.2モル皋床がしばしば採甚される。䞊蚘反応
においお甚いられる前蚘匏(4)のハロゲン化物の䜿
甚量も適圓に遞択でき、前蚘匏(3)化合物モルに
察しお、䟋えば、玄〜玄モル皋床の䜿甚量を
䟋瀺できる。又、䞊蚘反応においお甚いられる䞍
掻性有機溶媒の具䜓䟋ずしおは、䟋えば、ベンれ
ン、トル゚ン、キシレン、ゞメチルホルムアルデ
ヒド、゚ヌテル、テトラヒドロフラン、メタノヌ
ル、゚タノヌル、プロパノヌル、む゜プロピルア
ルコヌル、ブタノヌル、―ブチルアルコヌル等
を挙げるこずができる。これらの溶媒は単独で
も、皮以䞊䜵甚しおでも甚いるこずができる。
これらの溶媒の䜿甚量には特別な制玄はないが、
前蚘匏(3)化合物に察しお玄〜玄50重量倍皋床、
䞀局奜たしくは、玄〜玄10重量倍皋床の䜿甚量
を䟋瀺するこずができる。䞊蚘反応の終了埌、䟋
えば、反応生成物を氎䞭に泚入し、䞭和し、ベン
れンの劂き抜出溶媒で抜出し、溶媒局を氎掗し、
也燥し、濃瞮するこずにより、匏(2)で衚わされる
―眮換――デセン類を高収率高玔床で埗るこ
ずができる。曎に望むならば、枛圧蒞留やカラム
クロマト等の手段により、さらに粟補するこずが
できる。 本発明によれば、たずえば䞊述のようにしお埗
られるこずのできる匏(2)の―眮換――デセン
類を、オゟンず接觊せしめ、生成物を還元剀の存
圚䞋に還元分解するこずによ぀お、匏(1)の埓来文
献未蚘茉の―眮換ノナナヌル類を補造するこず
ができる。この反応は、溶媒の存圚䞋もしくは䞍
存圚䞋に行うこずができる。 䞊蚘オゟン酞化反応の反応枩床は適宜に遞択で
き、䟋えば、玄−78〜玄30℃皋床の枩床範囲、
より奜たしくは玄−30〜玄−78℃皋床の反応枩床
を䟋瀺するこずができる。反応時間はオゟン流量
や反応枩床等によ぀おも適宜に倉曎するこずがで
き、䟋えば、玄30〜玄10時間皋床の反応時間を䟋
瀺するこずができる。 䞊蚘オゟン酞化反応の実斜に際しお、オゟンの
䜿甚量は適宜に遞択でき、䟋えば、前蚘匏(2)化合
物モルに察しお、玄0.8〜玄1.5モル皋床がしば
しば採甚される。又該反応においお䜿甚される溶
媒ずしお、䞍掻性有機溶媒の具䜓䟋ずしおは、䟋
えば、ペンタン、ヘキサン、シクロヘキサン、ベ
ンれン、四塩化炭玠、クロロホルム、二塩化メチ
レン、塩化゚チル、゚ヌテル、テトラヒドロフラ
ン、酢酞゚チル、アセトン、ニトロメタン、ホル
ムアルデヒドなどを䟋瀺できる。又、䞊蚘溶媒
䞭、掻性溶媒ずしおは、䟋えば、ギ酞、酢酞、プ
ロピオン酞、メタノヌル、゚タノヌル、プロパノ
ヌル、氎等を挙げるこずができる。これらの溶媒
は単独でも、皮以䞊䜵甚しおも甚いるこずがで
きる。これらの溶媒の䜿甚量には特別な制玄はな
いが、前蚘匏(2)化合物に察しお玄〜玄20重量倍
皋床、䞀局奜たしくは、玄10〜玄30重量倍皋床の
䜿甚量を䟋瀺するこずができる。 又、䞊蚘還元剀による還元分解反応においお甚
いられる還元剀の具䜓䟋ずしおは、䟋えば、亜鉛
末、トリプニルホスフむン、ゞメチルスルフむ
ド、ペり化ナトリりム、硫酞第䞀鉄、接觊氎玠化
觊媒等を挙げるこずができる。これらの還元剀の
䜿甚量は適宜に遞択でき、䟋えば、前蚘匏(2)化合
物モルに察しお玄〜玄40モル皋床で充分であ
り、䞀局奜たしくは、玄〜玄10モル皋床がしば
しば採甚される。 該還元分解反応は、䟋えば、亜鉛末ず氷酢酞の
混合液に、オゟン酞化生成物を少しづ぀滎䞋する
こずにより行うこずができる。該還元反応の枩床
も適宜に遞択でき、䟋えば、玄−30〜玄20℃繋
床の枩床範囲、より奜たしくは玄−10〜玄℃皋
床の反応枩床を䟋瀺するこずができる。反応時間
は反応枩床等によ぀おも適宜に倉曎するこずがで
き、䟋えば、玄〜玄時間皋床の反応時間を䟋
瀺するこずができる。䞊蚘反応の終了埌、䟋え
ば、反応生成物を氎䞭に泚入し、也燥し、濃瞮す
るこずにより、目的の化合物である前蚘匏(1)で衚
わされる―眮換ノナナヌル類を高収率高玔床で
埗るこずができる。曎に望むならば、䟋えば、枛
圧蒞留やカラムクロマト等の手段により、さらに
粟補するこずができる。 以䞋、実斜䟋により本発明の数態様に぀いお曎
に詳しく説明する。 参考䟋  ―デセン――オル〔匏(5)〕の補造 反応容噚に、金属ナトリりム5.50.24モ
ル及び無氎゚チルアルコヌル120mlを仕蟌み、
還流䞋にナトリりム゚トキシドC2H5ONaを
調敎する。次に、―オキ゜オクタン酞゚チル44
0.24モルを加え、玄80℃の枩床で還流させ
ながら玄時間撹拌反応させる。曎に、還流䞋、
箄40分間を芁しお、アリルクロリド17.60.23
モルを滎䞋する。滎䞋埌、還流䞋、さらに玄
時間撹拌反応する。反応終了埌、冷华し、生成し
た食塩の沈殿物を吞匕過し、液を濃瞮する。
次に7.5氎酞化ナトリりム氎溶液200mlを加え、
還流䞋、玄時間加氎分解する。加氎分解埌、硫
酞酞性にした埌、還流䞋、玄時間を芁しお脱炭
酞する。反応終了埌、反応生成物を䞭和し、ベン
れンで抜出する。抜出液をアルカリ掗浄、氎掗、
也燥、濃瞮する。埗られた残枣を枛圧䞋蒞留する
こずにより、玔品の―デセン――オン25
沞点95〜109℃22mmHg、収率70を埗
る。 参考䟋  ―デセン――オヌル〔匏(3)〕の補造 反応容噚に、氎玠化ホり玠ナトリりム
NaBH47.90.21モル及び95゚チルアル
コヌル300mlを仕蟌む。次に、氎冷䞋、撹拌し぀
぀、―デセン――オン42.50.28モルの
゚チルアルコヌル溶液200mlを玄時間芁しお滎
䞋する。滎䞋埌、曎に宀枩で玄時間撹拌反応す
る。反応終了埌、反応生成物を垌塩酞に泚ぎ、ベ
ンれンで抜出する。抜出液を氎掗、也燥、濃瞮す
る。埗られた残枣を枛圧䞋蒞留するこずにより、
玔品の―デセン――オヌル37.4沞点70
〜80℃mmHg、収率85を埗る。 参考䟋  ―゚トキシ――デセン〔匏(2)〕の補造 反応容噚に、氎玠化ナトリりム4.30.18モ
ル及びトル゚ン100ml仕蟌み撹拌する。次に、
―デセン――オヌル230.15モルを分
間芁しお滎䞋する。滎䞋終了埌、曎に、時間撹
拌還流する。次に、撹拌還流䞋、臭化゚チル21.8
0.2モルを滎䞋する。滎䞋埌、曎に、時
間反応する。反応終了埌、反応生成物を氎䞭に泚
入し、ベンれン抜出、氎掗、也燥、濃瞮する。埗
られた残枣を枛圧䞋蒞留するこずにより、玔品の
―゚トキシ――デセンを22沞点90〜
100℃18mmHg、収率80埗る。 参考䟋 〜10 ―眮換――デセン類〔匏(2)〕の補造 参考䟋の方法に準じお、皮々の―眮換―
―デセン類を埗た。 その結果を衚―に瀺す。
[Table] Note The 4-substituted nonanals of the formula (1) of the present invention are:
As shown in the diagram below, it can be produced, for example, by bringing the 5-substituted-1-decene of formula (2) into contact with ozone and reductively decomposing the product in the presence of a reducing agent. The compound can be formed, for example, by contacting 1-decen-5-ol of formula (3) with a halogen compound of formula (4) in the presence of a base, and the compound of formula (3) can be formed by, for example, 1-decene-5 in formula (5)
The compound of formula (5) can be formed by contacting -one with a reducing agent, and the compound of formula (5) can be formed by, for example,
-Alkyl oxooctanoate in the presence of a base,
It can be formed by contacting with the allyl halide of formula (6), followed by saponification and decarboxylation. In the above scheme, R has the same meaning as in formula (1), R 1 represents a lower alkyl group, and X represents a halogen atom. Hereinafter, using the embodiment shown in the above diagram as an example, the present invention formula
The production of the compound (1) will be explained in more detail. The alkyl 3-oxooctanoate of the above formula (7) is
For example, a well-known method of reacting 2-heptanone with dialkyl carbonate in the presence of a base can yield a good yield.
It can be easily produced with good purity, and specific examples of R 1 include C 1 -C 6 lower alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl and the like. The 1-decen-5-one of the above formula (5) is, for example, the 3-decen-5-one of the formula (7).
Contacting the alkyl oxooctanoate with the allyl halide of formula (6) above in the presence of a base,
It can be easily formed in good yield by saponification and decarboxylation. The condensation reaction in which the compound of formula (6) is brought into contact can be carried out, for example, in an inert organic solvent at a temperature of about 0°C to about 100°C, more preferably about 10°C to about 30°C.
It can be carried out at a temperature of about 100 mL for about 3 to about 60 hours, for example. Specific examples of the base used in the condensation reaction with the compound of formula (6) include sodium methoxide, sodium ethoxide, sodium propoxide,
Sodium isopropoxide, sodium t-butoxide, potassium methoxide, potassium ethoxide, potassium t-butoxide, sodium hydride, potassium hydride, lithium hydride, sodium amide, potassium amide, lithium amide, butyllithium, lithium dialkylamide There are many examples of this. The amount of these bases used is
It is sufficient to use about 1 to about 3 moles per mole of the compound of formula (7) as a raw material, and more preferably about 1 to about 3 moles.
About 1.5 mol is often employed. Further, examples of the allyl halide of formula (6) used in the above condensation reaction include allyl chloride, allyl bromide, allyl iodide, etc., and the amounts of these to be used can also be selected as appropriate. For example, about 1 to about 3 mol is often employed per 1 mol of the compound of formula (7) as a raw material. Further, specific examples of the inert organic solvent used in the above condensation reaction include methanol, ethanol, propanol, isopropyl alcohol, butanol, t-butyl alcohol, tetrahydrofuran, ether,
Examples include 1,2-dimethoxyethane, dioxane, benzene, toluene, xylene, liquid ammonia, and dimethyl sulfoxide. These solvents can be used alone or in combination of two or more. There are no special restrictions on the amount of these solvents used, but for the compound of formula (7) as a raw material,
The amount used is preferably about 2 to about 100 times by weight, more preferably about 3 to about 10 times by weight. After the compound of formula (7) and the allyl halide of formula (6) are brought into contact as described above, saponification and decarboxylation reactions can be carried out by a conventional method. for example,
The condensation reaction product formed as described above can be saponified and decarboxylated by refluxing in the presence of an acid. Saponification can be carried out, for example, by contacting with a basic catalyst such as caustic soda or caustic potash for hydrolysis. Further, decarboxylation can be easily carried out, for example, by heating with hydrochloric acid acidity, observing the generation of carbon dioxide gas, and refluxing until the generation of carbon dioxide gas stops. After performing the saponification and decarboxylation reactions, for example, the reaction product is poured into water, neutralized, extracted with an extraction solvent such as benzene, the solvent layer is washed with water, dried, and concentrated, 1-decen-5-one represented by formula (5) can be obtained with high yield and high purity. If desired, further purification can be carried out, for example, by means such as vacuum distillation or column chromatography. 1-decene-5-ol of the formula (3) is, for example, 1-decene-5-ol of the formula (5), which can be formed as described above.
The 5-one can be easily prepared in good yield and selectivity by contacting the 5-one with a suitable reducing agent, for example in an inert organic solvent. The reaction temperature of the reaction can be selected as appropriate, for example, from about -20 to about
Temperature range of about 100°C, more preferably about 0 to about
A reaction temperature of about 30°C can be exemplified. The reaction time can be changed as appropriate depending on the reaction temperature and the like, and for example, a reaction time of about 1 to about 20 hours can be exemplified. Examples of the reducing agent used in the above reduction reaction include metal hydrides such as lithium aluminum hydride and sodium borohydride; metal alcoholates such as aluminum isopropoxide; and the like. Specific examples of the inert organic solvent include methanol, ethanol, propanol, isopropyl alcohol, butanol, water, ether, tetrahydrofuran, dioxane, benzene, hexane, petroleum ether, and pentane. These solvents can be used alone or in combination of two or more. There is no particular restriction on the amount of these solvents used, but the amount is about 1 to about 50 times the weight of the compound of formula (5), more preferably about 2 times the weight of the compound of formula (5).
An example of the usage amount is about 10 times the weight. After the completion of the above reaction, for example, by injecting the reaction product into water or removing the catalyst, extracting with an extraction solvent such as benzene, washing the solvent layer with water, drying, and concentrating, the formula ( 1-decyn-5-ol represented by 3) can be obtained with high yield and high purity. If desired, further purification can be carried out by means such as vacuum distillation or column chromatography. The 5-substituted-1-decene of the formula (2) used in the production of the 4-substituted nonanal of the formula (1) of the present invention is, for example, the 1-decyne of the formula (3) that can be obtained as described above. -5-ol, for example, in the presence of a base,
It can be formed by contacting with a halide of formula (4). This reaction can be expressed, for example, by formula (3)
Under conditions in which a compound is converted or formed into its alkali metal salt by means of an alkali metal base,
This can be carried out by contacting the halide of formula (4) in an inert organic solvent. The reaction temperature for the reaction for forming the compound of formula (2) above can be selected as appropriate, for example, a temperature range of about 0°C to about 100°C, more preferably a reaction temperature of about 20 to about 80°C. . The reaction time can be changed as appropriate depending on the reaction temperature, etc., for example,
An example of a reaction time is about 1 to about 20 hours. Specific examples of the alkali metal base used in the reaction include lithium hydride, sodium hydride, potassium hydride, sodium hydroxide, potassium hydroxide, or sodium and potassium in a suitable alcohol. can. The amount of these bases to be used can be selected as appropriate, for example, from about 1 to about 3 to 1 mole of the compound of formula (3).
A molar amount is sufficient, more preferably about 1 to
A value of about 1.2 mol is often employed. The amount of the halide of formula (4) used in the above reaction can also be appropriately selected, and may be, for example, about 1 to about 2 moles per 1 mole of the compound of formula (3). Further, specific examples of the inert organic solvent used in the above reaction include benzene, toluene, xylene, dimethyl formaldehyde, ether, tetrahydrofuran, methanol, ethanol, propanol, isopropyl alcohol, butanol, t-butyl alcohol, etc. be able to. These solvents can be used alone or in combination of two or more.
There are no special restrictions on the amount of these solvents used, but
About 2 to about 50 times the weight of the compound of formula (3),
More preferably, the amount used is about 3 to about 10 times the weight. After the completion of the above reaction, for example, the reaction product is poured into water, neutralized, extracted with an extraction solvent such as benzene, and the solvent layer is washed with water.
By drying and concentrating, the 5-substituted-1-decene represented by formula (2) can be obtained with high yield and high purity. If desired, it can be further purified by means such as vacuum distillation or column chromatography. According to the present invention, for example, the 5-substituted-1-decene of formula (2) that can be obtained as described above is brought into contact with ozone, and the product is reductively decomposed in the presence of a reducing agent. By this method, 4-substituted nonanals of formula (1) which have not been described in any literature can be produced. This reaction can be carried out in the presence or absence of a solvent. The reaction temperature of the ozone oxidation reaction mentioned above can be selected as appropriate, for example, a temperature range of about -78 to about +30°C,
More preferably, a reaction temperature of about -30 to about -78°C can be exemplified. The reaction time can be changed as appropriate depending on the ozone flow rate, reaction temperature, etc., and for example, a reaction time of about 30 to about 10 hours can be exemplified. When carrying out the above ozone oxidation reaction, the amount of ozone used can be appropriately selected, and for example, about 0.8 to about 1.5 mol is often employed per 1 mol of the compound of formula (2). Specific examples of inert organic solvents used in the reaction include pentane, hexane, cyclohexane, benzene, carbon tetrachloride, chloroform, methylene dichloride, ethyl chloride, ether, tetrahydrofuran, ethyl acetate, Examples include acetone, nitromethane, and formaldehyde. Among the above-mentioned solvents, examples of active solvents include formic acid, acetic acid, propionic acid, methanol, ethanol, propanol, and water. These solvents can be used alone or in combination of two or more. There is no particular restriction on the amount of these solvents used, but the amount used is about 2 to about 20 times, more preferably about 10 to about 30 times the weight of the compound of formula (2). can do. Further, specific examples of the reducing agent used in the reductive decomposition reaction using the above reducing agent include zinc dust, triphenylphosphine, dimethyl sulfide, sodium iodide, ferrous sulfate, catalytic hydrogenation catalyst, etc. can be mentioned. The amount of these reducing agents to be used can be selected as appropriate; for example, about 1 to about 40 mol is sufficient per 1 mol of the compound of formula (2), and more preferably about 1 to about 10 mol. often adopted. The reductive decomposition reaction can be carried out, for example, by dropping the ozone oxidation product little by little into a mixed solution of zinc dust and glacial acetic acid. The temperature of the reduction reaction can also be selected appropriately, for example, a temperature range of about -30 to about +20°C, more preferably a reaction temperature of about -10 to about 0°C. The reaction time can be changed as appropriate depending on the reaction temperature and the like, and for example, a reaction time of about 1 to about 5 hours can be exemplified. After the completion of the above reaction, for example, the reaction product is injected into water, dried, and concentrated to produce the target compound, 4-substituted nonanal represented by the above formula (1), in high yield and high purity. Obtainable. If desired, further purification can be carried out, for example, by means such as vacuum distillation or column chromatography. Hereinafter, several aspects of the present invention will be explained in more detail with reference to Examples. Reference Example 1 Production of 1-decene-5-ol [formula (5)] 5.5 g (0.24 mol) of metallic sodium and 120 ml of anhydrous ethyl alcohol were placed in a reaction vessel.
Prepare sodium ethoxide ( C2H5ONa ) under reflux . Next, ethyl 3-oxooctanoate44
g (0.24 mol) and stirred and reacted for about 1 hour while refluxing at a temperature of about 80°C. Furthermore, under reflux,
It took about 40 minutes to produce 17.6g (0.23g) of allyl chloride.
mol) dropwise. After dropping, continue under reflux for about 3
Stir for a time to react. After the reaction is completed, the solution is cooled, the resulting salt precipitate is filtered off by suction, and the solution is concentrated.
Next, add 200ml of 7.5% sodium hydroxide aqueous solution,
Hydrolyze for about 2 hours under reflux. After hydrolysis, the mixture is made acidic with sulfuric acid, and then decarboxylated under reflux for about 1 hour. After the reaction is complete, the reaction product is neutralized and extracted with benzene. Wash the extract with alkaline, water,
Dry and concentrate. By distilling the obtained residue under reduced pressure, 25 g of pure 1-decen-5-one was obtained.
(boiling point: 95-109°C/22mmHg, yield: 70%). Reference Example 2 Production of 1-decen-5-ol [Formula (3)] 7.9 g (0.21 mol) of sodium borohydride (NaBH 4 ) and 300 ml of 95% ethyl alcohol are charged into a reaction vessel. Next, while stirring under water cooling, 200 ml of an ethyl alcohol solution containing 42.5 g (0.28 mol) of 1-decen-5-one was added dropwise over about 1 hour. After the addition, the mixture is stirred and reacted at room temperature for about 2 hours. After the reaction is complete, the reaction product is poured into dilute hydrochloric acid and extracted with benzene. Wash the extract with water, dry, and concentrate. By distilling the obtained residue under reduced pressure,
Pure 1-decene-5-ol 37.4g (boiling point: 70
~80°C/3mmHg, yield: 85%). Reference Example 3 Production of 5-ethoxy-1-decene [formula (2)] 4.3 g (0.18 mol) of sodium hydride and 100 ml of toluene were placed in a reaction vessel and stirred. next,
23 g (0.15 mol) of 1-decen-5-ol is added dropwise over a period of 5 minutes. After the addition is complete, the mixture is further stirred and refluxed for 2 hours. Next, under stirring and reflux, ethyl bromide 21.8
g (0.2 mol) was added dropwise. After dropping, the reaction is further continued for 5 hours. After the reaction is completed, the reaction product is poured into water, extracted with benzene, washed with water, dried, and concentrated. By distilling the obtained residue under reduced pressure, 22g of pure 5-ethoxy-1-decene (boiling point: 90~
100°C/18mmHg, yield: 80%). Reference Examples 4 to 10 Production of 5-substituted-1-decenes [formula (2)] According to the method of Reference Example 3, various 5-substituted-1
-Obtained decenes. The results are shown in Table.

【衚】 実斜䟋 〜12 ―゚チルオキシノナナヌル〔匏(1)〕の補造
― ―゚トキシ――デセン220.12モルの
塩化メチレン溶液500mlを、反応容噚に仕蟌む。−
40゜〜−20℃の反応枩床で、オゟンガスを60ml
時間の割合で30分通じ反応させる。反応終了埌、
反応生成物を玄℃の枩床䞋、亜鉛末40ず氷酢
酾100mlの混合液䞭に少しづ぀、撹拌しながら滎
䞋する。滎䞋終了埌、曎に、時間撹拌反応す
る。反応終了埌、反応生成物を溶媒抜出し、掗
浄、也燥、濃瞮する。埗られた残枣を枛圧䞋蒞留
するこずにより玔品の―゚トキシノナナヌル
17.4沞点75〜85℃mmHg、収率78
を埗る。 ―眮換ノナナヌル類〔匏(1)〕の補造― 実斜䟋の方法に準じお、皮々の―眮換ノナ
ナヌル類を埗た。その結果を衚―に瀺す。
[Table] Examples 1 to 12 Production of 4-ethyloxynonanal [formula (1)]:
- Charge 500 ml of a methylene chloride solution of 22 g (0.12 mol) of 5-ethoxy-1-decene into a reaction vessel. −
At a reaction temperature of 40° to -20°C, add 60ml of ozone gas/
React for 30 minutes at a rate of 30 minutes. After the reaction is complete,
The reaction product is gradually added dropwise to a mixture of 40 g of zinc powder and 100 ml of glacial acetic acid at a temperature of about 0° C. while stirring. After the dropwise addition was completed, the reaction was further stirred for 2 hours. After the reaction is completed, the reaction product is extracted with a solvent, washed, dried, and concentrated. Pure 4-ethoxynonanal is obtained by distilling the obtained residue under reduced pressure.
17.4g (boiling point: 75-85℃/4mmHg, yield: 78
%). Production of 4-substituted nonanals [formula (1)]: - According to the method of Example 1, various 4-substituted nonanals were obtained. The results are shown in Table.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  䞋蚘匏(1) 䜆し匏䞭、はC1〜C15のアルキル基およびC8
〜C10のアラルキル基よりなる矀から遞ばれた基
を瀺す、 で衚わされる―眮換ノナナヌル類。
[Claims] 1. The following formula (1) However, in the formula, R is a C 1 to C 15 alkyl group and a C 8
A 4-substituted nonanal represented by: a group selected from the group consisting of ~ C10 aralkyl groups.
JP17029479A 1979-12-28 1979-12-28 4-substituted nonanal and its preparation Granted JPS5695143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17029479A JPS5695143A (en) 1979-12-28 1979-12-28 4-substituted nonanal and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17029479A JPS5695143A (en) 1979-12-28 1979-12-28 4-substituted nonanal and its preparation

Publications (2)

Publication Number Publication Date
JPS5695143A JPS5695143A (en) 1981-08-01
JPS6148815B2 true JPS6148815B2 (en) 1986-10-25

Family

ID=15902286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17029479A Granted JPS5695143A (en) 1979-12-28 1979-12-28 4-substituted nonanal and its preparation

Country Status (1)

Country Link
JP (1) JPS5695143A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290121U (en) * 1988-12-28 1990-07-17
JPH0326613U (en) * 1989-07-26 1991-03-18

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068451A (en) * 1990-05-04 1991-11-26 National Science Council Production of 3-phenoxy propanal derivatives

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290121U (en) * 1988-12-28 1990-07-17
JPH0326613U (en) * 1989-07-26 1991-03-18

Also Published As

Publication number Publication date
JPS5695143A (en) 1981-08-01

Similar Documents

Publication Publication Date Title
HU198437B (en) Process for producing mono- or bis-carbonyl-compounds
JP3575705B2 (en) Method for producing gingerol and shogaol
JPS6148815B2 (en)
GB1599621A (en) Process for preparing thiophene derivatives
US5124489A (en) Process for preparing phenethanol ethers by the reduction of corresponding phenylglyoxal acetals
JPS629098B2 (en)
EP0686146B1 (en) Process for the preparation of ortho-hydroxy substituted aromatic nitriles via dehydration of the corresponding aldoximes
JP3795970B2 (en) Method for producing α, β-unsaturated aldehyde
JP3386596B2 (en) Method for producing 5 (E), 8 (Z), 11 (Z) -tetradecatrien-2-one
JPS6145977B2 (en)
US3845076A (en) Method of preparing aldehydes
JPH0112750B2 (en)
EP0195053A1 (en) Process for preparing 1,3-cyclohexanedione derivatives and intermediates therefor.
US3019264A (en) 2-(2, 2, 3-trimethylcyclobutyl)-hepta-2, 4-dien-6-one
JPS623827B2 (en)
JP4100007B2 (en) Method for purifying cyclopentenolones
US3962281A (en) Method of preparing aldehydes
EP0043526B1 (en) Process for the preparation of dihydrocinnamaldehyde derivatives
JPS6210494B2 (en)
JPH0348909B2 (en)
JPH0147464B2 (en)
JPS6124569A (en) Preparation of 2,3,5-collidine and/or 2,3,5,6-tetramethylpyridine
JPH02165A (en) Preparation of 1-crotonoyl-2,6,6- trimethylcyclohexa-1,3-diene
JP2542843B2 (en) Novel norbornane derivative and method for producing the same
JPS58170726A (en) Preparation of dihydrotagetone from methacrolein acetal as raw material