JPS5858335B2 - Alpha - Chikanacetone no Seizouhou - Google Patents

Alpha - Chikanacetone no Seizouhou

Info

Publication number
JPS5858335B2
JPS5858335B2 JP10162175A JP10162175A JPS5858335B2 JP S5858335 B2 JPS5858335 B2 JP S5858335B2 JP 10162175 A JP10162175 A JP 10162175A JP 10162175 A JP10162175 A JP 10162175A JP S5858335 B2 JPS5858335 B2 JP S5858335B2
Authority
JP
Japan
Prior art keywords
alkali metal
reaction
mol
present
acetone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10162175A
Other languages
Japanese (ja)
Other versions
JPS5225709A (en
Inventor
伸治 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP10162175A priority Critical patent/JPS5858335B2/en
Publication of JPS5225709A publication Critical patent/JPS5225709A/en
Publication of JPS5858335B2 publication Critical patent/JPS5858335B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は香料や農薬の中間体として有用なα一置換アセ
トンの新規な製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing α-monosubstituted acetone, which is useful as an intermediate for fragrances and agricultural chemicals.

本発明方法を反応式で表わすと次の様である。The reaction formula of the method of the present invention is as follows.

Mはアルカリ金属原子を示す。M represents an alkali metal atom.

〕一般式因で示されるケトンを製造する方法は種種考え
られるが、従来一般式II)で示されるアセト酢酸エス
テルを非水系有機溶媒中でアルカリ金属アルコラード、
アルカリ金属アミドあるいは水素化アルカリ金属等の存
在下でアルキル化反応を行なって中間体Wを得、■を精
製後あるいは未精製のまま次のケン化、ケトン分解反応
を行なって目的物たるNを製造するのが通常であった。
] Various methods can be considered for producing the ketone represented by the general formula, but conventionally, an acetoacetate represented by the general formula II) is prepared by preparing an alkali metal alcolade,
An alkylation reaction is carried out in the presence of an alkali metal amide or an alkali metal hydride, etc. to obtain the intermediate W, and after purifying (2) or unpurified, the next saponification and ketone decomposition reactions are carried out to obtain the target N. It was common to manufacture

そして、特に安全面および経済的見地より上記アルカリ
金属アルコラード、アルカリ金属アミド、水素化アルカ
リ金属のかわりにアルカリ金属水酸化物を使用した場合
は、中間体■の収率はきわめて低く実用性に乏しかった
In particular, when an alkali metal hydroxide is used in place of the alkali metal alcoholade, alkali metal amide, or alkali metal hydride from the safety and economic standpoints, the yield of intermediate (2) is extremely low and impractical. Ta.

近年、相間移動触媒として4級アンモニウム塩を使用す
ることにより、アルカリ金属水酸化物を縮合剤として一
般式〔I〕で示されるアセト酢酸エステルをアルキル化
し、中間体Wを得ている報告がある( A 、B ri
ndstr6m等Acta Chem、 S cand
In recent years, there have been reports of alkylating acetoacetate represented by general formula [I] using a quaternary ammonium salt as a phase transfer catalyst and using an alkali metal hydroxide as a condensing agent to obtain intermediate W. (A, B ri
ndstr6m etc. Acta Chem, S cand
.

23.2204(1969)。23.2204 (1969).

また、出発原料としてアセト酢酸エステルを使用しない
で一般式Nで示されるケトンを製造する方法として4級
アンモニウム塩を使用し、アルカリ金属水酸化物を縮合
剤としてアセトンを直接アルキル化する方法も報告され
ている(特開昭4918818号公報)。
In addition, a method to directly alkylate acetone using an alkali metal hydroxide as a condensing agent using a quaternary ammonium salt was also reported as a method for producing a ketone represented by the general formula N without using acetoacetate as a starting material. (Japanese Unexamined Patent Publication No. 4918818).

A 、B rilindstr6 m等の技術において
は触媒として4級アンモニウム塩の添加は必須とされて
いるが、このものは水に易溶でありかつ生分解性が悪い
ことより、廃水の質が悪化することは明らかである。
In technologies such as A and B rilindstr6m, it is essential to add quaternary ammonium salt as a catalyst, but this substance is easily soluble in water and has poor biodegradability, so the quality of wastewater deteriorates. That is clear.

本発明者等も以前より7般式Nで示されるα一置換アセ
トンの製造に関し、鋭意研究を重ねてきた結果、ついに
4級アンモニウム塩を使用することな(、しかもアルカ
リ金属水酸化物的を縮合剤として水溶液中で一般式α〕
で示されるアセト酢酸エステルに、一般式(9)で示さ
れるハロゲン化物を反応させ、かつ得られた中間体を全
く取り出すことなく、ついでケン化、ケトン分解反応を
行ない高収率で目的物であるα一置換アセトン「■を得
ることに成功し、ここに本発明方法を完成した。
The present inventors have also conducted extensive research into the production of α-monosubstituted acetone represented by the general formula General formula α] in aqueous solution as a condensing agent
The acetoacetic ester represented by is reacted with the halide represented by the general formula (9), and then saponification and ketone decomposition reactions are performed without removing any of the resulting intermediates to obtain the desired product in high yield. We succeeded in obtaining a certain α-monosubstituted acetone ``■'' and completed the method of the present invention.

本発明方法の実施態様を述べると次のとおりである。The embodiments of the method of the present invention are as follows.

本発明方法で用いられるアセト酢酸エステルは一般式C
I)で示されるが具体的に化合物を例示するとアセト酢
酸メチル、アセト酢酸エチル等が好適に用いられる。
The acetoacetate used in the method of the present invention has the general formula C
Specific examples of the compounds represented by I) include methyl acetoacetate, ethyl acetoacetate, and the like.

本発明方法で用いられるハロケン化合物としては具体的
には、アリルクロリド、アリルプロミド、アリルイオニ
ド、メタアリルクロリド、メタアリルフロミド、1−ク
ロロ−2−ブテン、1−7”ロモー2−ブテン 1−り
ロロー2−ペンテン 1クロロ−2−ヘキセン等々であ
る。
Specifically, the halokene compounds used in the method of the present invention include allyl chloride, allyl bromide, allyl ionide, methallyl chloride, methallyl furomide, 1-chloro-2-butene, 1-7''romo-2-butene 1-ri Rolow 2-pentene, 1chloro-2-hexene, and so on.

そして本発明方法で使用される縮合剤は、アルカリ金属
水酸化物であり、具体的な化合物を例示すると水酸化リ
チウム、水酸化ナトリウム、水酸片カリウム等である。
The condensing agent used in the method of the present invention is an alkali metal hydroxide, and specific examples include lithium hydroxide, sodium hydroxide, and potassium hydroxide.

もちろん、縮合剤としてはこれら一種のみで使用する場
合もあるが、二種以上を併用することも可能である。
Of course, only one of these condensing agents may be used in some cases, but it is also possible to use two or more types in combination.

また、塩化リチウム、ヨードカリクム、硫酸リチウム、
炭酸リチウム、臭化ナトリウム等の塩を触媒量添加する
ことにより、かなり収率の向上が見られる場合もある。
Also, lithium chloride, iodocalycum, lithium sulfate,
In some cases, the yield can be significantly improved by adding a catalytic amount of a salt such as lithium carbonate or sodium bromide.

以上本発明方法に使用される試薬に関し、一部具体的な
化合物を例示したが本発明方法で使用される化合物は、
もちろん上記の具体例に示された化合物に限定されるも
のではない。
Regarding the reagents used in the method of the present invention, some specific compounds have been illustrated above, but the compounds used in the method of the present invention include:
Of course, the compounds are not limited to those shown in the specific examples above.

本発明方法で用いられる試薬のモル比については、特に
制限はないがハロゲン化物の使用量はアセト酢酸エステ
ルに対し、モル比で0.9〜1.5、縮合剤としてのア
ルカリ金属水酸化物はアセト酢酸エステルに対しモル比
で2〜3使用するのがよい また、反応溶媒としての水の量、反応の際添加する塩の
量はきわめて広い範囲で変化させることができる。
There are no particular restrictions on the molar ratio of the reagents used in the method of the present invention, but the amount of halide used is 0.9 to 1.5 in molar ratio to acetoacetic ester, and the alkali metal hydroxide as a condensing agent. It is preferable to use a molar ratio of 2 to 3 to the acetoacetic ester, and the amount of water as a reaction solvent and the amount of salt added during the reaction can be varied within a very wide range.

また、反応温度は室温から110℃の範囲で任意に選ぶ
ことができ、有機溶媒の添加も本発明方法においては何
ら影響は与えない。
Further, the reaction temperature can be arbitrarily selected within the range from room temperature to 110°C, and the addition of an organic solvent does not have any effect on the method of the present invention.

次に本発明方法を実施例によってさらに詳細に説明する
Next, the method of the present invention will be explained in more detail by way of examples.

実施例 1 アセト酢酸メチル58.OS’(0,5モル)、アリル
ク0 ’) ト42.1 ? (0,55−Eル)、水
100m1を50011114つロフラスコに仕込んだ
Example 1 Methyl acetoacetate58. OS' (0.5 mol), Allylc0') t42.1? (0.55-El) and 100 ml of water were charged into 50011114 flasks.

攪拌下、内温を40〜45℃に保ちながら35%水酸化
ナトリウム水溶液1439(1,25モル)を3時間を
要して滴下した。
While stirring and maintaining the internal temperature at 40 to 45° C., 35% aqueous sodium hydroxide solution 1439 (1.25 mol) was added dropwise over 3 hours.

滴下終了後、その温度で攪拌を続け、ついで内温が78
℃になるまで徐々に加熱し、78℃で2時間反応を行な
った。
After the addition is complete, continue stirring at that temperature until the internal temperature reaches 78.
The mixture was gradually heated to 78°C and the reaction was carried out for 2 hours.

反応完了後、水を滴下しながら水蒸気蒸留を行ない、留
出液を分液して上層の粗アリルアセトンを採取した。
After the reaction was completed, steam distillation was performed while water was added dropwise, and the distillate was separated to collect crude allylacetone in the upper layer.

この粗アリルアセトンを精留することにより純度99%
以上のアリルアセトン(b、p、132℃)31.1’
を得た。
By rectifying this crude allyl acetone, the purity is 99%.
Allyl acetone (b, p, 132°C) 31.1'
I got it.

これはアセト酢酸メチルに対して75%の収率であった
This was a 75% yield based on methyl acetoacetate.

実施例 2 アセト酢酸メチル58.0 ’?(0,5モル)、アリ
ルクロリド42.IP(0,55モル)、水酸化リチウ
ム−水化物4.2′ff、水1001rLlを500m
A’4つ目フラスコに入れ、攪拌しなから内温か40℃
になるまで加熱した。
Example 2 Methyl acetoacetate 58.0'? (0.5 mol), allyl chloride 42. IP (0.55 mol), lithium hydroxide-hydrate 4.2'ff, water 1001 rLl in 500 m
A'Pour into the fourth flask and keep stirring until the internal temperature is 40℃.
heated until.

これに35%水酸化ナトリウム水溶液143f(1,2
5モル)を内温40〜45℃に保ちながら2時間を要し
て滴下した。
Add to this 35% sodium hydroxide aqueous solution 143f (1,2
5 mol) was added dropwise over 2 hours while maintaining the internal temperature at 40 to 45°C.

滴下終了後、40〜45℃でしばらく攪拌を続け、つい
で内温が80°Cに達するまで徐々に加熱し、その温度
で2時間反応を行なった。
After completion of the dropwise addition, stirring was continued for a while at 40 to 45°C, then gradually heated until the internal temperature reached 80°C, and the reaction was carried out at that temperature for 2 hours.

その後は実施例1と同様の操作を行ない、高純度のアリ
ルアセトンをアセトン酢酸メチルに対し85%の収率で
得た。
Thereafter, the same operations as in Example 1 were performed to obtain highly pure allyl acetone at a yield of 85% based on methyl acetone.

実施例 3 アセト酢酸エチル65.1’(0,5モル)、アリルク
ロリド40.21(0,525モル)、塩化リチウム2
.2り、水1001′ILlを500m14つロフラス
コに仕込んだ。
Example 3 Ethyl acetoacetate 65.1' (0.5 mol), allyl chloride 40.21 (0,525 mol), lithium chloride 2
.. 2, 1001'IL of water was charged into 14 500 m flasks.

内温40〜45℃に保ちながら、35%水酸化カリウム
水溶液192′ft(1,2モル)を2時間で滴下した
While maintaining the internal temperature at 40 to 45°C, 192'ft (1.2 mol) of a 35% aqueous potassium hydroxide solution was added dropwise over 2 hours.

滴下終了後、内温か80℃に達するまで徐々に加熱し、
その温度で2時間反※※応を続げた。
After dropping, gradually heat until the internal temperature reaches 80°C.
The reaction continued at that temperature for 2 hours.

その後は、実施例1と同様の操作を行ない。After that, the same operations as in Example 1 are performed.

高純度のアリルアセトンをアセト酢酸エチルに対し80
%の収率で得た。
80% of high purity allyl acetone to ethyl acetoacetate
% yield.

実施例 4 アセト酢酸メチル58.0 P (0,5モル)、メタ
アリルクロリド49、l’(0,55モル)、水酸化リ
チウム−水化物4.21、水100m1を500m14
つロフラスコに仕込んだ。
Example 4 Methyl acetoacetate 58.0 P (0.5 mol), methalyl chloride 49,1' (0.55 mol), lithium hydroxide-hydrate 4.21, water 100 ml to 500 ml
I put it in a double flask.

内温40〜50’Cに保ちながら、35%水酸化す)
IJウム水溶液143y′(1,25モル)を2時間を
要して滴下した。
35% hydroxide while keeping the internal temperature at 40-50'C)
An IJium aqueous solution 143y' (1.25 mol) was added dropwise over a period of 2 hours.

滴下終了後、内温80℃まで徐々に加熱し、その温度で
さらに2時間反応を続げた。
After the dropwise addition was completed, the mixture was gradually heated to an internal temperature of 80° C., and the reaction was continued at that temperature for an additional 2 hours.

反応完了後、フラスコの内容物を分液ロートに移し、上
層の有機層を採り無水芒硝で乾燥後、精留してメタアリ
ルアセトン(b、p、145〜150°C)をアセト酢
酸メチルに対し85%の収率で得た。
After the reaction is complete, the contents of the flask are transferred to a separating funnel, the upper organic layer is taken, dried over anhydrous sodium sulfate, and then rectified to convert methalylacetone (b, p, 145-150°C) into methyl acetoacetate. It was obtained with a yield of 85%.

実施例 5 実施例4のメタアリルクロリドのかわりに次の・・ロゲ
ン化物を用い、他は実施例4と同条件で反応を行なった
Example 5 A reaction was carried out under the same conditions as in Example 4 except that the following chloride was used in place of metaallyl chloride in Example 4.

結果は下表のとおりであった。実施例 6 実施例2において、35%水酸化ナトリウム水溶液の液
下時間(2時間)を、30分間に変えた他は実施例2と
同様の操作を行ない、目的のアリルアセトンをアセトン
酢酸メチルに対し77%の収率で得た。
The results are shown in the table below. Example 6 The same operation as in Example 2 was carried out except that the time for lowering the 35% sodium hydroxide aqueous solution (2 hours) was changed to 30 minutes, and the target allylacetone was converted into acetone methyl acetate. It was obtained with a yield of 77%.

Claims (1)

【特許請求の範囲】[Claims] 1 一般式1 General formula
JP10162175A 1975-08-20 1975-08-20 Alpha - Chikanacetone no Seizouhou Expired JPS5858335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10162175A JPS5858335B2 (en) 1975-08-20 1975-08-20 Alpha - Chikanacetone no Seizouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10162175A JPS5858335B2 (en) 1975-08-20 1975-08-20 Alpha - Chikanacetone no Seizouhou

Publications (2)

Publication Number Publication Date
JPS5225709A JPS5225709A (en) 1977-02-25
JPS5858335B2 true JPS5858335B2 (en) 1983-12-24

Family

ID=14305458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10162175A Expired JPS5858335B2 (en) 1975-08-20 1975-08-20 Alpha - Chikanacetone no Seizouhou

Country Status (1)

Country Link
JP (1) JPS5858335B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0017284A3 (en) * 1979-04-03 1980-10-29 Shell Internationale Researchmaatschappij B.V. Preparation of unsaturated ketones
JP4074341B2 (en) * 1995-12-29 2008-04-09 日本ゼオン株式会社 Method for producing carbonyl group-containing compound

Also Published As

Publication number Publication date
JPS5225709A (en) 1977-02-25

Similar Documents

Publication Publication Date Title
US20030199715A1 (en) Process for trifluoromethylation of sulfates
JPH0332548B2 (en)
JPS5858335B2 (en) Alpha - Chikanacetone no Seizouhou
JP6695908B2 (en) Method for producing benzamide compound
JP3771334B2 (en) Preparation of 2-methyl-3- (3,4-methylenedioxyphenyl) acrylaldehyde
JP3386596B2 (en) Method for producing 5 (E), 8 (Z), 11 (Z) -tetradecatrien-2-one
JPH0315619B2 (en)
JPH0475224B2 (en)
JPS597699B2 (en) Method for producing indolines
JPH029013B2 (en)
JPH023672A (en) 2,6-diethylaniline derivative and production thereof
JPS6210494B2 (en)
JPS61118348A (en) Manufacture of hydroxymethylenealkoxyacetic acid ester
JPH01216965A (en) Production of 2-alkoxypropionic acid amide derivative
JP4366854B2 (en) 12-amino-4,8-dodecadienenitrile and process for producing the same
US3649628A (en) Process for producing substituted cyclohexene compounds
JPS6228133B2 (en)
JPS6172729A (en) Production of 3-phenoxybenzyl alcohol
JPH06234705A (en) Production of 1,1-cyclopropanedicarboxylic acid diester
JPS59122455A (en) Preparation of p-toluenesulfonic acid (meth)allyl ester
JPS5823868B2 (en) Method for producing β↓-(β↓-chloroethylsulfonyl)propionic acid derivative
JP2002212149A (en) METHOD FOR PRODUCING TETRAALKYLAMMONIUM FLUORIDE AND METHOD FOR PRODUCING beta-HYDROXYKETONE BY USING THE SAME
JPS58203950A (en) Preparation of alpha-aminomethylbenzyl alcohol derivative
JPS6213935B2 (en)
JPS6228781B2 (en)