JPS62104909A - Yarn having lamellar void and production thereof - Google Patents

Yarn having lamellar void and production thereof

Info

Publication number
JPS62104909A
JPS62104909A JP24206685A JP24206685A JPS62104909A JP S62104909 A JPS62104909 A JP S62104909A JP 24206685 A JP24206685 A JP 24206685A JP 24206685 A JP24206685 A JP 24206685A JP S62104909 A JPS62104909 A JP S62104909A
Authority
JP
Japan
Prior art keywords
fibers
fiber
component
layered
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24206685A
Other languages
Japanese (ja)
Other versions
JPH0244921B2 (en
Inventor
Minetaka Fushida
伏田 峯登
Mitsuo Fujimoto
藤本 満雄
Kazuyoshi Okamoto
岡本 三宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP24206685A priority Critical patent/JPS62104909A/en
Publication of JPS62104909A publication Critical patent/JPS62104909A/en
Publication of JPH0244921B2 publication Critical patent/JPH0244921B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PURPOSE:Yarn having improved water absorbing properties and good flexibility and heat retaining properties, wherein continuous voids exist in a lamellar state in the longer direction in the yarn. CONSTITUTION:Yarn having a lamellar void structure wherein voids having thin and long sections exist in the yarn, the voids 1 are continuous in the longer direction of the yarn and part 5 of the voids 1 is opened to the outer surface of the yarn or connected to it by a thin film. The outer surface of the yarn has preferably a great number of continuous uneven stripes in the longer direction of the yarn. The yarn can be produced by pilling two high polymers 6 and 7 in a lamellar state alternately, forming yarn whose outer surface is coated with the one polymer 6 to form an outer skin part 8 and removing the other polymer 7.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は繊維の長手方向に連続性のある層状空洞を有す
る繊維およびその製造方法に関するものである。さらに
、詳しくは吸水性が良好で、柔軟性および保温性に富む
層状空洞M4造を有する繊維およびその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fiber having continuous layered cavities in the longitudinal direction of the fiber and a method for producing the same. More specifically, the present invention relates to a fiber having a layered cavity M4 structure that has good water absorption, flexibility and heat retention, and a method for producing the same.

(従来の技術) 合成繊維は一般に強力特性が大であり、耐摩耗や耐屈曲
性が良好であるため、耐久性に優れているが、吸水性や
保温性などの機能性が劣る欠点がある。それゆえ、これ
らの機能を必要とする分野では用途が制約されているの
が現状である。このため、合成繊維のこのような欠点を
改良する目的で現在まで種々改良が試みられてきた。そ
の代表的なものは繊維自体を毛細管構造とするものでお
る。例えば、水または有機溶剤に可溶性の微粒子を添加
した繊維形成能を有する高分子重合体を用いて中空繊維
にした後、微粒子を溶出して微多孔を持つ中空繊維にす
る方法がおる。しかしながら、この方法は微粒子を高分
子重合体に添加して混合紡糸するため、紡糸安定性の面
から微粒子あるいはその添加量に制約があったり、また
、この方法で1ワだ繊維については中空部と繊維表面と
の連続性が不十分であったりして、繊維の吸水機能も十
分でないという欠点がある。
(Conventional technology) Synthetic fibers generally have high strength properties and good abrasion and bending resistance, making them excellent in durability, but they have the disadvantage of poor functionality such as water absorption and heat retention. . Therefore, the current situation is that applications are restricted in fields that require these functions. For this reason, various improvements have been attempted up to now in order to overcome these drawbacks of synthetic fibers. A typical example is one in which the fiber itself has a capillary structure. For example, there is a method of forming hollow fibers using a high molecular weight polymer having fiber-forming ability to which fine particles soluble in water or an organic solvent are added, and then eluting the fine particles to form hollow fibers having fine pores. However, since this method involves mixing and spinning fine particles by adding them to a polymer, there are restrictions on the amount of fine particles added or the amount of fine particles added from the viewpoint of spinning stability. There is a drawback that the water absorption function of the fibers is not sufficient because the continuity between the fiber surface and the fiber surface is insufficient.

一方、近年は単糸繊度が0.1d以下の極細繊維が容易
に製造されるようになり、中空状繊維でなくても極細繊
維束必るいは集合体の毛細管現象である程度の吸水性は
保てるようになった。しかしながら、その反面、極細繊
維は特に衣料として用いる場合には、いま一つ吸水性が
十分でなく、かつ着色性にも劣るという致命的な欠点を
有している。
On the other hand, in recent years, ultrafine fibers with a single filament fineness of 0.1d or less have become easily produced, and even if they are not hollow fibers, a certain degree of water absorption can be maintained due to the capillary phenomenon of ultrafine fiber bundles or aggregates. It became so. However, on the other hand, ultrafine fibers have fatal drawbacks, especially when used for clothing, in that they do not have sufficient water absorption and are poor in colorability.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的とするところは合成繊維の従来からの問題
点の一つでおる吸水性の不足を解消するもので市って、
また、他の目的は柔軟でかつ、繊維内部の含気量を多く
して保温性に富む構造の繊維を提供すること、ざらには
、紡糸安定性の優れた方法による上記目的の繊維を提供
することである。
The purpose of the present invention is to solve one of the conventional problems of synthetic fibers, which is the lack of water absorption.
Another purpose is to provide fibers that are flexible and have a structure with high heat retention properties by increasing the air content inside the fibers, and furthermore, to provide fibers for the above purpose using a method with excellent spinning stability. It is to be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは吸水性が良好でかつ、柔軟で保温性に富む
構造を有する繊維について鋭意研究を重ねた結果、遂に
本発明に到達したものでおる。本発明の要旨は次のとお
りである。即ち、(1)主として繊維の長手方向に連続
性のめる細長形状の空洞が層状に存在し、該空洞が繊維
の外周表面に部分的に開口および/または薄膜で接して
いることを特徴とする層状空洞を有する繊維。
The present inventors have finally arrived at the present invention as a result of extensive research into fibers that have good water absorption, flexibility, and a structure with excellent heat retention properties. The gist of the present invention is as follows. That is, (1) a layered structure characterized in that elongated cavities that maintain continuity mainly in the longitudinal direction of the fibers exist in a layered manner, and the cavities are partially opened and/or in contact with the outer peripheral surface of the fibers through a thin film; Fibers with cavities.

<2>A、B高分子重合体が相互配列した層状繊維を製
造するに際し、複数の流体流路形成用管路構造体を直列
に配置してA、Bの相互配列流を流出させ、次いで、格
子状分割ロートを通過させて外周表面の大部分がA成分
によって被覆されたA、B高分子相互配列体繊維を紡糸
し、しかる後、A成分に対しては非溶剤または弱溶剤で
あるが、B成分に対しては溶解能のある溶剤でB成分を
除去することを特徴とする層状空洞を有する繊維の製造
方法。
<2> When producing a layered fiber in which the A and B polymers are mutually arranged, a plurality of fluid channel forming pipe structures are arranged in series to allow the mutually arranged flows of A and B to flow out, and then , A and B polymer mutual array fibers are passed through a lattice-shaped dividing funnel, most of the outer peripheral surface of which is covered with the A component, and then spun, and then a non-solvent or a weak solvent is used for the A component. However, a method for producing fibers having layered cavities, characterized in that component B is removed using a solvent capable of dissolving component B.

(3)A、B高分子重合体が相互配列した層状繊維を製
造するに際し、複数の流体流路形成用管路構造体を直列
に配置してA、Bの相互配列流を流出させ、次いで、△
成分で該A、Bの相互配列流の外周を被覆して、外周表
面の大部分がA成分によって被覆されたA、B高分子相
互配列体繊維として紡糸し、しかる後、A成分に対して
は非溶剤または弱溶剤であるが、B成分に対しては溶解
能のある溶剤でB成分を除去することを特徴とする層状
空洞を有する繊維の□製造方法である。
(3) When producing a layered fiber in which the polymers A and B are mutually arranged, a plurality of fluid channel forming pipe structures are arranged in series to allow the mutually arranged flows of A and B to flow out, and then , △
The outer periphery of the A and B mutually aligned flow is coated with the component, and most of the outer circumferential surface is covered with the A component, and the A and B polymer mutual array fibers are spun. is a method for producing fibers having layered cavities, characterized in that the B component is removed using a non-solvent or weak solvent, but a solvent capable of dissolving the B component.

本発明でいう層状空洞とは、繊維の横断面において、細
長形状の空洞が少なくとも2つ以上存在し、各空洞の長
径は、その空洞が位置する延長上繊維断面幅の少なくと
も3分の1以上の長さであって、該空洞は繊維の長手方
向に連続性を有しているものである。
In the present invention, the term "layered cavity" means that at least two or more elongated cavities exist in the cross section of the fiber, and the major axis of each cavity is at least one-third or more of the cross-sectional width of the fiber in the extension where the cavity is located. The length of the fiber is , and the cavity has continuity in the longitudinal direction of the fiber.

また、繊維外周表面の長手方向へ連続性のある多数の凹
凸筋とは、凹凸差が0.2μ以上で、凸部に着目すれば
、その筋は4本以上のものでおり、通常の繊維加工工程
で発生する摩擦傷とは異なる。
In addition, a large number of concavo-convex streaks that are continuous in the longitudinal direction on the outer peripheral surface of the fiber means that the difference in concavity and convexity is 0.2μ or more, and if you focus on the convex part, there are four or more streaks, and it is a normal fiber. This is different from friction scratches that occur during the machining process.

本発明の層状空洞を有する繊維は、第1図の繊維一部断
面斜視図に示すように、細長形状の層状空洞1と隣接す
る層状空洞1の隔壁を構成する層状部2および該層状部
2と層状空洞1の4周の大部分が薄く被覆された表皮部
3からなる繊維で°必る。
The fiber having layered cavities of the present invention, as shown in the partially cross-sectional perspective view of the fiber in FIG. Most of the four circumferences of the layered cavity 1 are covered with fibers consisting of a thin skin portion 3.

また、本発明の層状空洞を有する繊維の外周表面には、
繊維の長手方向へ伸びる多数の凹凸筋4を有するものも
含まれる。
Further, on the outer peripheral surface of the fiber having layered cavities of the present invention,
It also includes those having a large number of concavo-convex lines 4 extending in the longitudinal direction of the fibers.

この凹凸筋は上記層状繊維に基づくもので、層状部2の
層の数をNとすると、例えば凸部に着目した場合、筋は
大凡2XN本発生している。
These uneven streaks are based on the above-mentioned layered fibers, and if the number of layers in the layered portion 2 is N, for example, when focusing on the convex portion, approximately 2×N streaks are generated.

繊維の外周部においては、空洞に近接する部分が主とし
て2μ以下の極めて薄い膜状になっていると共に、部分
的に亀裂おるいは窪み5を形成し、第2図の繊維横断面
図に示すように、これらの亀裂あるいは窪み5から、実
質的に繊維内部の空洞へ通じる開口構造になっている。
At the outer periphery of the fiber, the portion close to the cavity is mainly in the form of an extremely thin film of 2μ or less, and partially forms cracks or depressions 5, as shown in the cross-sectional view of the fiber in FIG. As such, these cracks or depressions 5 have an open structure that essentially leads to the cavity inside the fiber.

したがって、繊維の長手方向へ連なる層状空洞や、空洞
と繊維外周表面との接点になっている表面の亀裂や窪み
による開口あるいは薄膜、さらには多数の凹凸筋は、毛
細管としての働きと合せ、全体として吸水および吸水し
た水分の放水に好都合な構造になっている。また、本発
明の繊維は内部が層状部と空洞部から構成されているた
め、外部応力に対して自由に変形し易いので柔軟でおる
Therefore, the layered cavities that extend in the longitudinal direction of the fibers, the openings or thin films caused by cracks and depressions on the surface that are the contact points between the cavities and the outer circumferential surface of the fibers, and the large number of uneven streaks, as well as their function as capillaries, act as a whole. It has a structure that is convenient for absorbing water and releasing absorbed water. Further, since the fiber of the present invention is composed of a layered portion and a hollow portion inside, it is easily deformed freely in response to external stress and is therefore flexible.

さらに、繊維自身が多くの空気を含むため保温性に対し
ても有効な構造になっている。
Furthermore, since the fiber itself contains a lot of air, it has an effective structure for heat retention.

上記のような層状空洞を有する繊維は、例えば、次のよ
うにして得られる。
The fiber having layered cavities as described above can be obtained, for example, as follows.

即ち、繊維形成能を有するA、B高分子重合体を用いて
、特公昭60−1048号公報に示されている流体流路
形成用管路構造体を、流体に著しい回転を起こさせない
ように直列に配置した紡糸装置で、本発明の中間体であ
る表皮を有するA、B高分子相互配列体繊維を紡糸し、
しかる後、高分子相互配列体の一成分を除去することに
よって得られる。
That is, by using polymers A and B that have fiber-forming ability, a pipe structure for forming a fluid flow path as shown in Japanese Patent Publication No. 1048/1988 is constructed in such a way that the fluid does not undergo significant rotation. Spinning the A and B polymer mutual arrangement fibers having a skin, which is an intermediate of the present invention, using spinning devices arranged in series,
This is then obtained by removing one component of the polymeric interarray.

ここで、流体流路形成用管路構造体は直列に配列するこ
とによって、例えばA、B高分子重合体を幾層にも分割
積層した流体積層体を得ることができ、流体流路形成用
管路構造体をN段使用すると、A、B高分子重合体から
なる層が2XN乗層できる。流体流路形成用管路構造体
はこのように流体を順次交互に層状に配列する職能を持
ったものでおる。
Here, by arranging the fluid channel forming pipe structure in series, it is possible to obtain a fluid laminate in which, for example, A and B polymers are divided and laminated into many layers. When N stages of the conduit structure are used, 2×N layers of A and B polymers can be formed. The fluid channel forming pipe structure has the function of sequentially and alternately arranging fluid in layers in this way.

第3図は本発明の中間体でおる表皮を有する高分子相互
配列体繊維の横断面図で、A成分6とB成分7が交互に
層状に配列し、その外周がA成分によって薄く層状(表
皮部)8に囲まれたものでおる。
FIG. 3 is a cross-sectional view of a polymer mutually arranged fiber having a skin, which is an intermediate of the present invention, in which the A component 6 and the B component 7 are arranged alternately in layers, and the outer periphery is thinly layered ( Epidermal part) Surrounded by 8.

ここに用いるA成分6は実用繊維として有効な高分子重
合体、B成分7は溶剤に対する溶解性がA成分と異なり
、中間体でおる表皮を有する高分子相互配列体繊維を1
qるための補完的役割を果す高分子重合体でおり、後工
程で除去されるものでおる。
The A component 6 used here is a polymer that is effective as a practical fiber, and the B component 7 is a polymer mutually arranged fiber that has a skin that is an intermediate and has a different solubility in solvents from the A component.
It is a high-molecular polymer that plays a complementary role in the production of water, and is removed in a subsequent process.

第3図のような表皮を有する高分子相互配列体繊維は、
次のように紡糸パック内に特殊装置を設けることによっ
て得ることができる。
Polymer mutual array fibers with a skin as shown in Figure 3 are
It can be obtained by providing a special device in the spinning pack as follows.

その一つは、紡糸パック内の流体流路形成用管路構造体
群から流出したA、B相互配列流の層状流を、交叉して
流体を切断するような格子状のセパレータの設置であり
、他の一つは、第4図の紡糸パック概略断面図に示すよ
うに、流体流路形成用管路構造体群からA、B成分の相
互配列流9が押し出されて口金吐出孔10に至るまでの
間で、A、B成分の相互配列流9の外周を被覆するよう
に、別の高分子配列流の被覆用吐出口11からA成分を
押し出す方法である。
One of these is the installation of a lattice-shaped separator that crosses and cuts the laminar flow of A and B mutually arranged flows flowing out from a group of pipe structures for forming fluid flow paths in the spinning pack. , and the other, as shown in the schematic cross-sectional view of the spinning pack in FIG. In this method, the A component is extruded from the coating outlet 11 of another polymer array flow so as to cover the outer periphery of the mutual array flow 9 of the A and B components.

前者の方法、即ち、流体流路形成用管路構造体群下流に
おけるセパレータは、多孔口金に通じる蛸足分岐管の上
部に、尖ったみねを有する格子状分割ロートを設置する
ことによって達成される。
The former method, i.e., the separator downstream of the group of conduit structures for forming fluid flow paths, is achieved by installing a lattice-like dividing funnel with sharp grooves at the top of the octopus branch pipe leading to the porous mouthpiece. .

この蛸足分岐によるA、B相互配列流の吐出方法は、配
列流の層に平行して分割される分だけ、A、Bからなる
層の数は減少するが、経済性や生産性の面から好ましく
、また、本発明に係る繊維外周表面の凹凸筋を付与する
面からも好ましい方法である。
This method of discharging the A and B mutually aligned flows using the octopus branch reduces the number of layers consisting of A and B by dividing them in parallel to the layers of the aligned flow, but it is not economical or productive. This method is preferable from the standpoint of imparting unevenness to the outer peripheral surface of the fiber according to the present invention.

ざらに、この方法におけるA、B高分子重合体の選択は
、紡糸温度における溶融粘度がA>8の関係またはA、
8成分の重伍比がA>Bの関係にあることが特に好まし
い。このような関係は、繊維の外周表面がA成分によっ
て被覆されたA、 B高分子相互配列体繊維の得易い条
件である。
Roughly speaking, the selection of polymers A and B in this method is based on the relationship that the melt viscosity at the spinning temperature is A>8 or A,
It is particularly preferable that the weight ratio of the eight components is in the relationship A>B. Such a relationship is a condition that makes it easy to obtain a fiber in which the outer circumferential surface of the fiber is coated with the A component and is a mutual array of A and B polymers.

一方、後者の第4図の高分子配列流の被覆用吐出口11
からA、B相互配列流の外周被覆用のA成分の押し出し
口は、重層化で、層状のA、B成分相互配列流100部
に対し、3乃至30部であり、好ましくは7乃至20部
である。押し出し量が多過ぎれば、肉厚の皮となってB
成分の除去が困難となるばかりでなく、層状空洞と繊維
表面の連続性が弱くなって好ましくない。また、逆に少
な過ぎれば、皮の形成ができなくなって本発明の繊維が
1qられないので、適宜その押し出し量は調節する必要
がある。
On the other hand, the latter coating discharge port 11 of the polymer array flow shown in FIG.
The extrusion port of the A component for outer circumferential coating of the A, B mutually arranged stream is 3 to 30 parts, preferably 7 to 20 parts, per 100 parts of the layered A, B component mutually arranged stream. It is. If the amount of extrusion is too large, it will result in a thick skin.B
Not only is it difficult to remove the components, but also the continuity between the layered cavities and the fiber surface becomes weak, which is undesirable. On the other hand, if the amount is too small, it will not be possible to form a skin and 1q of the fibers of the present invention will not be produced, so it is necessary to adjust the amount of extrusion as appropriate.

A、B成分相互配列体、所謂A、Bの交互層状部分のA
成分と8成分の比率は、重量圧で85:15乃至25 
: 75の範囲をとり得るが、紡糸安定性、B成分除去
後の層状空洞の形成性から、A、Bは70:30乃至4
0:60が好ましい範囲である。
A of A, B component mutual arrangement body, so-called alternating layered portion of A and B
The ratio of the components to the 8 components is 85:15 to 25 by weight pressure.
: 75, but from the viewpoint of spinning stability and formation of layered cavities after removing component B, A and B are 70:30 to 4.
A preferred range is 0:60.

上記層状部分のA、B成分の比率から、本発明に係る層
状空洞の繊維横断面に占める面積は、層状部分のB成分
の占める面積にほぼ等しくなるはずであるが、種々加工
工程における圧力などで押し潰されるため、通常は5乃
至50%である。
From the ratio of the A and B components in the layered portion, the area occupied by the layered cavity in the cross section of the fiber according to the present invention should be approximately equal to the area occupied by the B component in the layered portion. Usually, it is 5 to 50%.

本発明に用いるA成分の高分子重合体は、ポリエチレン
テレフタレート(以下PETという)およびその共重合
体、ポリブチレンチレフタレ−1〜(以下PBT>とい
う)、ナイロン6、ナイロン66、ポリエチレン、ポリ
プロピレンなどの高分子重合体であり、その一種または
2種以上が用いられる。
The polymers of component A used in the present invention include polyethylene terephthalate (hereinafter referred to as PET) and its copolymer, polybutylene terephthalate-1~ (hereinafter referred to as PBT>), nylon 6, nylon 66, polyethylene, polypropylene. These are high molecular weight polymers such as, and one or more types thereof are used.

B成分の高分子重合体は、ポリスチレン(以下PSTと
いう)、2−エチルへキシルアクリレ−1−共重合PS
T、5−ソディウムスルホイソフタレー1〜共重合PE
T、ナイロン6、ナイロン66、ポリビニールアルコー
ルなどの高分子重合体であり、その一種または2種以上
が用いられる。
The polymer of component B is polystyrene (hereinafter referred to as PST), 2-ethylhexyl acrylate-1-copolymer PS
T,5-sodium sulfoisophthalate 1 ~ copolymerized PE
It is a high molecular weight polymer such as T, nylon 6, nylon 66, and polyvinyl alcohol, and one or more types thereof are used.

A成分およびB成分は繊維形成能を有すれば、上記に限
定されるものではないが、A成分としてはPET、PB
T、ナイロン6、ナイロン66が実用性能面から好まし
く、中でも、PETは層状空洞の形成性からとくに好ま
しい高分子重合体である。また、B成分としては、PS
T、2−エチルへキシルアクリレ−1・共重合PST、
5−ソディウムスルホイソフタレート共重合PETが加
工性の面から特に好ましい高分子重合体である。
The A component and the B component are not limited to the above as long as they have fiber forming ability, but the A component includes PET, PB, etc.
T, nylon 6, and nylon 66 are preferred from the viewpoint of practical performance, and among them, PET is a particularly preferred polymer because of its ability to form layered cavities. In addition, as the B component, PS
T, 2-ethylhexyl acrylate-1/copolymerized PST,
5-Sodium sulfoisophthalate copolymerized PET is a particularly preferred polymer from the viewpoint of processability.

表皮を有するA、B高分子相互配列体繊維からB成分の
除去は、従来公知の方法で乾熱延伸、湿熱延伸あるいは
液浴延伸を行なった後、長繊維や短繊維のまま、おるい
は用途に応じて加工される、編物、1wi物、不織布、
紐などのI!i維溝造物のいずれても行なうことができ
る。取扱いおよび効率の面からは、繊維構造物の状態で
除去するのが特に好ましい。この場合、繊維構造物は本
発明以外の仙の繊維を混入したものでもよいことはいう
までもない。
The B component can be removed from the A and B polymer mutual array fibers having a skin by dry heat stretching, wet heat stretching, or liquid bath stretching using conventionally known methods. Knitted fabrics, 1wi fabrics, non-woven fabrics, processed according to the purpose
I such as string! Any type of fiber-groove structure can be used. From the viewpoint of handling and efficiency, it is particularly preferable to remove the fiber structure. In this case, it goes without saying that the fiber structure may contain fibers other than those of the present invention.

B成分の除去剤はA成分の繊維としての性能に影響を及
ぼさない範囲で適宜選択する必要があるが、例えば、B
成分がPSTおよびその共重合体でおるときは、トリク
ロロエチレン、パークロルエチレン、四塩化炭素などの
塩素系有機化合物の溶剤が一般に用いられ、5−ソディ
ウムスルホイソフタレート共重合PETであるときは、
アルカリ溶液による処理、所謂、アルカリ減量加工が行
なわれる。
The removing agent for component B must be selected appropriately within a range that does not affect the performance of component A as a fiber.
When the component is PST and its copolymer, a solvent of a chlorinated organic compound such as trichlorethylene, perchloroethylene, or carbon tetrachloride is generally used, and when the component is 5-sodium sulfoisophthalate copolymer PET,
Treatment with an alkaline solution, so-called alkali reduction processing, is performed.

また、B成分を除去する装置は、処理系の形態によって
異なるが、マングル、バイブロワッシャー、染色機など
用いることができ、適宜選択して行なえばよい。
Further, although the device for removing the B component varies depending on the form of the processing system, a mangle, a vibro washer, a dyeing machine, etc. can be used, and the device may be selected as appropriate.

かくして、B成分を除去して得られた繊維は、第1図お
よび第2図のように、繊維横断面において、層状空洞が
形成され、おるいは、また、繊維外周面には繊維の長手
方向へ連続性のある凹凸筋を伴って、吸水性、柔軟性、
保温性に好適な描込になる。
In this way, the fiber obtained by removing component B has layered cavities formed in the cross section of the fiber, as shown in FIGS. With continuous uneven lines in the direction, it has water absorption, flexibility,
The drawing is suitable for heat retention.

上記B成分を除去したものが糸条状態のままであるとき
は、用途に応じて繊維構造物である編物、織物、不織布
などの布帛および紐などに加工し、必要に応じて染色、
その他仕上げ加工を施して、吸水性をはじめとする機能
性に優れた繊維構造物を提供することができる。
If the product from which the B component has been removed remains in the form of yarn, it can be processed into fiber structures such as knitted fabrics, woven fabrics, non-woven fabrics, and strings, depending on the purpose, and dyed or dyed as necessary.
Other finishing treatments can be applied to provide a fiber structure with excellent functionality including water absorption.

なお、本発明の層状空洞を有する繊維は、延伸、編織物
、不織布、紐などの加工および起毛、染色その細仕上げ
加工時の物理的な外力めるいは紡糸時の合流などに原因
して、部分的に層状空洞が押し潰され易いが、繊維の主
体が本発明の繊維であれば、その有効性には影響がほと
んどない。
In addition, the fibers having layered cavities of the present invention may be affected by physical external forces during drawing, knitting, non-woven fabric, string processing, raising, dyeing, fine finishing, or merging during spinning. Although the layered cavities tend to be partially crushed, if the fibers are mainly the fibers of the present invention, the effectiveness is hardly affected.

(実施例) 次に実施例をあげて本発明を具体的に説明するが、これ
らに限定されるものではない、実施例1 直列に配置した6個の流体流路形成用管路構造体と、そ
の下部に6×3に分割する格子状分割ロートおよび分岐
管、それに18ホールの口金を備えた紡糸バックを用い
、該流体流路形成用管路構造体の上部から、紡糸温度2
85℃における溶融粘度が3000ポイズのPETと同
じく450ポイズの2−エルチヘキシルアクリレート共
重合PSTを、それぞれ重1比で50:50の割合で送
り込み、高分子相互配列体繊維を紡糸した。次いで、8
5°Cで乾熱延伸を行ない、単糸繊度3dの延伸糸を得
た。
(Example) Next, the present invention will be specifically explained with reference to an example, but the present invention is not limited thereto. , using a spinning bag equipped with a lattice-like dividing funnel and branch pipes divided into 6 x 3, and an 18-hole nozzle at the bottom thereof, the spinning temperature is set at 2 from the top of the fluid channel forming pipe structure.
PET having a melt viscosity of 3,000 poise at 85° C. and 2-ethylhexyl acrylate copolymer PST having a melt viscosity of 450 poise at 85° C. were each fed at a weight to weight ratio of 50:50 to spin polymer interlayer array fibers. Then 8
Dry heat drawing was performed at 5°C to obtain a drawn yarn with a single yarn fineness of 3d.

続いて、この延伸糸を1認状にし、トリクロロエチレン
を用いて室温で浸漬、マングルによる絞液を繰り返し行
なって、2−エチルへキシルアクリレート共重合PS下
を十分溶解除去した。
Subsequently, this drawn yarn was made into a homogeneous state, and the 2-ethylhexyl acrylate copolymerized PS layer was sufficiently dissolved and removed by immersion in trichlorethylene at room temperature and repeated squeezing with a mangle.

処理して得られた繊維について繊維の長手方向の数箇所
にって走査型電顕で観察したところ、外周表面には表皮
が形成されていた。また、繊維横断面には細長形状の空
洞が2乃至10個形成され、層状空洞になっていた。
When the fibers obtained by the treatment were observed using a scanning electron microscope at several locations in the longitudinal direction of the fibers, it was found that a skin was formed on the outer peripheral surface. In addition, 2 to 10 elongated cavities were formed in the cross section of the fiber, resulting in layered cavities.

ざらに、上記繊維の外周面には、繊維の長手方向に連続
性のある凹凸差0.2乃至1.5μの多数の凹凸筋が形
成されていると共に、部分的に層状空洞に通じる亀裂あ
るいは窪みのある開口が認められた。
Roughly speaking, the outer peripheral surface of the fiber is formed with a large number of continuous unevenness lines in the longitudinal direction of the fiber with a difference of 0.2 to 1.5μ, and there are also cracks or cracks that partially lead to the layered cavity. A recessed opening was observed.

実施例2 直列に配置した6個の流体流路形成用管路構造体の下流
に格子状分割ロートを設けないで、代って、第4図の如
き1ホールの口金吐出孔を設け、流体流路形成用管路構
造体から流出した高分子相互配列流の外周を被覆するよ
うに、円形のスリット吐出口を設けた紡糸バックを用い
た。該流体流路形成用管路構造体の上部から、紡糸温度
285°Cにおける溶融粘度が3000ボイズのPET
と同450ポイズの2−エチルへキシルアクリレート共
重合PSTを、また、高分子相互配列流の被覆用吐出口
からは、同3000ポイズのPE下を、それぞれ重量比
で50 : 50 : 15の割合で送り込み、高分子
相互配列体繊維を紡糸した。
Example 2 A lattice-like divided funnel was not provided downstream of the six fluid flow path forming pipe structures arranged in series, but instead a one-hole mouthpiece discharge hole as shown in FIG. A spinning bag provided with a circular slit outlet was used so as to cover the outer periphery of the mutually arranged polymer flow flowing out from the flow path forming pipe structure. PET having a melt viscosity of 3000 voids at a spinning temperature of 285° C.
and 2-ethylhexyl acrylate copolymerized PST with the same 450 poise, and PE with the same 3000 poise from the coating discharge port of the polymer mutual alignment flow in a weight ratio of 50:50:15, respectively. The fibers of the polymer mutual array were spun.

次いで、85℃で乾熱延伸を行ない、単糸繊度3.1d
の延伸糸を得た。
Next, dry heat stretching was performed at 85°C to obtain a single yarn fineness of 3.1d.
A drawn yarn was obtained.

続いて、この延伸糸を総状にし、トリクロロエチレンを
用いて室温で浸漬、マングルによる絞液を繰り返し行な
って、2−エチルへキシルアクリレート共重合PSTを
十分溶解除去した。・このように処理した繊維について
、走査型電顕で観察したところ、実施例1と同様に、層
状繊維の外周は薄く表皮状に結合され、繊維の横断面に
は層状空洞が形成されていた。また、この繊維の外周表
面には、実施例1のものより、全体にやや浅い感じであ
るが、繊維の長手方向に連続性のある多数の凹凸筋と部
分的に層状空洞に通じる亀裂あるいは窪みが形成されて
いた。
Subsequently, this drawn yarn was made into a general shape, and the 2-ethylhexyl acrylate copolymerized PST was sufficiently dissolved and removed by repeatedly immersing it in trichlorethylene at room temperature and squeezing it with a mangle. - When the fibers treated in this way were observed using a scanning electron microscope, it was found that the outer periphery of the layered fibers was bonded in a thin skin-like manner, and layered cavities were formed in the cross section of the fibers, as in Example 1. . Furthermore, although the outer peripheral surface of this fiber is slightly shallower overall than that of Example 1, there are many continuous uneven lines in the longitudinal direction of the fiber, and cracks or depressions that partially lead to layered cavities. was formed.

比較例1 直列に配置した6個の流体流路形成用管路構造体の下流
に格子状分割ロートを設けないで、実施例1のPETと
2−エチルへキシルアクリレート共重合PSTを、それ
ぞれ重量比で50:50の割合で該流体流路形成用管路
構造体から流出ざU、そのまま、1ホールロ金により紡
糸し、以下実施例1と同様に加工した繊維は、層状空洞
が形成されなかった。
Comparative Example 1 PET and 2-ethylhexyl acrylate copolymerized PST of Example 1 were each made by weight without providing a lattice-like dividing funnel downstream of the six fluid channel forming pipe structures arranged in series. The fibers that flowed out of the fluid flow path forming conduit structure at a ratio of 50:50 were spun using a one-hole casting iron, and were subsequently processed in the same manner as in Example 1, with no layered cavities formed. Ta.

実施例3 実施例1で紡糸した未延伸糸について、80’Cの液浴
で1〜つ延伸を行ない、捲縮を施した後、カット長51
mm、単糸繊度3.2d、捲縮数13山/インチの原綿
を作成した。次いで、カード、クロスラッパーの工程を
経てウェッブを作成し、2000本/−のニードルパン
チを行なって目付型1510g/rr+2の高分子相互
配列体繊維からなる不織布にした。
Example 3 The undrawn yarn spun in Example 1 was drawn once or twice in a liquid bath at 80'C, crimped, and then cut to a length of 51 mm.
A raw cotton with a diameter of 3.2 mm, a single yarn fineness of 3.2 d, and a number of crimps of 13 crimps/inch was prepared. Next, a web was created through the steps of carding and cross-wrapping, and 2,000/- needle punching was performed to make a nonwoven fabric made of polymeric mutual array fibers with a basis weight of 1,510 g/rr+2.

続いて、この不織布を85°Cの熱水で収縮処理して乾
燥した後、トリクロロエチレンを用いて、浸漬、マング
ルによる絞液を繰り返し行なって、不織布構成繊維中の
2−エチルへキシルアクリレート共重合PSTを十分除
去した。
Subsequently, this nonwoven fabric was shrink-treated with hot water at 85°C and dried, and then dipping and squeezing with a mangle were repeated using trichlorethylene to copolymerize 2-ethylhexyl acrylate in the fibers constituting the nonwoven fabric. PST was sufficiently removed.

このように処理した不織布の断面について走査型電顕で
観察したところ、繊維は部分的に変形が認められたもの
の、繊維断面および外周表面は、はぼ実施例1と同様の
構造であった。
When the cross section of the nonwoven fabric treated in this way was observed using a scanning electron microscope, the fiber cross section and outer peripheral surface had the same structure as in Example 1, although some deformation of the fibers was observed.

次に、この不織布を幅2cm、長さ15Cmにカットし
て、水を入れたビーカーに不織布の一端を5cm浸漬し
、他の端をビーカー外に垂下させ、垂れ性った不織布か
ら2分間に滴下する1水の重量を測定した。
Next, this non-woven fabric was cut into 2 cm wide and 15 cm long, one end of the non-woven fabric was immersed for 5 cm in a beaker filled with water, and the other end was allowed to hang outside the beaker. The weight of the water added dropwise was measured.

この結果を同様にニードルパンチして調整した他のPE
Tl維の比較例2および3の結果と共に第1表に示した
Other PEs adjusted by needle punching this result in the same way
The results are shown in Table 1 together with the results of Comparative Examples 2 and 3 of Tl fibers.

第1表の結果から明らかなように、本発明の繊維を用い
た不織布は、比較例に対するものより極めて良好な吸水
性を示した。
As is clear from the results in Table 1, the nonwoven fabric using the fibers of the present invention exhibited significantly better water absorption than that of the comparative example.

なお、不織布の風合についても、本発明繊維の不織布は
、繊度が同程度の比較例2の不織布に比べて手ざわりが
良く、柔軟な風合であった。
Regarding the texture of the nonwoven fabric, the nonwoven fabric made of the fibers of the present invention had a good feel and a soft texture compared to the nonwoven fabric of Comparative Example 2, which had a similar fineness.

(発明の効果〕 本発明の繊維は上1本したように、繊維の特殊な横断面
構造と、付随した特殊な表面構造を有するため、吸水性
、柔軟性、保温性などが要求される衣料用分野には、特
に、高機能性素材として活用できる。
(Effects of the Invention) As mentioned above, the fibers of the present invention have a special cross-sectional structure and an associated special surface structure, so clothing that requires water absorption, flexibility, heat retention, etc. It can be especially utilized as a highly functional material in the industrial field.

一方、吸水性などに有効な毛細管を有する繊維の製造方
法においても、本発明にかかわる流体流路形成用管路構
造体によるものは、紡糸性が極めて安定であり、上記機
能を有する層状空洞繊維を極めて効果的に提供できる。
On the other hand, in the manufacturing method of fibers having capillary tubes that are effective for water absorption, etc., the method using the conduit structure for forming fluid flow paths according to the present invention has extremely stable spinnability, and the layered hollow fibers having the above-mentioned functions. can be provided extremely effectively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の繊維の一部断面をあられす斜視図、第
2図は第1図のx−x’線の断面図、第3図は本発明の
中間体である表皮を有する高分子相互配列体繊維の断面
図、第4図は高分子相互配列体繊維の紡糸パックの概略
断面図。 1:層状空洞、2:層状部、3,8:表皮部、4:凹凸
筋、5:亀裂あるいは窪み、6:A成分、7:B成分、
9:高分子相互配列流、10:口金吐出孔、11:高分
子配列流の被覆用吐出口特許出願人  東 し 株 式
 会 社某1因   第2図 第4図
FIG. 1 is a perspective view of a partial cross section of the fiber of the present invention, FIG. 2 is a cross-sectional view taken along line xx' in FIG. 1, and FIG. FIG. 4 is a schematic cross-sectional view of a spinning pack of polymeric mutually arrayed fibers. 1: Layered cavity, 2: Layered part, 3, 8: Epidermal part, 4: Uneven lines, 5: Cracks or depressions, 6: A component, 7: B component,
9: Polymer mutually aligned flow, 10: Nozzle discharge hole, 11: Covering outlet for polymer array flow Patent applicant: Azuma Shi Co., Ltd. Figure 2 Figure 4

Claims (5)

【特許請求の範囲】[Claims] (1)主として繊維の長手方向に連続性のある細長形状
の空洞が層状に存在し、該空洞が繊維の外周表面に部分
的に開口および/または薄膜で接していることを特徴と
する層状空洞を有する繊維。
(1) A layered cavity characterized by a layer of continuous elongated cavities mainly in the longitudinal direction of the fibers, which cavities are partially opened and/or in contact with the outer peripheral surface of the fibers through a thin film. fibers with
(2)繊維の外周表面が、繊維の長手方向に連続性のあ
る多数の凹凸筋を有する特許請求の範囲第(1)項記載
の層状空洞を有する繊維。
(2) A fiber having layered cavities according to claim (1), in which the outer peripheral surface of the fiber has a large number of concavo-convex lines continuous in the longitudinal direction of the fiber.
(3)A、B高分子重合体が相互配列した層状繊維を製
造するに際し、複数の流体流路形成用管路構造体を直列
に配置してA、Bの相互配列流を流出させ、次いで、格
子状分割ロートを通過させて外周表面の大部分がA成分
によって被覆されたA、B高分子相互配列体繊維を紡糸
し、しかる後、A成分に対しては非溶剤または弱溶剤で
あるが、B成分に対しては溶解能のある溶剤でB成分を
除去することを特徴とする層状空洞を有する繊維の製造
方法。
(3) When producing a layered fiber in which the polymers A and B are mutually arranged, a plurality of fluid channel forming pipe structures are arranged in series to allow the mutually arranged flows of A and B to flow out, and then , A and B polymer mutual array fibers are passed through a lattice-shaped dividing funnel, most of the outer peripheral surface of which is covered with the A component, and then spun, and then a non-solvent or a weak solvent is used for the A component. However, a method for producing fibers having layered cavities, characterized in that component B is removed using a solvent capable of dissolving component B.
(4)紡糸温度におけるA、B高分子重合体の溶融粘度
が、A>Bの関係を有する特許請求の範囲第(3)項記
載の層状空洞を有する繊維の製造方法。
(4) The method for producing a fiber having layered cavities according to claim (3), wherein the melt viscosities of the polymers A and B at the spinning temperature satisfy the relationship A>B.
(5)A、B高分子重合体が相互配列した層状繊維を製
造するに際し、複数の流体流路形成用管路構造体を直列
に配置してA、Bの相互配列流を流出させ、次いで、A
成分で該A、Bの相互配列流の外周を被覆して、外周表
面の大部分がA成分によって被覆されたA、B高分子相
互配列体繊維を紡糸し、しかる後、A成分に対しては非
溶剤または弱溶剤であるが、B成分に対しては溶解能の
ある溶剤でB成分を除去することを特徴とする層状空洞
を有する繊維の製造方法。
(5) When producing a layered fiber in which the polymers A and B are mutually arranged, a plurality of fluid channel forming pipe structures are arranged in series to allow the mutually arranged flows of A and B to flow out, and then ,A
The outer periphery of the mutually arranged flow of A and B is coated with the component, and the A and B polymer mutually arranged fibers with most of the outer peripheral surface covered with the A component are spun, and then A method for producing fibers having layered cavities, characterized in that component B is removed using a solvent that is a non-solvent or a weak solvent but has the ability to dissolve component B.
JP24206685A 1985-10-29 1985-10-29 Yarn having lamellar void and production thereof Granted JPS62104909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24206685A JPS62104909A (en) 1985-10-29 1985-10-29 Yarn having lamellar void and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24206685A JPS62104909A (en) 1985-10-29 1985-10-29 Yarn having lamellar void and production thereof

Publications (2)

Publication Number Publication Date
JPS62104909A true JPS62104909A (en) 1987-05-15
JPH0244921B2 JPH0244921B2 (en) 1990-10-05

Family

ID=17083770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24206685A Granted JPS62104909A (en) 1985-10-29 1985-10-29 Yarn having lamellar void and production thereof

Country Status (1)

Country Link
JP (1) JPS62104909A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414311A (en) * 1987-07-08 1989-01-18 Toray Industries Modified cross-section yarn and production thereof
JPH0229472U (en) * 1988-08-10 1990-02-26

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046619U (en) * 1990-05-08 1992-01-22

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112535A (en) * 1980-02-04 1981-09-04 Kuraray Co Knitted fabric with excellent water absorbability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112535A (en) * 1980-02-04 1981-09-04 Kuraray Co Knitted fabric with excellent water absorbability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414311A (en) * 1987-07-08 1989-01-18 Toray Industries Modified cross-section yarn and production thereof
JPH0229472U (en) * 1988-08-10 1990-02-26

Also Published As

Publication number Publication date
JPH0244921B2 (en) 1990-10-05

Similar Documents

Publication Publication Date Title
KR101250683B1 (en) Composite fabric of island-in-sea type and process for producing the same
US4350006A (en) Synthetic filaments and the like
US5672415A (en) Low density microfiber nonwoven fabric
CN1044268C (en) Hydrophilic, multicomponent polymeric strands and nonwoven fabrics made therewith
WO2003097221A1 (en) Hollow fiber membrane having supporting material for reinforcement, preparation thereof and spinneret for preparing the same
JP5272229B2 (en) Split type composite fiber, aggregate thereof, and fiber molded body using the split type composite fiber
JPH11217757A (en) Staple fiber nonwoven fabric and its production
JPS62104909A (en) Yarn having lamellar void and production thereof
EP0758027B1 (en) Polyester filament yarn, process for the production thereof, woven and knitted fabrics thereof, and process for the production thereof
JP3957355B2 (en) Sea-island fiber and non-woven fabric using the same
CN1197133A (en) Bulky nonwoven Fabric
US3402097A (en) Bi-component non-elastic filament capable of partial separation
CN111041580B (en) PET/PBT (polyethylene terephthalate/polybutylene terephthalate) same-plate mixed filament yarn and preparation method thereof
JP2538602B2 (en) Fiber for spunbond nonwovens
JP4992108B2 (en) Process for producing substantially C-shaped cross section thermoplastic fiber
JP4332272B2 (en) Method for producing water-absorbing composite false twisted yarn and water-absorbing fabric
CN112853541B (en) Composite fiber and preparation method thereof
JP4453179B2 (en) Split fiber and fiber molded body using the same
JP3703956B2 (en) Splittable fiber and fiber sheet using the splittable fiber
JPH05321106A (en) Nonwoven fabric of acrylic fiber
CN115852505A (en) Moisture-absorbing and sweat-releasing polyester fiber and preparation method thereof
JP3115935B2 (en) Wiping cloth
JPS63249740A (en) Sheet like article
JPH04146236A (en) Web composed of modified cross-section fibers
JP2000034661A (en) Composite nonwoven fabric and its production