JPS6210486B2 - - Google Patents

Info

Publication number
JPS6210486B2
JPS6210486B2 JP60017723A JP1772385A JPS6210486B2 JP S6210486 B2 JPS6210486 B2 JP S6210486B2 JP 60017723 A JP60017723 A JP 60017723A JP 1772385 A JP1772385 A JP 1772385A JP S6210486 B2 JPS6210486 B2 JP S6210486B2
Authority
JP
Japan
Prior art keywords
catalyst
sio
rhodium
chloride
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60017723A
Other languages
Japanese (ja)
Other versions
JPS61191634A (en
Inventor
Satoshi Arimitsu
Katsumi Yanagi
Takakazu Fukushima
Hitomi Hosono
Toshihiro Saito
Kazuo Takada
Kazuaki Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60017723A priority Critical patent/JPS61191634A/en
Priority to GB08602390A priority patent/GB2171925B/en
Publication of JPS61191634A publication Critical patent/JPS61191634A/en
Priority to US06/941,072 priority patent/US4758600A/en
Publication of JPS6210486B2 publication Critical patent/JPS6210486B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 本発明はエタノールの製造方法に関する。更に
詳しくは、(イ)ロジウムを担体担持してなる触媒、
(ロ)ロジウム及びリチウム又はマンガンを担体担持
してなる触媒、(ハ)ロジウム、マンガン、イリジウ
ム及び/又はリチウムを担体担持してなる触媒の
いずれかと(ニ)パラジウム、鉄及び/又はモリブデ
ンを担体担持してなる触媒との存在下、一酸化炭
素と水素とを反応させることからなる、エタノー
ルの製造法に関する。 〔従来の技術及び発明が解決しようとする問題
点〕 エタノール、アセトアルデヒド等の炭素数2の
含酸素化合物は従来ナフサを原料とする石油化学
的方法によつて製造されてきた。しかし、近年の
原油の高騰により、製造価格の著しい上昇が起
り、原料転換の必要性が生じている。一方、豊富
で且つ安価に入手可能な一酸化炭素及び水素の混
合ガスより炭素数2の含酸素化合物を製造する方
法が種々検討されている。即ち、一酸化炭素と水
素の混合ガスを、ロジウムを主成分とし、マンガ
ン、チタン、ジルコニウム、タングステンなどの
金属もしくは金属酸化物より成る触媒の存在下に
反応させて、炭素数2の含酸素化合物を選択的に
製造する方法は公知である。 しかしながら、かかる方法も副生する炭化水
素、例えばメタン等の量が多く、含酸素化合物の
選択率が低いものや含酸素化合物の選択率が高い
場合には主生成物の選択性が低いものであつた。
更に高価な貴金属であるロジウムあたりの目的化
合物の生成量がまだまだ少く、経済的にもプロセ
ス的にも完成された技術が提供されていないのが
実情である。 更に炭素数2の含酸素化合物を高収量で高選択
的に製造することを目的としたロジウムにマンガ
ンを添加した触媒及びその改良法(特開昭52−
14706、56−8333、56−8334号)が提案されてい
るが、いずれの方法もアセトアルデヒド、酢酸を
主生成物とするものであり、エタノールの収率、
選択性などは著しく低い欠点を有している。 以上述べた如く、一酸化炭素及び水素を含有す
る気体よりエタノールを主成分とする含酸素化合
物を効率よく経済性よく製造する方法は提供され
ていない。 本発明者らはエタノールを選択的に製造する方
法について鋭意検討を重ねた結果、前述した如く
アセトアルデヒドや酢酸の製造用触媒として知ら
れていたロジウム触媒やロジウム−マンガン触媒
と鉄及び/又はモリブデンを含有するバラジウム
触媒とを組合せることによりエタノールを高選択
的に製造できることを見出し本発明を完成した。 〔発明の概要〕 本発明は前記した如く(イ)〜(ハ)のいずれかの触媒
と、(ニ)の触媒との存在下、一酸化炭素及び水素を
反応させエタノールを製造するものである。 以下、本発明を順次詳述する。 本発明において用いられる触媒は前述の如く、
(イ)〜(ハ)のいずれかの触媒と、(ニ)の触媒とからなる
二者の触媒を主たる構成成分とする。両者の触媒
は各々別途に調製したものを使用することが必要
であり、使用に際しては混合あるいは、(イ)〜(ハ)の
触媒を上層に(ニ)の触媒を下層に充填して使用する
ことができる。 触媒の調製にあたつては通常、貴金属触媒にお
いて行われる如く、担体上に上記の成分を分散さ
れた触媒を用いる。 本発明において用いられる触媒は貴金属常法を
用いて調製することができる。例えば含浸法、浸
漬法、イオン交換法、共沈法、混練法等によつて
調製できる。 前記触媒を構成する諸成分の原料化合物として
は、酸化物、塩化物、硝酸塩、炭酸塩等の無機
塩、酢酸塩、シユウ酸塩、アセチルアセトナート
塩、ジメチルグリオキシム塩、エチレンジアミン
酢酸塩等有機塩又はキレート化物、カルボニル化
合物、シクロペンタジエニル化合物、アンミン錯
体、金属アルコキシド化合物、アルキル金属化合
物等通常貴金属触媒を調製する際に用いられる化
合物を使用することができる。 以下に含浸法に例をとり触媒の調製法を説明す
る。 上記の金属化合物を水、メタノール、エタノー
ル、テトラヒドロフラン、ジオキサン、ノルマル
ヘキサン、ベンゼン、トルエン等の溶媒に溶解
し、その溶液に担体を加え浸漬し、溶媒を留去、
乾燥し、必要とあれば加熱等の処理を行い、担体
に金属化合物を担持する。 担持の手法としては、原料化合物を同一溶媒に
同時に溶解した混合溶液を作り、担体に同時に担
持する方法、各成分を逐次的に担体に担持する方
法、あるいは各成分を必要に応じて還元、熱処理
等の処理を行いながら逐次的、段階的に担持する
方法などの各手法を用いることができる。 尚、前記した如く二者の触媒はそれぞれ別個に
これらの手法を用いて調製する。 その他の調製法、例えば担体のイオン交換能を
利用したイオン交換によつて金属を担持する方
法、共沈法によつて触媒を調製する方法なども本
発明方法に用いられる触媒の調製手法として採用
できる。 上述の手法によつて調製された触媒は通常還元
処理を行うことにより活性化し次いで反応に供せ
られる。還元を行うには水素を含有する気体によ
り昇温下で行うことが簡便であつて好ましい。こ
の際還元温度として、ロジウムの還元される温
度、即ち100℃程度・温度条件下でも還元処理が
できるのであるが、好ましくは200℃〜600℃の温
度下で還元処理を行う。この際触媒の各成分の分
散を十分に行わせる目的で低温より徐々にあるい
は段階的に昇温しながら水素還元を行つてもよ
い。また還元剤を用いて、化学的に還元を行うこ
ともできる。たとえば、一酸化炭素と水を用いた
り、ヒドラジン、水素化ホウ素化合物、水素化ア
ルミニウム化合物などの還元剤を用いた還元処理
を行つてもよい。 本発明において用いられる担体は好ましくは比
表面積10〜1000m2/g、細孔径10Å以上を有する
ものであれば通常担体として知られているものを
使用することができる。具体的な担体としては、
シリカ、珪酸塩、シリカゲル、モレキユラーシー
ブ、ケイソウ土等のシリカ系担体、アルミナ、活
性炭などがあげられるがシリカ系の担体が好まし
い。 触媒(イ)〜(ハ)いずれの場合も触媒中の各成分の濃
度と組成比は広い範囲でかえることができる。 ロジウム、パラジウムの担体に対する比率は、
担体の比表面積を考慮して重量比で0.0001〜
0.5、好ましくは0.001〜0.3である。また、(イ)〜(ハ)
触媒において、助触媒金属の比率はロジウムに対
して原子比で各々0.001〜10、好ましくは0.01〜
5の範囲である。更に(ニ)触媒において、鉄及びモ
リブデンの比率はパラジウムに対し原子比で各々
0.001〜10、好ましくは0.01〜5の範囲である。 本発明は、たとえば固定床の流通式反応装置に
適用することができる。すなわち反応器内に触媒
を充填し、原料ガスを送入して反応を行わせる。
生成物は分離し、未反応の原料ガスは精製したの
ちに循環再使用することも可能である。 また、本発明は流動床式の反応装置にも適用で
きる。すなわち原料ガスと流動化した触媒を同伴
させて反応を行わせることもできる。更には本発
明は溶媒中に触媒を分散させ、原料ガスを送入し
反応を行うことからなる液相不均一反応にも適用
できる。 本発明を実施するに際して採用される条件は、
エタノールを主成分とする含酸素化合物を高収
率・高選択率で製造することを目的として種々の
反応条件の因子を有機的に組合せて選択される。
反応圧力は常圧(すなわち0Kg/cm2ゲージ)でも
当該目的化合物を高選択率・高収率で製造できる
のであるが、空時収率を高める目的で加圧下にお
いて反応を行うことができる。 従つて反応圧力としては0Kg/cm2ゲージ〜350
Kg/cm2ゲージ、好ましくは0Kg/cm2ゲージ〜250
Kg/cm2ゲージの圧力下で行う。反応温度は150℃
〜450℃、好ましくは180℃〜350℃である。反応
温度が高い場合には、炭化水素の副生量が増加す
るため原料の送入速度を早くする必要がある。従
つて、空間速度(原料ガス送入量×触媒容積)
は、標準状態(0℃、1気圧)換算で10h-1
106h-1の範囲より、反応圧力と反応温度、原料ガ
ス組成との関係より適宜選択される。 当該原料ガスの組成は、主として一酸化炭素と
水素を含有しているガスであつて、窒素、アルゴ
ン、ヘリウム、メタン等の不活性ガスあるいは反
応条件下において気体の状態であれば炭化水素や
炭酸ガスや水を含有していてもよい。一酸化炭素
と水素の混合比はCO/H2比で0.1〜10、好ましく
は0.2〜5(容積比)である。 以下実施例によつて本発明を更に詳細に説明す
る。 実施例 1 塩化ロジウム(RhCl3・3H2O)0.480g(1.82
mmol)を溶解させたエタノール溶液中に、予め
300℃で2時間高真空下で焼成脱気したシリカゲ
ル(Davison#57、Davison社製)3.7g(10ml)
を加え浸漬した。次いでロータリーエバポレータ
ーを用いてエタノールを留去し乾固した後、更に
真空乾燥した。その後、パイレツクス反応管に充
填し、常圧で水素及び窒素の混合ガス(H2:60
ml/分、N2:60ml/分)の通気下、400℃で4時
間活性化処理を行い、Rh/SiO2触媒を調製し
た。次いで、塩化パラジウム(PdCl2)0.162g、
塩化第一鉄(FeCl2・4H2O)0.109gを溶解させ
た水溶液中に焼成脱気したシリカゲル3.7g(10
ml)を加え浸漬した。上記と同様の調製法及び活
性化処理を用いてPd−Fe/SiO2触媒を調製し
た。このようにして得られたRh/SiO2触媒(触
媒7ml)、Pd−Fe/SiO2触媒(3ml)を高圧流通
式反応装置の反応管(チタン製)に上層、下層に
なる様に充填し、常圧水素ガスの流通下(200
ml/分)、300℃で2時間程度再還元処理した後、
一酸化炭素と水素の混合ガスを送入し、所定の反
応条件下で反応を行つた。反応生成物の分析は、
液状生成物については水に溶解し捕集し、気体生
成物については直接ガス採取し、ガスクロ分析を
行い、定性及び定量分析し、生成物の分布を求め
た。結果を表1に示した。 実施例 2 塩化ロジウム0.480g、塩化リチウム(LiCl・
H2O)0.022gを溶解させたエタノール溶液を300
℃焼成脱気したシリカゲル10mlに浸漬した後、実
施例1と同様の処理によりRh−Li/SiO2触媒を
調製した。Rh−Li/SiO2触媒(7ml)、実施例1
で調製したPd−Fe/SiO2触媒(3ml)を高圧流
通式反応装置の反応管に上層、下層に充填し、実
施例1と同様の方法で活性試験を行つた。結果を
表1に示した。 実施例 3 塩化ロジウム0.480g、塩化マンガン
(MnCl2・4H2O)0.361gを溶解させたエタノー
ル溶液を300℃焼成脱気シリカ10mlに浸漬した。
他方、塩化パラジウム0.162g、塩化モリブデン
(MoCl5)0.075gを溶解させた水溶液を300℃焼
成脱気シリカ10mlに浸漬した。各々を実施例1と
同様の処理により、Rh−Mn/SiO2、Pd−Mo/
SiO2を調製した。Ph−Mn/SiO2触媒(6ml)と
Pd−Mo/SiO2(2ml)を高圧流通式反応装置の
反応管に上層・下層に充填し、実施例1と同様の
方法で活性試験を行つた。結果を表1に示した。 実施例 4 塩化ロジウム0.480g、塩化マンガン0.012g、
塩化リチウム0.033gを溶解させたエタノール溶
液と、塩化パラジウム0.177g、塩化第一鉄0.109
gを溶解させた水溶液を300℃焼成脱気シリカゲ
ル10mlに各々を浸漬した後、実施例1と同様の処
理によりRh−Mn−Li/SiO2、Pd−Fe/SiO2
媒を調製した。Rh−Mn−Li/SiO2触媒(6
ml)、Pd−Fe/SiO2(2ml)を高圧流通式反応装
置の反応管に上層・下層に充填し、実施例1と同
様の方法で活性試験を行つた。結果を表1に示し
た。 実施例 5 塩化パラジウム0.089g、塩化モリブデン0.035
gを溶解させた水溶液を300℃焼成脱気したシリ
カゲル10mlに浸漬した。実施例1と同様の処理に
よりPd−Mo/SiO2を調製した。実施例4で調製
したRh−Mn−Li/SiO2触媒(6ml)と上記Pd−
Mo/SiO2触媒(2ml)を高圧流通式反応装置の
反応管に上層・下層に充填し、実施例1と同様の
方法で活性試験を行つた。結果を表1に示した。 実施例 6 塩化ロジウム0.480g、塩化マンガン0.036g、
塩化イリジウム(IrCl4・H2O)0.128gを溶解さ
せたエタノール溶液と、塩化パラジウム0.177
g、塩化第一鉄0.109g、塩化モリブデン0.05g
を溶解させた水溶液を300℃焼成脱気したシリカ
ゲル10mlに各々を浸漬した後、実施例1と同様の
処理によりRh−Mn−Ir/SiO2、Pd−Fe−Mo/
SiO2を調製した。Rh−Mn−Ir/SiO2触媒(6
ml)とPd−Fe−Mo/SiO2触媒(2ml)を高圧流
通式反応装置の反応管に上層・下層に充填し、実
施例1と同様の方法で活性試験を行つた。結果を
表1に示した。 実施例 7 塩化ロジウム0.480g、塩化マンガン0.018g、
塩化イリジウム0.064g、塩化リチウム0.022gを
溶解させたエタノール溶液と、塩化パラジウム
0.266g、塩化第一鉄0.163gを溶解させた水溶液
を300℃焼成脱気したシリカゲル10mlに各々を浸
漬した後、実施例1と同様の処理によりRh−Mn
−Ir−Li/SiO2、Pd−Fe/SiO2を調製した。Rh
−Mn−Ir−Li/SiO2触媒(7ml)とPd−Fe/
SiO2触媒(3ml)を高圧流通式反応装置の反応
管に上層・下層に充填し、実施例1と同様の方法
で活性試験を行つた。結果を表1に示した。 比較例 1 実施例1で調製したRh/SiO2触媒(10ml)を
高圧流通式反応装置の反応管に充填し、実施例1
と同様の方法で活性試験を行つた。結果を表1に
示した。 比較例 2 実施例2で調製したRh−Li/SiO2触媒(10
ml)を高圧流通式反応装置の反応管に充填し、実
施例1と同様の方法で活性試験を行つた。結果を
表1に示した。 比較例 3 実施例4で調製したRh−Mn−Li/SiO2触媒
(10ml)を高圧流通式反応装置の反応管に充填
し、実施例1と同様の方法で活性試験を行つた。
結果を表1に示した。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a method for producing ethanol. More specifically, (a) a catalyst comprising rhodium supported on a carrier;
(b) A catalyst comprising rhodium and lithium or manganese supported on a carrier, (c) A catalyst comprising rhodium, manganese, iridium and/or lithium supported on a support, and (d) Palladium, iron and/or molybdenum supported. The present invention relates to a process for producing ethanol, which comprises reacting carbon monoxide and hydrogen in the presence of a supported catalyst. [Prior Art and Problems to be Solved by the Invention] Oxygen-containing compounds having two carbon atoms, such as ethanol and acetaldehyde, have conventionally been produced by a petrochemical method using naphtha as a raw material. However, due to the recent rise in the price of crude oil, manufacturing prices have risen significantly, creating the need to switch raw materials. On the other hand, various methods of producing an oxygen-containing compound having 2 carbon atoms from a mixed gas of carbon monoxide and hydrogen, which is available in abundance and at low cost, have been studied. That is, by reacting a mixed gas of carbon monoxide and hydrogen in the presence of a catalyst containing rhodium as a main component and consisting of a metal or metal oxide such as manganese, titanium, zirconium, or tungsten, an oxygen-containing compound having two carbon atoms is produced. Methods for selectively producing are known. However, this method also produces a large amount of by-product hydrocarbons such as methane, and when the selectivity of oxygen-containing compounds is low or the selectivity of oxygen-containing compounds is high, the selectivity of the main product is low. It was hot.
The reality is that the amount of the target compound produced based on rhodium, which is an expensive noble metal, is still small, and a technology that has been completed economically and process-wise has not been provided. Furthermore, a catalyst in which manganese is added to rhodium and an improved method thereof (Japanese Patent Application Laid-Open No. 1989-1999
Nos. 14706, 56-8333, and 56-8334) have been proposed, but all of these methods mainly produce acetaldehyde and acetic acid, and the yield of ethanol and
It has the disadvantage of extremely low selectivity. As described above, no method has been provided for efficiently and economically producing an oxygen-containing compound containing ethanol as a main component from a gas containing carbon monoxide and hydrogen. As a result of intensive studies on a method for selectively producing ethanol, the inventors of the present invention found that, as mentioned above, a rhodium catalyst or a rhodium-manganese catalyst known as a catalyst for producing acetaldehyde and acetic acid was combined with iron and/or molybdenum. The present invention was completed by discovering that ethanol can be produced with high selectivity by combining it with a palladium-containing catalyst. [Summary of the Invention] As described above, the present invention produces ethanol by reacting carbon monoxide and hydrogen in the presence of any one of the catalysts (a) to (c) and the catalyst (d). . The present invention will be explained in detail below. As mentioned above, the catalyst used in the present invention is
Two catalysts consisting of one of the catalysts (a) to (c) and the catalyst (d) are the main constituents. Both catalysts must be prepared separately, and when used, they may be mixed or used by filling the catalysts (a) to (c) in the upper layer and the catalyst in (d) in the lower layer. be able to. In preparing the catalyst, a catalyst in which the above-mentioned components are dispersed on a carrier is usually used, as is done for noble metal catalysts. The catalyst used in the present invention can be prepared using conventional noble metal methods. For example, it can be prepared by an impregnation method, a dipping method, an ion exchange method, a coprecipitation method, a kneading method, etc. The raw material compounds for the various components constituting the catalyst include inorganic salts such as oxides, chlorides, nitrates, and carbonates; organic salts such as acetates, oxalates, acetylacetonate salts, dimethylglyoxime salts, and ethylenediamine acetate; Compounds commonly used in preparing noble metal catalysts can be used, such as salts or chelates, carbonyl compounds, cyclopentadienyl compounds, ammine complexes, metal alkoxide compounds, and alkyl metal compounds. The method for preparing the catalyst will be explained below by taking the impregnation method as an example. The above metal compound is dissolved in a solvent such as water, methanol, ethanol, tetrahydrofuran, dioxane, n-hexane, benzene, toluene, etc., a carrier is added to the solution and immersed, and the solvent is distilled off.
It is dried and, if necessary, subjected to treatment such as heating to support the metal compound on the carrier. Supporting methods include preparing a mixed solution in which the raw material compounds are dissolved simultaneously in the same solvent and supporting them on the carrier at the same time, supporting each component on the carrier sequentially, or reducing and heat-treating each component as necessary. It is possible to use various techniques such as a method of sequentially or stepwise loading while performing processing such as the following. Incidentally, as described above, the two catalysts are prepared separately using these methods. Other preparation methods, such as a method in which metals are supported by ion exchange using the ion exchange ability of a carrier, and a method in which a catalyst is prepared by a coprecipitation method, are also adopted as methods for preparing the catalyst used in the method of the present invention. can. The catalyst prepared by the above-mentioned method is usually activated by reduction treatment and then subjected to reaction. It is convenient and preferable to carry out the reduction using a hydrogen-containing gas at an elevated temperature. At this time, the reduction treatment can be performed at the temperature at which rhodium is reduced, that is, about 100°C, but preferably the reduction treatment is performed at a temperature of 200°C to 600°C. At this time, hydrogen reduction may be carried out while raising the temperature gradually or stepwise from a low temperature in order to sufficiently disperse each component of the catalyst. Further, reduction can also be carried out chemically using a reducing agent. For example, reduction treatment may be performed using carbon monoxide and water, or using a reducing agent such as hydrazine, a borohydride compound, or an aluminum hydride compound. The carrier used in the present invention preferably has a specific surface area of 10 to 1000 m 2 /g and a pore diameter of 10 Å or more, which is commonly known as a carrier. As a specific carrier,
Examples include silica-based carriers such as silica, silicates, silica gel, molecular sieves, and diatomaceous earth, alumina, and activated carbon, with silica-based carriers being preferred. In any case of catalysts (a) to (c), the concentration and composition ratio of each component in the catalyst can be varied within a wide range. The ratio of rhodium and palladium to the carrier is
Considering the specific surface area of the carrier, the weight ratio is 0.0001~
0.5, preferably 0.001-0.3. Also, (a) ~ (c)
In the catalyst, the ratio of cocatalyst metal to rhodium is 0.001 to 10, preferably 0.01 to 10, respectively in atomic ratio.
The range is 5. Furthermore, (d) in the catalyst, the ratio of iron and molybdenum to palladium is each atomic ratio
It ranges from 0.001 to 10, preferably from 0.01 to 5. The present invention can be applied to, for example, a fixed bed flow reactor. That is, a reactor is filled with a catalyst, and a raw material gas is introduced to cause a reaction.
It is also possible to separate the product and purify the unreacted raw material gas, which can then be recycled and reused. Further, the present invention can also be applied to a fluidized bed type reactor. That is, the reaction can also be carried out by bringing the raw material gas and the fluidized catalyst together. Furthermore, the present invention can also be applied to a liquid phase heterogeneous reaction in which a catalyst is dispersed in a solvent and a raw material gas is introduced to carry out the reaction. The conditions to be adopted in carrying out the present invention are:
It is selected by organically combining various reaction condition factors with the aim of producing an oxygen-containing compound containing ethanol as a main component with high yield and high selectivity.
Although the target compound can be produced with high selectivity and high yield even at normal pressure (ie, 0 kg/cm 2 gauge), the reaction can be carried out under pressure in order to increase the space-time yield. Therefore, the reaction pressure is 0Kg/cm 2 gauge ~ 350
Kg/cm 2 gauge, preferably 0Kg/cm 2 gauge ~ 250
Perform under pressure of Kg/cm 2 gauge. Reaction temperature is 150℃
-450°C, preferably 180°C - 350°C. When the reaction temperature is high, the amount of hydrocarbon by-product increases, so it is necessary to increase the feed rate of the raw material. Therefore, space velocity (raw material gas feed amount x catalyst volume)
is 10h -1 in standard conditions (0℃, 1 atm)
It is appropriately selected from the range of 10 6 h -1 depending on the relationship between the reaction pressure, reaction temperature, and raw material gas composition. The composition of the raw material gas is mainly a gas containing carbon monoxide and hydrogen, and inert gases such as nitrogen, argon, helium, and methane, or hydrocarbons and carbonic acid if they are in a gaseous state under the reaction conditions. It may contain gas or water. The mixing ratio of carbon monoxide and hydrogen is CO/ H2 ratio of 0.1 to 10, preferably 0.2 to 5 (volume ratio). The present invention will be explained in more detail below using examples. Example 1 Rhodium chloride (RhCl 3.3H 2 O) 0.480g (1.82
mmol) in an ethanol solution in advance.
3.7 g (10 ml) of silica gel (Davison #57, manufactured by Davison), calcined and degassed under high vacuum at 300°C for 2 hours.
was added and soaked. Next, ethanol was distilled off using a rotary evaporator to dryness, followed by further vacuum drying. After that, the Pyrex reaction tube was filled with a mixed gas of hydrogen and nitrogen (H 2 :60
ml/min, N2 : 60 ml/min), activation treatment was performed at 400° C. for 4 hours to prepare a Rh/SiO 2 catalyst. Next, 0.162 g of palladium chloride (PdCl 2 ),
3.7 g of calcined and degassed silica gel (10
ml) was added and soaked. A Pd-Fe/ SiO2 catalyst was prepared using the same preparation method and activation treatment as above. The Rh/SiO 2 catalyst (catalyst 7 ml) and Pd-Fe/SiO 2 catalyst (3 ml) thus obtained were filled into a reaction tube (made of titanium) of a high-pressure flow reactor so that they formed the upper and lower layers. , under normal pressure hydrogen gas flow (200
ml/min), after re-reduction treatment at 300℃ for about 2 hours,
A mixed gas of carbon monoxide and hydrogen was introduced to carry out the reaction under predetermined reaction conditions. Analysis of reaction products is
The liquid products were dissolved in water and collected, and the gaseous products were collected directly and subjected to gas chromatography analysis, qualitative and quantitative analysis, and the distribution of the products was determined. The results are shown in Table 1. Example 2 Rhodium chloride 0.480g, lithium chloride (LiCl・
Add 300 ml of ethanol solution containing 0.022 g of H 2 O)
A Rh-Li/SiO 2 catalyst was prepared by the same treatment as in Example 1 after being immersed in 10 ml of degassed silica gel calcined at °C. Rh-Li/SiO 2 catalyst (7 ml), Example 1
The Pd-Fe/SiO 2 catalyst (3 ml) prepared above was filled in the upper and lower layers of a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. Example 3 An ethanol solution in which 0.480 g of rhodium chloride and 0.361 g of manganese chloride (MnCl 2 .4H 2 O) were dissolved was immersed in 10 ml of degassed silica calcined at 300°C.
On the other hand, an aqueous solution in which 0.162 g of palladium chloride and 0.075 g of molybdenum chloride (MoCl 5 ) were dissolved was immersed in 10 ml of degassed silica calcined at 300°C. Rh-Mn/SiO 2 , Pd-Mo/
SiO2 was prepared. Ph-Mn/SiO 2 catalyst (6ml)
A reaction tube of a high-pressure flow reactor was filled with Pd-Mo/SiO 2 (2 ml) in the upper and lower layers, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. Example 4 Rhodium chloride 0.480g, manganese chloride 0.012g,
An ethanol solution containing 0.033g of lithium chloride, 0.177g of palladium chloride, and 0.109g of ferrous chloride.
Rh-Mn-Li/SiO 2 and Pd-Fe/SiO 2 catalysts were prepared by the same treatment as in Example 1 after immersing each aqueous solution in which G was dissolved in 10 ml of degassed silica gel calcined at 300°C. Rh-Mn-Li/ SiO2 catalyst (6
ml) and Pd-Fe/SiO 2 (2 ml) were filled into the upper and lower layers of a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. Example 5 Palladium chloride 0.089g, molybdenum chloride 0.035
The aqueous solution in which g was dissolved was immersed in 10 ml of silica gel that had been calcined at 300°C and degassed. Pd-Mo/SiO 2 was prepared by the same treatment as in Example 1. Rh-Mn-Li/SiO 2 catalyst (6 ml) prepared in Example 4 and the above Pd-
Mo/SiO 2 catalyst (2 ml) was filled in the upper and lower layers of a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. Example 6 Rhodium chloride 0.480g, manganese chloride 0.036g,
An ethanol solution containing 0.128 g of iridium chloride (IrCl 4 H 2 O) and 0.177 g of palladium chloride.
g, ferrous chloride 0.109g, molybdenum chloride 0.05g
After each aqueous solution was immersed in 10 ml of silica gel which had been calcined and degassed at 300°C, Rh-Mn-Ir/SiO 2 , Pd-Fe-Mo/
SiO2 was prepared. Rh-Mn-Ir/ SiO2 catalyst (6
ml) and Pd-Fe-Mo/SiO 2 catalyst (2 ml) were filled in the upper and lower layers of a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. Example 7 Rhodium chloride 0.480g, manganese chloride 0.018g,
An ethanol solution containing 0.064g of iridium chloride and 0.022g of lithium chloride, and palladium chloride.
Rh-Mn
-Ir-Li/ SiO2 and Pd-Fe/ SiO2 were prepared. Rh
-Mn-Ir-Li/SiO 2 catalyst (7 ml) and Pd-Fe/
A reaction tube of a high-pressure flow reactor was filled with SiO 2 catalyst (3 ml) in the upper and lower layers, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 1 The Rh/SiO 2 catalyst (10 ml) prepared in Example 1 was filled into a reaction tube of a high-pressure flow reactor.
The activity test was conducted in the same manner as above. The results are shown in Table 1. Comparative Example 2 Rh-Li/SiO 2 catalyst prepared in Example 2 (10
ml) was filled into a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 3 The Rh-Mn-Li/SiO 2 catalyst (10 ml) prepared in Example 4 was filled into a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1.
The results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 ロジウムを担体担持してなる触媒と、パラジ
ウム、鉄及び/又はモリブデンを担体担持してな
る触媒との存在下、一酸化炭素と水素とを反応さ
せることからなる、エタノールを製造する方法。 2 ロジウム及びリチウム又はマンガンを担体担
持してなる触媒と、パラジウム、鉄及び/又はモ
リブデンを担体担持してなる触媒との存在下、一
酸化炭素と水素とを反応させることからなる、エ
タノールを製造する方法。 3 ロジウム、マンガン、イリジウム及び/又は
リチウムを担体担持してなる触媒と、パラジウ
ム、鉄及び/又はモリブデンを担体担持してなる
触媒の存在下、一酸化炭素と水素とを反応させる
ことからなる、エタノールを製造する方法。
[Scope of Claims] 1. Ethanol comprising reacting carbon monoxide and hydrogen in the presence of a catalyst comprising rhodium supported on a carrier and a catalyst comprising palladium, iron and/or molybdenum supported on a support. How to manufacture. 2 Production of ethanol by reacting carbon monoxide and hydrogen in the presence of a catalyst comprising rhodium and lithium or manganese supported on a carrier and a catalyst comprising palladium, iron and/or molybdenum supported on a support. how to. 3 consisting of reacting carbon monoxide and hydrogen in the presence of a catalyst comprising rhodium, manganese, iridium and/or lithium supported on a carrier and a catalyst comprising palladium, iron and/or molybdenum supported on a support, A method of producing ethanol.
JP60017723A 1985-02-02 1985-02-02 Method for producing ethanol Granted JPS61191634A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60017723A JPS61191634A (en) 1985-02-02 1985-02-02 Method for producing ethanol
GB08602390A GB2171925B (en) 1985-02-02 1986-01-31 Process for the manufacture of ethanol based, oxygen-containing carbon compounds
US06/941,072 US4758600A (en) 1985-02-02 1986-12-12 Process for the manufacture of ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60017723A JPS61191634A (en) 1985-02-02 1985-02-02 Method for producing ethanol

Publications (2)

Publication Number Publication Date
JPS61191634A JPS61191634A (en) 1986-08-26
JPS6210486B2 true JPS6210486B2 (en) 1987-03-06

Family

ID=11951664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60017723A Granted JPS61191634A (en) 1985-02-02 1985-02-02 Method for producing ethanol

Country Status (1)

Country Link
JP (1) JPS61191634A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092819A1 (en) * 2009-02-12 2010-08-19 有限会社市川事務所 Method for producing ethanol

Also Published As

Publication number Publication date
JPS61191634A (en) 1986-08-26

Similar Documents

Publication Publication Date Title
JPS6032733A (en) Production of oxygen-containing compound such as ethanol
JPS6210486B2 (en)
JPS6341373B2 (en)
JPS63412B2 (en)
JPS6238335B2 (en)
JPS6238334B2 (en)
JPS6238343B2 (en)
JPS63413B2 (en)
JPS6119608B2 (en)
JPS6238333B2 (en)
JPS6353169B2 (en)
JPS6238336B2 (en)
JPS6032730A (en) Production of oxygen-containing compound composed mainly of ethanol
JPS6049616B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS6238337B2 (en)
JPS6353168B2 (en)
JPS6259232A (en) Production of ethanol
JPS6119611B2 (en)
JPS6238339B2 (en)
JPS643857B2 (en)
JPS6238340B2 (en)
JPS6218530B2 (en)
JPS63414B2 (en)
JPS6238341B2 (en)
JPS6238338B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term