JPS6049616B2 - Method for producing oxygen-containing compounds containing ethanol as the main component - Google Patents

Method for producing oxygen-containing compounds containing ethanol as the main component

Info

Publication number
JPS6049616B2
JPS6049616B2 JP58141084A JP14108483A JPS6049616B2 JP S6049616 B2 JPS6049616 B2 JP S6049616B2 JP 58141084 A JP58141084 A JP 58141084A JP 14108483 A JP14108483 A JP 14108483A JP S6049616 B2 JPS6049616 B2 JP S6049616B2
Authority
JP
Japan
Prior art keywords
catalyst
rhodium
ethanol
manganese
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58141084A
Other languages
Japanese (ja)
Other versions
JPS6032732A (en
Inventor
聰 有光
勝美 柳
勝 市川
聖志郎 松下
寿広 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58141084A priority Critical patent/JPS6049616B2/en
Publication of JPS6032732A publication Critical patent/JPS6032732A/en
Publication of JPS6049616B2 publication Critical patent/JPS6049616B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は一酸化炭素と水素とを含有する混合気体を触媒
を存在下反応させ、エタノールを主成分とする含酸素化
合物を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an oxygen-containing compound containing ethanol as a main component by reacting a gas mixture containing carbon monoxide and hydrogen in the presence of a catalyst.

更に詳しくは本発明は(イ)ロジウム、同マンガン及び
←→鉄より成る触媒の存在下、あるいは(イ)ロジウム
、(口)マンガン、l■→鉄及び(4バナジウム、チタ
ン、イリジウム、ニッケルから成る群から選ばれた成分
を添加して成る触媒の存在下、当該混合気体を反応させ
ることによりエタノールを主成分とする含酸素化合物を
製造する方法に関する。本発明において目的とする含酸
素化合物とは、アルコール、アルデヒド、脂肪酸及びそ
のエステ′11」−マ゜ロロ3、L、置、一戸 的とす
る物質は炭素数2の含酸素化合物、すなわちエタノール
、アセトアルデヒド、酢酸及びそのエステル類である。
More specifically, the present invention can be carried out in the presence of a catalyst consisting of (a) rhodium, manganese and ←→iron, or (a) in the presence of a catalyst consisting of rhodium, manganese, l■→iron and (4 vanadium, titanium, iridium, nickel). It relates to a method for producing an oxygen-containing compound whose main component is ethanol by reacting the mixed gas in the presence of a catalyst containing a component selected from the group consisting of: are alcohols, aldehydes, fatty acids and their esters.

更に限定的に言えば、本発明の目的物はエタノールを主
成分とした炭素数2の含酸素化合物である。含酸素化合
物、特にエタノール等の炭素数2の含酸素化合物は従来
ナフサを原料とする石油化学的方法によつて製造されて
きた。
More specifically, the object of the present invention is an oxygen-containing compound having 2 carbon atoms and containing ethanol as a main component. Oxygen-containing compounds, particularly oxygen-containing compounds having two carbon atoms such as ethanol, have conventionally been produced by a petrochemical method using naphtha as a raw material.

しかし、近年の原油高騰により、製造価格の著しい上昇
が起り、原料転換の必要性が生じている。一方、豊富で
且つ安価に入手可能な一酸化炭素及び水素の混合ガスよ
り含酸素化合物を製造する方法が種々検討されている。
However, due to the rise in crude oil prices in recent years, manufacturing prices have risen significantly, creating the need to switch raw materials. On the other hand, various methods have been studied for producing oxygen-containing compounds from a mixed gas of carbon monoxide and hydrogen, which is abundant and available at low cost.

即ち、一酸化炭素と水素の混合ガスを、ロジウムを主成
分とし、マンガン、チタン、ジルコニウム、タングステ
ンなどの金属もしくは金属酸化物より成る触媒の存在下
に反応させて、炭素数2の含酸素化合物を選択的に製造
する方法は公知である。しかしながら、かかる方法も副
生する炭化水ヨ素、例えばメタン等の量が多く、含酸素
化合物の選択率が低いものや含酸素化合物の選択率が高
い場合には主生成物の選択性が低いものであつた。
That is, by reacting a mixed gas of carbon monoxide and hydrogen in the presence of a catalyst containing rhodium as a main component and consisting of a metal or metal oxide such as manganese, titanium, zirconium, or tungsten, an oxygen-containing compound having two carbon atoms is produced. Methods for selectively producing are known. However, even in this method, the amount of by-product hydrocarbon iodine, such as methane, is large, and the selectivity of the main product is low when the selectivity of oxygen-containing compounds is low or when the selectivity of oxygen-containing compounds is high. It was hot.

更に高価な貴金属であるロジウムあたりの目的化合物の
生成量がまだまだ少く、経済的にもプロセ・ス的にも完
成された技術が提供されていないのが実状てある。更に
含酸素化合物を高収量で高選択的に製造することを目的
としたロジウムにマンガンを添加する触媒及びその改良
法(特開昭52−1470臥56一8333及び56−
8334号)が提案されているが、いずれの方法もアセ
トアルデヒド、酢酸を主生成物とするものであり、エタ
ノールの収率、選択性などは著しく低い欠点を有してい
る。
Furthermore, the amount of target compounds produced based on rhodium, which is an expensive precious metal, is still small, and the reality is that no technology has been developed that is economically or process-perfect. Furthermore, a catalyst for adding manganese to rhodium and its improvement method aimed at producing oxygen-containing compounds in high yield and with high selectivity (JP-A-52-1470 56-8333 and 56-
No. 8334) has been proposed, but both methods use acetaldehyde and acetic acid as the main products, and have the disadvantage that the yield and selectivity of ethanol are extremely low.

以上述べた如く、一酸化炭素及び水素を含有する気体よ
りエタノールを主成分とする含酸素化合物を効率よく経
済性よく製造する方法は提供されていない。
As described above, no method has been provided for efficiently and economically producing an oxygen-containing compound containing ethanol as a main component from a gas containing carbon monoxide and hydrogen.

本発明者等はエタノールを主成分とする含酸素化合物を
選択的に製造する方法について鋭意検討を重ねた結果、
前述した如くアセトアルデヒドが酢酸の製造用触媒とし
て知られていたロジウムーマンカン触媒に鉄を加えた触
媒の存在下、あるいはそれらにバナジウム、チタン、イ
リジウム、ニッケルから成る群から選ばれた成分を添加
して成る触媒の存在下に一酸化炭素と水素とを反応させ
ることにより、エタノールが選択的に得られることを見
出し、本発明を完成した。
As a result of extensive research into a method for selectively producing oxygen-containing compounds containing ethanol as the main component, the present inventors have found that:
As mentioned above, acetaldehyde is produced in the presence of a rhodium-mancan catalyst known as a catalyst for producing acetic acid with iron added thereto, or in the presence of a catalyst selected from the group consisting of vanadium, titanium, iridium, and nickel. They discovered that ethanol can be selectively obtained by reacting carbon monoxide and hydrogen in the presence of a catalyst, and completed the present invention.

本発明はロジウム、マンガン及び鉄より成る触媒の存在
下、あるいはそれらにバナジウム、チタン、イリジウム
、ニッケルから成る群から選ばれた成分を添加して成る
触媒の存在下に一酸化炭素及び水素を含有する混合気体
を反応させ、エタノールを主成分とする含酸素化合物を
製造するものである。
The present invention contains carbon monoxide and hydrogen in the presence of a catalyst consisting of rhodium, manganese and iron, or a catalyst consisting of vanadium, titanium, iridium and nickel. This method produces an oxygen-containing compound whose main component is ethanol.

本発明において用いられる触媒は前述した如.く、(イ
)ロジウム、(口)マンガン及び(ハ)鉄から成る成分
を主たる構成成分とする。
The catalyst used in the present invention is as described above. The main constituents are (a) rhodium, (c) manganese, and (c) iron.

あるいはそれだけに((ニ)バナジウム、チタン、イリ
ジウム、ニッケルの群から選ばれた成分を添加した触媒
を構成成分とする。実質的には通常貴金属触媒において
行われ.る如く、担体上に上記の成分を分散させた触媒
を用いる。本発明において用いられる触媒量は種々の方
法を用いて調製できる。例えば含浸法、浸漬法、イオン
交換法、共沈法等によつて調製できる。触媒を構成する
諸成分、ロジウム、マンガン及び鉄あるいはバナジウム
、チタン、イリジウム、ニッケルの群から選ばれた成分
より成る触媒を調製するための原料化合物としては酸化
物、塩化物、硝酸塩、炭酸塩等の無機塩、酢酸塩、シユ
ウ酸塩、アセチルアセトナート錯体、ジメチルグリオキ
シム錯体、エチレンジアミン酢酸塩等有機塩又はキレー
ト錯体、カルボニル化合物、アルキル金属化合物等通常
貴金属触媒を調製する際に用いられる化合物を使用する
ことが出来る。
Alternatively, a catalyst to which a component selected from the group of (d)vanadium, titanium, iridium, and nickel is added is used as a constituent component.Substantially, as is usually done with noble metal catalysts, the above components are placed on a support. A catalyst in which the Inorganic salts such as oxides, chlorides, nitrates and carbonates, Organic salts or chelate complexes such as acetate, oxalate, acetylacetonate complex, dimethylglyoxime complex, ethylenediamine acetate, carbonyl compound, alkyl metal compound, etc. compounds that are usually used in preparing noble metal catalysts can be used. I can do it.

以下に含浸法を例にとり触媒の調製法を説明する。The preparation method of the catalyst will be explained below by taking the impregnation method as an example.

上記の金属化合物を水、メタノール、エタノー゛ル、テ
トラヒドロフラン、ジオキサン、ヘキサン、ベンゼン、
トルエン、酢酸エチレン、ジクロルメタン等の溶媒に溶
解し、その溶液に担体を加え浸漬し、溶媒を留去、乾燥
し、必要とあれば加熱等の処理を行い、担体に金属化合
物を担持する。
The above metal compounds can be mixed with water, methanol, ethanol, tetrahydrofuran, dioxane, hexane, benzene,
The metal compound is dissolved in a solvent such as toluene, ethylene acetate, dichloromethane, etc., a carrier is added to the solution and immersed, the solvent is distilled off, the metal compound is dried, and if necessary, a treatment such as heating is performed to support the metal compound on the carrier.

担持の方法としてはロジウム、マンガン及び鉄、あるい
はそれらにバナジウム、チタン、イリジウム、ニッケル
群から選ばれた成分を含む原料化合物を同一溶媒に同時
に溶解した混合溶液をつくり、担体に同時に担持する方
法、各成分を遂次的に担体に担持する方法、あるいは各
成分を必要に応じて還元熱処理を行い、遂次的、段階的
に担持する方法など各手法を用いることができる。その
他の調製法、例えは担体のイオン交換能を利用したイオ
ン交換によつて金属を担持する方法、共沈法によつて触
媒を調製する方法なども本発明に用いられる触媒の調製
手法として採用できる。上述の手法によつて調製された
触媒は通常還元処理を行うことにより活性化し次いで反
応に供せられる。還元を行うには水素を含有する気体に
より昇温下を行うことが簡便であつて好ましい。この際
還元温度として、ロジウムの還元される温度、即ち10
0゜C程度の温度条件下ても還元処理ができるのである
が、好ましくは200℃〜600℃の温度下で還元処理
を行なう。この際触媒の各成分の分散を十分に行わせる
目的て低温より徐々に、あるいは段階的に昇温しながら
水素還元を行つてもよい。また還元剤を用いて、化学的
に還元を行うこともできる。たとえば一酸化炭素と水を
用いたり、ヒドラジン、水素化ホウ素化合物、水素化ア
ルミニウム化合物などの還元剤を用いた還元処理を行つ
てもよい。本発明において用いられる担体は、好ましく
は比表面積10〜1000rI1Iy、細孔径10A以
上を有するものであれば通常担体として知られているも
のを使用することができる。
The method of supporting is to prepare a mixed solution in which a raw material compound containing rhodium, manganese and iron, or a component selected from the group of vanadium, titanium, iridium and nickel is simultaneously dissolved in the same solvent, and to simultaneously support them on a carrier. Various techniques can be used, such as a method in which each component is supported on the carrier sequentially, or a method in which each component is subjected to a reduction heat treatment as necessary and supported sequentially or in stages. Other preparation methods, such as a method of supporting a metal by ion exchange using the ion exchange ability of a carrier, and a method of preparing a catalyst by a coprecipitation method, are also adopted as a method for preparing the catalyst used in the present invention. can. The catalyst prepared by the above-mentioned method is usually activated by reduction treatment and then subjected to reaction. In order to carry out the reduction, it is convenient and preferable to carry out the reduction using a hydrogen-containing gas at an elevated temperature. At this time, the reduction temperature is the temperature at which rhodium is reduced, that is, 10
Although the reduction treatment can be carried out at a temperature of about 0°C, it is preferably carried out at a temperature of 200°C to 600°C. At this time, hydrogen reduction may be carried out while raising the temperature gradually or stepwise from a low temperature in order to sufficiently disperse each component of the catalyst. Further, reduction can also be carried out chemically using a reducing agent. For example, reduction treatment may be performed using carbon monoxide and water, or using a reducing agent such as hydrazine, a borohydride compound, or an aluminum hydride compound. The carrier used in the present invention preferably has a specific surface area of 10 to 1000 rI1Iy and a pore diameter of 10 A or more, which is commonly known as a carrier.

具体的な担体としては、シリカ、シリカゲル、モレキユ
ラーシーブ、ケイソウ土等のシリカ系担体、アルミナ、
活性炭などがあげられるが、シリカ系の担体が好ましい
。本発明において、触媒中の各成分の添加量と組成比は
広い範囲でかえることができる。
Specific carriers include silica, silica gel, molecular sieve, silica-based carriers such as diatomaceous earth, alumina,
Examples include activated carbon, but silica-based carriers are preferred. In the present invention, the amount and composition ratio of each component in the catalyst can be varied within a wide range.

ロジウムの担体に対する比率は担体の比表面積を考慮し
て重量比で0.0001〜0.\好ましくは0.001
〜0.3である。ロジウムとマンガンの比率は原子比で
マンガン/ロジウムが0.001〜101好ましくは0
.01〜4の範囲である。また鉄/ロジウムが原子比で
0.005〜101好ましくは0.01〜3の範囲が適
用できる。また、バナジウム、チタン、イリジウム、ニ
ッケルの添加量はマンガンと同様の範囲が適用できる。
本発明は固定床の流通式反応装置に適用することができ
る。
The ratio of rhodium to the carrier is 0.0001 to 0.000 by weight, taking into account the specific surface area of the carrier. \Preferably 0.001
~0.3. The ratio of rhodium and manganese is manganese/rhodium in atomic ratio of 0.001 to 101, preferably 0.
.. The range is 01-4. Further, an iron/rhodium atomic ratio of 0.005 to 101, preferably 0.01 to 3 can be applied. Furthermore, the amounts of vanadium, titanium, iridium, and nickel to be added may be in the same range as that for manganese.
The present invention can be applied to a fixed bed flow reactor.

即ち、反応器内に触媒を充填し、原料ガスを送入して反
応を行わせる。生成物は分離し、未反応の原料ガスは精
製したのちに循環再使用することも可能である。また、
本発明は流動床式の反応装置にも適用できる。
That is, a catalyst is filled in a reactor, and a raw material gas is introduced to cause a reaction. It is also possible to separate the product and purify the unreacted raw material gas, which can then be recycled and reused. Also,
The present invention can also be applied to a fluidized bed type reactor.

すなわち原料ガスと流動化した触媒を同伴させて反応を
行わせることもできる。更には本発明は溶媒中に触媒を
分散させ、原料ガスを送入し反応を行うことからなる液
相不均一反応にも適用できる。本発明を実施するに際し
て採用される条件は、エタノールを主成分とする含酸素
化合物を高収率・高選択率て製造することを目的として
種々の反応条件の因子を有機的に組合せて選択される。
That is, the reaction can also be carried out by bringing the raw material gas and the fluidized catalyst together. Furthermore, the present invention can also be applied to a liquid phase heterogeneous reaction in which a catalyst is dispersed in a solvent and a raw material gas is introduced to carry out the reaction. The conditions employed in carrying out the present invention are selected by organically combining various reaction condition factors with the aim of producing an oxygen-containing compound containing ethanol as a main component with high yield and high selectivity. Ru.

反応圧力は、常圧(すなわち0k9/C7lゲージ)で
も当該目的化合物を高選択率・高収率で製造できるのて
あるが、空時収率を高める目的て加圧下において反応を
行うことができる。従つて反応圧力としては0kg/d
ゲージ〜350k9/dゲージ、好ましくは0k9/C
!lゲージ〜250k9/CTlゲージの圧力下で行う
。反応温度は150′C〜450℃、好ましくは180
うC〜350℃である。反応温度が高い場合には、炭化
水素の副生量が増加するため原料の送入速度を早くする
必要がある。従つて、空間速度(原料ガス送入量×触媒
容積)は、標準状態(イ)℃、1気圧)換算で10h−
1〜1Cf′h−1の範囲より、反応圧力と反応温度、
原料ガス組成との関係より適宜選択される。当該原料ガ
スの組成は、主として一酸化炭素と水素を含有している
ガスであつて、窒素、アルゴン、ヘリウム、メタン等の
不活性ガスあるいは反応条件下において、気体の状態で
あれば炭化水素や炭酸ガスや水を含有していてもよい。
Although the target compound can be produced with high selectivity and high yield even at normal pressure (i.e. 0k9/C7l gauge), the reaction can be carried out under pressure to increase the space-time yield. . Therefore, the reaction pressure is 0 kg/d.
Gauge ~350k9/d gauge, preferably 0k9/C
! It is carried out under pressure of l gauge to 250k9/CTl gauge. The reaction temperature is 150'C to 450C, preferably 180C.
The temperature is between 350°C and 350°C. When the reaction temperature is high, the amount of hydrocarbon by-product increases, so it is necessary to increase the feed rate of the raw material. Therefore, the space velocity (feeding amount of raw material gas × catalyst volume) is 10 h- in terms of standard conditions (a) °C, 1 atm).
From the range of 1 to 1 Cf'h-1, the reaction pressure and reaction temperature,
It is appropriately selected depending on the relationship with the raw material gas composition. The composition of the raw material gas is mainly a gas containing carbon monoxide and hydrogen, and under the reaction conditions, it can contain inert gases such as nitrogen, argon, helium, methane, etc., or hydrocarbons and other gases if it is in a gaseous state. It may contain carbon dioxide gas or water.

一酸化炭素と水素の混合比はCO/H2比で0.1〜1
01好ましくは0.2〜4(容積比)である。以下実施
例によつて本発明を更に詳細に説明する。
The mixing ratio of carbon monoxide and hydrogen is CO/H2 ratio of 0.1 to 1.
01 is preferably 0.2 to 4 (volume ratio). The present invention will be explained in more detail below using Examples.

実施例1 塩化ロジウム(RhCl3・3F120)0.480y
(1.82Tn.m01)、塩化マンガン(MnCl2
・4H20)0.361f(1.827n,m01)及
び塩化第一鉄(FeCI2・4H20)0.036y(
0.18Tr1.m01)を溶解させたエタノール溶液
中に予め280゜Cで2時間高真空下て焼成脱気したシ
リカゲル(DavjsOn#57、DavisOn社製
)3.7q(10wL1)を加え浸漬した次いでロータ
リーエバポレーターを用いてエタノールを留去し乾固し
た後、更に真空乾燥した。
Example 1 Rhodium chloride (RhCl3.3F120) 0.480y
(1.82Tn.m01), manganese chloride (MnCl2
・4H20) 0.361f (1.827n, m01) and ferrous chloride (FeCI2・4H20) 0.036y (
0.18Tr1. 3.7q (10wL1) of silica gel (DavjsOn#57, manufactured by DavisOn), which had been calcined and degassed under high vacuum at 280°C for 2 hours, was added to the ethanol solution in which m01) was dissolved, and then immersed in it using a rotary evaporator. The ethanol was distilled off to dryness, followed by further vacuum drying.

その後、パイレックス反応管に充填し、常圧で水素及び
窒素の混合ガス(H2=100Tn1/分N2=100
m1/分)の通気下で連続的に400℃まて昇温し(昇
温速度251C1hr)、400℃で4時間、約2CT
f間水素還元し触媒の活性化処理を行つた。このように
して得られた触媒をシリカゲル30TfLtで希釈し、
高圧流通反応装置の反応管(チタン製内径187r$t
)に充填し、常圧水素ガスの通気下(400m1Im1
n)、300′Cで2時間程度再還元処理した後、一酸
化炭素と水素の混合ガス・(CO/H2=1/2)を送
入し、所定の反応圧、温度、ガス流速の条件下で反応を
行つた。
After that, the Pyrex reaction tube was filled with a mixed gas of hydrogen and nitrogen (H2=100Tn1/min N2=100
The temperature was raised continuously to 400℃ under ventilation (temperature increase rate: 251C1hr) at 400℃ for 4 hours, about 2CT
The catalyst was activated by hydrogen reduction for a period of f. The catalyst thus obtained was diluted with silica gel 30TfLt,
Reaction tube of high pressure flow reactor (titanium inner diameter 187r$t
), and under normal pressure hydrogen gas ventilation (400m1Im1
n) After re-reduction treatment at 300'C for about 2 hours, a mixed gas of carbon monoxide and hydrogen (CO/H2 = 1/2) was introduced, and the conditions of predetermined reaction pressure, temperature, and gas flow rate were set. The reaction was performed below.

反応生成物の中、含酸素化合物などの有機物は水に溶解
し捕集し、気体の炭化水素及び炭酸ガスは直接ガス採取
し、ガスクロ分析を行い、定性及び定量分析し、生成物
の分布を求めた。結果を表1に示した。実施例2〜3 塩化マンガン(MnCl2・4H20)の担持量を0.
181ダ(イ).91Trt,m01)、0.036f
(イ).187T1.m01)とJ変化させた以外は実
施例1と同様の調製法及び活性化処理を用いて調製した
Among the reaction products, organic substances such as oxygen-containing compounds are dissolved in water and collected, and gaseous hydrocarbons and carbon dioxide are directly collected and subjected to gas chromatography analysis, qualitative and quantitative analysis, and the distribution of the products is determined. I asked for it. The results are shown in Table 1. Examples 2 to 3 The supported amount of manganese chloride (MnCl2.4H20) was set to 0.
181 Da(a). 91Trt, m01), 0.036f
(stomach). 187T1. It was prepared using the same preparation method and activation treatment as in Example 1, except that m01) and J were changed.

実施例1と同様の装置及び反応条件下て活性試験を行つ
た。
The activity test was conducted under the same apparatus and reaction conditions as in Example 1.

結果を表−1に示した。実施例4 塩化ロジウム(RhCl3−31120)0.480V
(1.82m,m01)、塩化マンガン(MnCl2・
4H20)0.072y(イ).364mm01)、塩
化第一鉄(FeCl2・4H20)0.109V(0.
547rr1.m01)及び四塩化チタン0.345q
(1.827TLm01)をエタノールに溶解させ、こ
の混合溶液にシリカゲル(DavisOn#57、Da
vusOn社製)3.7y(予め280゜Cで2時間高
真空下て焼成脱気したもの)を加え浸漬した。
The results are shown in Table-1. Example 4 Rhodium chloride (RhCl3-31120) 0.480V
(1.82m, m01), manganese chloride (MnCl2.
4H20) 0.072y (a). 364mm01), ferrous chloride (FeCl2.4H20) 0.109V (0.
547rr1. m01) and titanium tetrachloride 0.345q
(1.827TLm01) was dissolved in ethanol, and silica gel (DavisOn#57, Da
3.7y (manufactured by VusOn) (previously baked and degassed under high vacuum at 280°C for 2 hours) was added and immersed.

次いでロータリーエバポレーターを用いてエタノールを
留去した後、真空乾燥した。その後、パイレックス反応
管に充填し、常圧て水素及び窒素の混合ガス(H2=1
00m1/分、N2=100mL/分)の通気下で連続
的に400′Cまで上昇(昇温速度25゜C1hr)し
、400℃で4時間、約2yiIf!間水素還元し触媒
の活性化処理を行つた。このようにして得られた触媒を
シリカゲル30m1で希釈したものを、高圧流通反応装
置の反応管(チタン製内径18TIUn)に充填し、常
圧水素ガスの通気下(400m11min)で300℃
で2時間程度再還元処理した後、水素、一酸化炭素の混
合ガス(CO/H2=1/2)を送入し、所定の反応圧
、温度、ガス流速の条件下で反応を行つた。反応生成物
の中、含酸素化合物などの有機物は水に溶解し捕集し、
気体の炭化水素及び炭素ガスは直接ガス採取し、ガスク
ロ分析を行い、定性及び定量分析し、生成物の分布を求
めた。結果を表1に示した。実施例5 塩化イリジウム(IrCl4●H2O)0.320ダ(
イ).91mm01)を触媒成分として新たに添加した
以外は実施例4と同様の調製法及ひ活性化処理を用いて
ロジウム−マンガンー鉄−チタンーイリジウム触媒を調
製した。
Next, ethanol was distilled off using a rotary evaporator, followed by vacuum drying. After that, the Pyrex reaction tube was filled with a mixed gas of hydrogen and nitrogen (H2=1) at normal pressure.
00 m1/min, N2 = 100 mL/min) and continuously raised to 400'C (heating rate 25°C1hr) for 4 hours at 400°C, about 2yiIf! The catalyst was activated by hydrogen reduction. The thus obtained catalyst was diluted with 30 ml of silica gel and filled into a reaction tube (made of titanium, inner diameter 18 TIUn) of a high-pressure flow reactor, and heated at 300°C under normal pressure hydrogen gas ventilation (400 ml, 11 min).
After re-reduction treatment for about 2 hours, a mixed gas of hydrogen and carbon monoxide (CO/H2=1/2) was introduced, and the reaction was carried out under conditions of predetermined reaction pressure, temperature, and gas flow rate. Among the reaction products, organic substances such as oxygen-containing compounds are dissolved in water and collected.
Gaseous hydrocarbon and carbon gases were directly sampled and subjected to gas chromatography analysis, qualitative and quantitative analysis, and product distribution was determined. The results are shown in Table 1. Example 5 Iridium chloride (IrCl4●H2O) 0.320 Da (
stomach). A rhodium-manganese-iron-titanium-iridium catalyst was prepared using the same preparation method and activation treatment as in Example 4, except that 91 mm01) was newly added as a catalyst component.

実施例1と同様の装置及び反応条件下て活性試験を行つ
た。
The activity test was conducted under the same apparatus and reaction conditions as in Example 1.

結果を表−1に示した。実施例6 四塩化チタンの代りにオキシ塩化バナジル(VOCl3
)0.316y(1.82mm01)を、塩化マンガン
(MnCl2−4H20)の添加量を0.036y(0
.182TrLm01)に変化させた以外は実施例4と
同様の調製法及び活性化処理を用いてロジウム−マンガ
ンー鉄一バナジン触媒を調製した。
The results are shown in Table-1. Example 6 Vanadyl oxychloride (VOCl3) was used instead of titanium tetrachloride.
) 0.316y (1.82mm01), and the amount of manganese chloride (MnCl2-4H20) added to 0.036y (0.
.. A rhodium-manganese-iron-vanadine catalyst was prepared using the same preparation method and activation treatment as in Example 4, except that the catalyst was changed to 182TrLm01).

実施例1と同様の装置及び反応条件下で活性試験を行つ
た。
The activity test was conducted under the same equipment and reaction conditions as in Example 1.

結果を表−1に示した。実施例7 四塩化チタンの代りにオキシ塩化バナジル(VOCl3
)0.316q(1.827TL.m01)、塩化マン
ガン(MnCl.−4H20)の添加量を0.108y
(0.546TrLm01)、触媒成分として塩化イリ
ジウム(IrCl4・H2O)0.160y(0.45
7T1.m01)を新たに添加した以外は実施例4と同
様の調製法及び活性化処理を用いてロジウム−マンガン
ー鉄−バナジンーイリジウム触媒を調製した。
The results are shown in Table-1. Example 7 Vanadyl oxychloride (VOCl3
)0.316q (1.827TL.m01), the amount of manganese chloride (MnCl.-4H20) added was 0.108y
(0.546TrLm01), 0.160y (0.45
7T1. A rhodium-manganese-iron-vanadine-iridium catalyst was prepared using the same preparation method and activation treatment as in Example 4, except that m01) was newly added.

実施例1と同様の装置及び反応条件下て活性化試験を行
つた。
An activation test was conducted under the same apparatus and reaction conditions as in Example 1.

結果を表−1に示した。実施例8 塩化イリジウム(IrCl4・H2O)0.064V(
0.18rr1.m0りを新たに添加した以外は実施例
1と同様の調製法及び活性化処理を用いてロジウム−マ
ンガンー鉄−イリジウム触媒を調製した。
The results are shown in Table-1. Example 8 Iridium chloride (IrCl4.H2O) 0.064V (
0.18rr1. A rhodium-manganese-iron-iridium catalyst was prepared using the same preparation method and activation treatment as in Example 1, except that m0 was newly added.

実施例1と同様の装置及ひ反応条件下て活性試験を行つ
た。
An activity test was conducted under the same apparatus and reaction conditions as in Example 1.

結果を表−1に示した。実施例9 塩化ニッケル(NlCl2・61120)0.043y
(0.18m,m01)を新たに添加した以外は実施例
1と同様の調製法及び活性化処理を用いて調製した。
The results are shown in Table-1. Example 9 Nickel chloride (NlCl2.61120) 0.043y
It was prepared using the same preparation method and activation treatment as in Example 1, except that (0.18m, m01) was newly added.

実施例1と同様の装置及ひ反応条件下で活性試験を行つ
た。
The activity test was conducted under the same apparatus and reaction conditions as in Example 1.

結果を表−1に示した。比較例1 塩化第一鉄を除いた以外は実施例1と同様の調製法及び
活性化処理を用いてロジウム−マンガン触媒を調製した
The results are shown in Table-1. Comparative Example 1 A rhodium-manganese catalyst was prepared using the same preparation method and activation treatment as in Example 1, except that ferrous chloride was omitted.

実施例1と同様の装置及ひ反応条件下て活性試験を行つ
た。
An activity test was conducted under the same apparatus and reaction conditions as in Example 1.

結果を表−1に示した。比較例2、3 塩化マンガンを除き、塩化第一鉄(FeCl、・4H2
0)を0.026y(0.137−N.mOl)、0.
109y(0.55mm01)と変化させた以外は実施
例1と同様の調製法及び活性化処理を用いて、ロジウム
ー鉄触媒を調製した。
The results are shown in Table-1. Comparative Examples 2 and 3 Ferrous chloride (FeCl, 4H2) except manganese chloride
0) to 0.026y (0.137-N.mOl), 0.
A rhodium-iron catalyst was prepared using the same preparation method and activation treatment as in Example 1, except that the catalyst was changed to 109y (0.55mm01).

実施例1と同様の装置及び反応条件下で活性試験を行つ
た。
The activity test was conducted under the same equipment and reaction conditions as in Example 1.

Claims (1)

【特許請求の範囲】 1 (イ)ロジウム、(ロ)マンガン及び(ハ)鉄より
成る触媒の存在下、一酸化炭素及び水素を含有する混合
気体を反応させ、エタノールを主成分とする含酸素化合
物の製造法。 2 (イ)ロジウム、(ロ)マンガン、(ハ)鉄及び(
ニ)バナジウム、チタン、イリジウム、ニッケルから成
る群から選ばれた成分を添加して成る触媒の存在下、一
酸化炭素及び水素を含有する混合気体を反応させ、エタ
ノールを主成分とする含酸素化合物の製造法。
[Claims] 1. In the presence of a catalyst consisting of (a) rhodium, (b) manganese, and (c) iron, a mixed gas containing carbon monoxide and hydrogen is reacted to produce an oxygen-containing gas containing ethanol as the main component. Method of manufacturing compounds. 2 (a) rhodium, (b) manganese, (c) iron and (
d) In the presence of a catalyst containing a component selected from the group consisting of vanadium, titanium, iridium, and nickel, a gas mixture containing carbon monoxide and hydrogen is reacted to produce an oxygen-containing compound whose main component is ethanol. manufacturing method.
JP58141084A 1983-08-03 1983-08-03 Method for producing oxygen-containing compounds containing ethanol as the main component Expired JPS6049616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58141084A JPS6049616B2 (en) 1983-08-03 1983-08-03 Method for producing oxygen-containing compounds containing ethanol as the main component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58141084A JPS6049616B2 (en) 1983-08-03 1983-08-03 Method for producing oxygen-containing compounds containing ethanol as the main component

Publications (2)

Publication Number Publication Date
JPS6032732A JPS6032732A (en) 1985-02-19
JPS6049616B2 true JPS6049616B2 (en) 1985-11-02

Family

ID=15283831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58141084A Expired JPS6049616B2 (en) 1983-08-03 1983-08-03 Method for producing oxygen-containing compounds containing ethanol as the main component

Country Status (1)

Country Link
JP (1) JPS6049616B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191632A (en) * 1985-02-02 1986-08-26 Agency Of Ind Science & Technol Production of ethanol
JPS61191635A (en) * 1985-02-02 1986-08-26 Agency Of Ind Science & Technol Production of ethanol

Also Published As

Publication number Publication date
JPS6032732A (en) 1985-02-19

Similar Documents

Publication Publication Date Title
JPS6049617B2 (en) Method for producing oxygenated compounds such as ethanol
JPS6049616B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS6341373B2 (en)
JPS6119608B2 (en)
JPS63412B2 (en)
JPS6238335B2 (en)
JPS6238336B2 (en)
JPS6032730A (en) Production of oxygen-containing compound composed mainly of ethanol
JPS6125691B2 (en)
JPS63413B2 (en)
JPS6353169B2 (en)
JPS6024084B2 (en) Method for producing oxygenated compounds
JPS6218530B2 (en)
JPS6259232A (en) Production of ethanol
JPS6238337B2 (en)
JPS6210486B2 (en)
JPS6238334B2 (en)
JPS6238339B2 (en)
JPS63414B2 (en)
JPS6238338B2 (en)
JPS6119611B2 (en)
JPS6238333B2 (en)
JPS6353168B2 (en)
JPS6049618B2 (en) Method for producing oxygen-containing compounds containing ethyl alcohol as the main component
JPS59227832A (en) Production of oxygen-containing compound having two carbon atoms