JPS6238333B2 - - Google Patents

Info

Publication number
JPS6238333B2
JPS6238333B2 JP60017721A JP1772185A JPS6238333B2 JP S6238333 B2 JPS6238333 B2 JP S6238333B2 JP 60017721 A JP60017721 A JP 60017721A JP 1772185 A JP1772185 A JP 1772185A JP S6238333 B2 JPS6238333 B2 JP S6238333B2
Authority
JP
Japan
Prior art keywords
catalyst
sio
reaction
carrier
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60017721A
Other languages
Japanese (ja)
Other versions
JPS61191632A (en
Inventor
Satoshi Arimitsu
Katsumi Yanagi
Hitomi Hosono
Toshihiro Saito
Kazuharu Mitarai
Nobuyuki Taniguchi
Kazuo Takada
Kazuaki Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60017721A priority Critical patent/JPS61191632A/en
Publication of JPS61191632A publication Critical patent/JPS61191632A/en
Publication of JPS6238333B2 publication Critical patent/JPS6238333B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明はエタノールの製造方法に関する。更に
詳しくは、(イ)ロジウム及びマンガンを担体担持し
てなる触媒、(ロ)ロジウム、マンガン、リチウム及
び/又はイリジウムを担体担持してなる触媒のい
ずれかと、(ハ)鉄を担体担持してなる触媒との存在
下、一酸化炭素と水素とを反応させ、エタノール
を製造する方法に関する。 〔従来の技術及び発明が解決しようとする問題
点〕 エタノール、アセトアルデヒド等の炭素数2の
含酸素化合物は従来ナフサを原料とする石油化学
的方法によつて製造されてきた。しかし、近年の
原油の高騰により、製造価格の著しい上昇が起
り、原料転換の必要性が生じている。 一方、豊富で且つ安価に入手可能な一酸化炭素
及び水素の混合ガスより炭素数2の含酸素化合物
を製造する方法が種々検討されている。即ち、一
酸化炭素と水素の混合ガスを、ロジウムを主成分
とし、マンガン、チタン、ジルコニウム、タング
ステンなどの金属もしくは金属酸化物より成る触
媒の存在下に反応させて、炭素数2の含酸素化合
物を選択的に製造する方法は公知である。 しかしながら、かかる方法も副生する炭化水
素、例えばメタン等の量が多く、含酸素化合物の
選択率が低いものや含酸素化合物の選択率が高い
場合には主生成物の選択性が低いものであつた。
更に高価な貴金属であるロジウムあたりの目的化
合物の生成量がまだまだ少く、経済的にもプロセ
ス的にも完成された技術が提供されていないのが
実情である。 更に炭素数2の含酸素化合物を高収量で高選択
的に製造することを目的としたロジウムにマンガ
ンを添加した触媒及びその改良法(特開昭52−
14706、56−8333、56−8334号)が提案されてい
るが、いずれの方法もアセトアルデヒド、酢酸を
主生成物とするものであり、エタノールの収率、
選択性などは著しく低い欠点を有している。 以上述べた如く、一酸化炭素及び水素を含有す
る気体よりエタノールを主成分とする含酸素化合
物を効率よく経済性よく製造する方法は提供され
ていない。 本発明者らはエタノールを選択的に製造する方
法について鋭意検討を重ねた結果、前述した如く
アセトアルデヒドや酢酸の製造用触媒として知ら
れていたロジウム−マンガン触媒と鉄触媒とを組
合せることによりエタノールを高選択的に製造で
きることを見出し本発明を完成した。 〔発明の概要〕 本発明は前記した如く(イ)〜(ロ)のいずれかの触媒
と、(ハ)の触媒との存在下、一酸化炭素及び水素を
反応させエタノールを製造するものである。 以下、本発明を順次詳述する。 本発明において用いられる触媒は前述の如く、
(イ)〜(ロ)のいずれかの触媒と、(ハ)の触媒とからなる
二者の触媒を主たる構成成分とする。両者の触媒
は各々別途に調製したものを使用することが必要
であり、使用に際しては混合あるいは、(イ)〜(ロ)の
いずれかの触媒を上層に(ハ)の触媒を下層に充填し
て使用することができる。 触媒の調製にあたつては通常、貴金属触媒にお
いて行われる如く、担体上に上記の成分を分散さ
せた触媒を用いる。 本発明において用いられる触媒は貴金属常法を
用いて調製することができる。例えば含浸法、浸
漬法、イオン交換法、共沈法、混練法等によつて
調製できる。 前記触媒を構成する諸成分の原料化合物として
は、酸化物、塩化物、硝酸塩、炭酸塩等の無機
塩、酢酸塩、シユウ酸塩、アセチルアセトナート
塩、ジメチルグリオキシム塩、エチレンジアミン
酢酸塩等有機塩又はキレート化物、カルボニル化
合物、シクロペンタジエニル化合物、アンミン錯
体、金属アルコキシド化合物、アルキル金属化合
物等通常貴金属触媒を調製する際に用いられる化
合物を使用することができる。 以下に含浸法に例をとり触媒の調製法を説明す
る。 上記の金属化合物を水、メタノール、エタノー
ル、テトラヒドロフラン、ジオキサン、ノルマル
ヘキサン、ベンゼン、トルエン等の溶媒に溶解
し、その溶液に担体を加え浸漬し溶媒を留去、乾
燥し、必要とあれば加熱等の処理を行い、担体に
金属化合物を担持する。 担持の手法としては、原料化合物を同一溶媒に
同時に溶解した混合溶液を作り、担体に同時に担
持する方法、各成分を遂次的に担体に担持する方
法、あるいは各成分を必要に応じて還元、熱処理
等の処理を行いながら遂次的、段階的に担持する
方法などの各手法を用いることができる。尚、前
記した如く二者への触媒はそれぞれ別個にこれら
の手法を用いて調製する。 その他の調製法、例えば担体のイオン交換能を
利用したイオン交換によつて金属を担持する方
法、共沈法によつて触媒を調製する方法なども本
発明方法に用いられる触媒の調製手法として採用
できる。 上述の手法によつて調製された触媒は通常還元
処理を行うことにより活性化し次いで反応に供せ
られる。還元を行うには水素を含有する気体によ
り昇温下で行うことが簡便であつて好ましい。こ
の際還元温度として、ロジウムの還元される温
度、即ち100℃程度・温度条件下でも環元処理が
できるのであるが、好ましくは200℃〜600℃の温
度下で還元処理を行う。この際触媒の各成分の分
散を十分に行わせる目的で低温より除々にあるい
は段階的に昇温しながら水素還元を行つてもよ
い。また還元剤を用いて、化学的に還元を行うこ
ともできる。たとえば、一酸化炭素と水を用いた
り、ヒドラジン、水素化ホウ素化合物、水素化、
アルミニウム化合物などの還元剤を用いた還元処
理を行つてもよい。 本発明において用いられる担体は好ましくは比
表面積10〜1000m2/g、細孔径10Å以上を有する
ものであれば通常担体として知られているものを
使用することができる。具体的な担体としては、
シリカ、珪酸塩、シリカゲル、モレキユラーシー
ブ、ケイソウ土等のシリカ系担体、アルミナ、活
性炭などがあげられるがシリカ系の担体が好まし
い。 (イ)及び(ロ)触媒のいずれの場合も触媒中の各成分
の濃度と組成比は広い範囲でかえることができ
る。 (イ)〜(ロ)触媒においてロジウムの担体に対する比
率は、担体の比表面積を考慮して重量比で0.0001
〜0.5、好ましくは0.001〜0.3である。また、助触
媒金属の比率はロジウムに対して原子比で各々
0.001〜10、好ましくは0.01〜5の範囲である。
更に(ハ)の触媒において、鉄の担体に対する比率は
担体の比表面積を考慮して重量比で0.0001〜
0.5、好ましくは0.001〜0.3の範囲である。 本発明は、たとえば固定床の流通式反応装置に
適用することができる。すなわち反応器内に触媒
を充填し、原料ガスを送入して反応を行わせる。
生成物は分離し、未反応の原料ガスは精製したの
ちに循環再使用することも可能である。 また、本発明は流動床式の反応装置にも適用で
きる。すなわち原料ガスと流動化した触媒を同伴
させて反応を行わせることもできる。更には本発
明は溶媒中に触媒を分散させ、原料ガスを送入し
反応を行うことからなる液相不均一反応にも適用
できる。 本発明を実施するに際して採用される条件は、
エタノールを主成分とする含酸素化合物を高収
率・高選択率で製造することを目的として種々の
反応条件の因子を有機的に組合せて選択される。
反応圧力は常圧(すなわち0Kg/cm2ゲージ)でも
当該目的化合物を高選択率・高収率で製造できる
のであるが、空時収率を高める目的で加圧下にお
いて反応を行うことができる。 従つて反応圧力としては0Kg/cm2ゲージ〜350
Kg/cm2ゲージ、好ましくは0Kg/cm2ゲージ〜250
Kg/cm2ゲージの圧力下で行う。反応温度は150℃
〜450℃、好ましくは180℃〜350℃である。反応
温度が高い場合には、炭化水素の副生量が増加す
るため原料の送入速度を早くする必要がある。従
つて空間速度(原料ガス送入量×触媒容積)は、
標準状態(0℃、1気圧)換算で10h-1〜106h-1
の範囲より、反応圧力と反応温度、原料ガス組成
との関係より適宜選択される。 当該原料ガスの組成は、主として一酸化炭素と
水素を含有しているガスであつて、窒素、アルゴ
ン、ヘリウム、メタン等の不活性ガスあるいは反
応条件下において気体の状態であれば炭化水素や
炭酸ガスや水を含有していてもよい。一酸化炭素
と水素の混合比はCO/H2比で0.1〜10、好ましく
は0.2〜4(容積比)である。 以下実施例によつて本発明を更に詳細に説明す
る。 実施例 1 塩化ロジウム(RhCl3・3H2O)0.480g、塩化
マンガン(MnCl2・4H2O)0.012gを溶解させた
エタノール溶液中に、予め300℃で2時間高真空
下で焼成脱気したシリカゲル(Davison#57、
Davison社製)10mlを加え浸漬した。次いで、ロ
ータリーエバポレーターを用いてエタノールを留
去し乾固した後、更に真空乾燥した。その後、パ
イレツクス反応管に充填し、常圧で水素及び窒素
の混合ガス(H2:60ml/分、N2:60ml/分)の
通気下、400℃で4時間活性化処理を行い、Rh−
Mn/SiO2触媒を調製した。次いで、硝酸第二鉄
(Fe(NO33・9H2O)0.240gを溶解させたエタ
ノール溶液中に焼成脱気したシリカゲル10mlを加
え浸漬した。ロータリーエバポレーターを用いて
エタノールを留去し乾固した後、更に真空乾燥し
た。その後、空気中で600℃、2時間処理した。
次いで、パイレツクス反応管に充填し、常圧で水
素(60ml/分)通気下、400℃で4時間還元処理
をおこない、Fe/SIO2触媒を調製した。 このようにして得られた、Rh−Mn/SiO2触媒
(8ml)、Fe/SiO2(5ml)を高圧流通式反応装
置の反応管(チタン製)に上層、下層になる様に
充填し、常圧水素ガスの流通下(200ml/分)、
300℃で2時間程度再還元処理した後、一酸化炭
素と水素の混合ガスを送入し、所定の反応条件下
で反応を行つた。反応生成物の分析は、液状生成
物については水に溶解し捕集し、気体生成物につ
いては直接ガス採取し、ガスクロ分析を行い、定
性及び定量分析し、生成物の分布を求めた。結果
を表1に示した。 実施例 2 塩化ロジウム0.480g、塩化マンガン0.012g、
塩化リチウム(LiCl・H2O)0.033gを溶解させ
たエタノール溶液を300℃焼成脱気したシリカゲ
ル10mlに浸漬した後、実施例1のRh−Mn/SiO2
触媒の調製法と同様の処理によりRh−Mn−Li/
SiO触媒を調製した。 Rh−Mn−Li−SiO2触媒(8ml)、実施例1で
調製したFe/SiO2触媒(5ml)を高圧流通式反
応装置の反応管に上層、下層に充填し、実施例1
と同様の方法で活性試験を行つた。結果を表1に
示した。 実施例 3 塩化ロジウム0.480g、塩化マンガン0.012g、
塩化イリジウム(IrCl4・H2O)0.193gを溶解さ
せたエタノール溶液を300℃焼成脱気シリカゲル
10mlに浸漬した。実施例1のRh−Mn/SiO2触媒
の調製法と同様の処理によりRh−Mn−Ir/SiO2
触媒を調製した。 Rh−Mn−Ir/SiO2触媒(7ml)、実施例1で
調製したFe/SiO2触媒(5ml)を高圧流通式反
応装置の反応管に上層、下層に充填し、実施例1
と同様の方法で活性試験を行つた。結果を表1に
示した。 実施例 4 塩化ロジウム0.480g、塩化マンガン0.012g、
塩化イリジウム0.386g、塩化リチウム0.033gの
エタノール溶液を300℃焼成脱気したシリカゲル
10mlに浸漬した。実施例1、のRh−Mn/SiO2
媒の調製法と同様の処理によりRh−Mn−Ir−
Li/SiO2触媒を調製した。 Rh−Mn−Ir−Li/SiO2触媒(7ml)、実施例
1で調製したFe/SiO2触媒(5ml)を高圧流通
式反応装置の反応管に上層、下層に充填し、実施
例1と同様の方法で活性試験を行つた。結果を表
1に示した。 比較例 1 実施例1で調製したRh−Mn/SiO2触媒(10
ml)を高圧流通式反応装置の反応管に充填し、実
施例1と同様の方法で活性試験を行つた。結果を
表1に示した。 比較例 2 実施例2で調製したRh−Mn−Li/SiO2触媒
(10ml)を高圧流通式反応装置の反応管に充填
し、実施例1と同様の方法で活性試験を行つた。
結果を表1に示した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ethanol. More specifically, (a) a catalyst comprising rhodium and manganese supported on a carrier, (rho) a catalyst comprising rhodium, manganese, lithium and/or iridium supported on a support, and (c) a catalyst comprising iron supported on a support. This invention relates to a method for producing ethanol by reacting carbon monoxide and hydrogen in the presence of a catalyst. [Prior Art and Problems to be Solved by the Invention] Oxygen-containing compounds having two carbon atoms, such as ethanol and acetaldehyde, have conventionally been produced by a petrochemical method using naphtha as a raw material. However, due to the recent rise in the price of crude oil, manufacturing prices have risen significantly, creating the need to switch raw materials. On the other hand, various methods of producing an oxygen-containing compound having 2 carbon atoms from a mixed gas of carbon monoxide and hydrogen, which is available in abundance and at low cost, have been studied. That is, by reacting a mixed gas of carbon monoxide and hydrogen in the presence of a catalyst containing rhodium as a main component and consisting of a metal or metal oxide such as manganese, titanium, zirconium, or tungsten, an oxygen-containing compound having two carbon atoms is produced. Methods for selectively producing are known. However, this method also produces a large amount of by-product hydrocarbons such as methane, and when the selectivity of oxygen-containing compounds is low or the selectivity of oxygen-containing compounds is high, the selectivity of the main product is low. It was hot.
The reality is that the amount of the target compound produced based on rhodium, which is an expensive noble metal, is still small, and a technology that has been completed economically and process-wise has not been provided. Furthermore, a catalyst in which manganese is added to rhodium and an improved method thereof (Japanese Patent Application Laid-Open No. 1989-1999
Nos. 14706, 56-8333, and 56-8334) have been proposed, but all of these methods mainly produce acetaldehyde and acetic acid, and the yield of ethanol and
It has the disadvantage of extremely low selectivity. As described above, no method has been provided for efficiently and economically producing an oxygen-containing compound containing ethanol as a main component from a gas containing carbon monoxide and hydrogen. The inventors of the present invention have conducted intensive studies on a method for selectively producing ethanol, and as a result, as mentioned above, by combining a rhodium-manganese catalyst and an iron catalyst, which are known as catalysts for producing acetaldehyde and acetic acid, ethanol can be produced. The present invention was completed by discovering that it is possible to produce highly selectively. [Summary of the Invention] As described above, the present invention produces ethanol by reacting carbon monoxide and hydrogen in the presence of any one of the catalysts (a) to (b) and the catalyst (c). . The present invention will be explained in detail below. As mentioned above, the catalyst used in the present invention is
Two catalysts consisting of one of the catalysts (a) to (b) and the catalyst (c) are the main constituents. It is necessary to use both catalysts prepared separately, and when using them, either mix them or fill one of the catalysts (a) to (b) in the upper layer and the catalyst in (c) in the lower layer. can be used. In preparing the catalyst, a catalyst in which the above-mentioned components are dispersed on a carrier is usually used, as is done for noble metal catalysts. The catalyst used in the present invention can be prepared using conventional noble metal methods. For example, it can be prepared by an impregnation method, a dipping method, an ion exchange method, a coprecipitation method, a kneading method, etc. The raw material compounds for the various components constituting the catalyst include inorganic salts such as oxides, chlorides, nitrates, and carbonates; organic salts such as acetates, oxalates, acetylacetonate salts, dimethylglyoxime salts, and ethylenediamine acetate; Compounds commonly used in preparing noble metal catalysts can be used, such as salts or chelates, carbonyl compounds, cyclopentadienyl compounds, ammine complexes, metal alkoxide compounds, and alkyl metal compounds. The method for preparing the catalyst will be explained below by taking the impregnation method as an example. The above metal compound is dissolved in a solvent such as water, methanol, ethanol, tetrahydrofuran, dioxane, n-hexane, benzene, toluene, etc., a carrier is added to the solution, immersed, the solvent is distilled off, dried, and if necessary, heating etc. The metal compound is supported on the carrier. Supporting methods include preparing a mixed solution in which the raw material compounds are simultaneously dissolved in the same solvent and supporting them on the carrier at the same time, supporting each component on the carrier sequentially, or reducing each component as necessary. Various methods can be used, such as a method of supporting the material sequentially or stepwise while performing treatments such as heat treatment. Incidentally, as described above, the two catalysts are prepared separately using these methods. Other preparation methods, such as a method in which metals are supported by ion exchange using the ion exchange ability of a carrier, and a method in which a catalyst is prepared by a coprecipitation method, are also adopted as methods for preparing the catalyst used in the method of the present invention. can. The catalyst prepared by the above-mentioned method is usually activated by reduction treatment and then subjected to reaction. It is convenient and preferable to carry out the reduction using a hydrogen-containing gas at an elevated temperature. At this time, the reduction treatment can be carried out at the temperature at which rhodium is reduced, that is, about 100°C, but preferably the reduction treatment is carried out at a temperature of 200°C to 600°C. At this time, hydrogen reduction may be carried out while gradually or stepwise raising the temperature from a low temperature in order to sufficiently disperse each component of the catalyst. Further, reduction can also be carried out chemically using a reducing agent. For example, using carbon monoxide and water, hydrazine, borohydride compounds, hydrogenation,
Reduction treatment using a reducing agent such as an aluminum compound may be performed. The carrier used in the present invention preferably has a specific surface area of 10 to 1000 m 2 /g and a pore diameter of 10 Å or more, which is commonly known as a carrier. As a specific carrier,
Examples include silica-based carriers such as silica, silicates, silica gel, molecular sieves, and diatomaceous earth, alumina, and activated carbon, with silica-based carriers being preferred. In both catalysts (a) and (b), the concentration and composition ratio of each component in the catalyst can be varied within a wide range. In (a) to (b) catalysts, the ratio of rhodium to the carrier is 0.0001 by weight considering the specific surface area of the carrier.
-0.5, preferably 0.001-0.3. In addition, the ratio of cocatalyst metal to rhodium is determined by atomic ratio.
It ranges from 0.001 to 10, preferably from 0.01 to 5.
Furthermore, in the catalyst (c), the ratio of iron to the carrier is 0.0001 to 0.0001 by weight considering the specific surface area of the carrier.
0.5, preferably in the range of 0.001 to 0.3. The present invention can be applied to, for example, a fixed bed flow reactor. That is, a reactor is filled with a catalyst, and a raw material gas is introduced to cause a reaction.
It is also possible to separate the product and purify the unreacted raw material gas, which can then be recycled and reused. Further, the present invention can also be applied to a fluidized bed type reactor. That is, the reaction can also be carried out by bringing the raw material gas and the fluidized catalyst together. Furthermore, the present invention can also be applied to a liquid phase heterogeneous reaction in which a catalyst is dispersed in a solvent and a raw material gas is introduced to carry out the reaction. The conditions to be adopted in carrying out the present invention are:
It is selected by organically combining various reaction condition factors with the aim of producing an oxygen-containing compound containing ethanol as a main component with high yield and high selectivity.
Although the target compound can be produced with high selectivity and high yield even at normal pressure (ie, 0 kg/cm 2 gauge), the reaction can be carried out under pressure in order to increase the space-time yield. Therefore, the reaction pressure is 0Kg/cm 2 gauge ~ 350
Kg/cm 2 gauge, preferably 0Kg/cm 2 gauge ~ 250
Perform under pressure of Kg/cm 2 gauge. Reaction temperature is 150℃
-450°C, preferably 180°C - 350°C. When the reaction temperature is high, the amount of hydrocarbon by-product increases, so it is necessary to increase the feed rate of the raw material. Therefore, the space velocity (feeding amount of raw material gas × catalyst volume) is
10 h -1 to 10 6 h -1 in standard conditions (0°C, 1 atm)
It is selected as appropriate from the range of the relationship between the reaction pressure, reaction temperature, and raw material gas composition. The composition of the raw material gas is mainly a gas containing carbon monoxide and hydrogen, and inert gases such as nitrogen, argon, helium, and methane, or hydrocarbons and carbonic acid if they are in a gaseous state under the reaction conditions. It may contain gas or water. The mixing ratio of carbon monoxide and hydrogen is CO/ H2 ratio of 0.1 to 10, preferably 0.2 to 4 (volume ratio). The present invention will be explained in more detail below using Examples. Example 1 In an ethanol solution in which 0.480 g of rhodium chloride (RhCl 3 .3H 2 O) and 0.012 g of manganese chloride (MnCl 2 .4H 2 O) were dissolved, it was degassed by baking under high vacuum at 300°C for 2 hours. silica gel (Davison #57,
Davison) was added and immersed. Next, ethanol was distilled off to dryness using a rotary evaporator, and the mixture was further dried under vacuum. Thereafter, the Rh-
A Mn/SiO 2 catalyst was prepared. Next, 10 ml of calcined and degassed silica gel was added and immersed in an ethanol solution in which 0.240 g of ferric nitrate (Fe(NO 3 ) 3.9H 2 O) was dissolved. After ethanol was distilled off to dryness using a rotary evaporator, the mixture was further dried under vacuum. Thereafter, it was treated in air at 600°C for 2 hours.
Next, the mixture was filled into a Pyrex reaction tube and subjected to reduction treatment at 400° C. for 4 hours under hydrogen (60 ml/min) at normal pressure to prepare a Fe/SIO 2 catalyst. The Rh-Mn/SiO 2 catalyst (8 ml) and Fe/SiO 2 (5 ml) thus obtained were filled into a reaction tube (made of titanium) of a high-pressure flow reactor so as to form the upper and lower layers. Under normal pressure hydrogen gas flow (200ml/min),
After re-reduction treatment at 300°C for about 2 hours, a mixed gas of carbon monoxide and hydrogen was introduced to carry out the reaction under predetermined reaction conditions. For analysis of the reaction products, the liquid products were dissolved in water and collected, and the gaseous products were collected directly and subjected to gas chromatography analysis, qualitative and quantitative analysis, and the distribution of the products was determined. The results are shown in Table 1. Example 2 Rhodium chloride 0.480g, manganese chloride 0.012g,
After immersing an ethanol solution in which 0.033 g of lithium chloride (LiCl.H 2 O) was dissolved in 10 ml of silica gel that had been calcined at 300°C and degassed, Rh-Mn/SiO 2 of Example 1 was added.
Rh−Mn−Li/
A SiO catalyst was prepared. The Rh-Mn-Li-SiO 2 catalyst (8 ml) and the Fe/SiO 2 catalyst (5 ml) prepared in Example 1 were filled in the upper and lower layers of the reaction tube of a high-pressure flow reactor.
The activity test was conducted in the same manner as above. The results are shown in Table 1. Example 3 Rhodium chloride 0.480g, manganese chloride 0.012g,
An ethanol solution containing 0.193 g of iridium chloride (IrCl 4 H 2 O) was calcined at 300°C to form a degassed silica gel.
Immersed in 10ml. Rh-Mn-Ir/SiO 2 was prepared by the same treatment as the Rh-Mn/SiO 2 catalyst preparation method in Example 1.
A catalyst was prepared. The Rh-Mn-Ir/SiO 2 catalyst (7 ml) and the Fe/SiO 2 catalyst (5 ml) prepared in Example 1 were filled into the upper and lower layers of the reaction tube of a high-pressure flow reactor.
The activity test was conducted in the same manner as above. The results are shown in Table 1. Example 4 Rhodium chloride 0.480g, manganese chloride 0.012g,
Silica gel made by baking and degassing an ethanol solution of 0.386g of iridium chloride and 0.033g of lithium chloride at 300℃.
Immersed in 10ml. Rh-Mn- Ir-
A Li/SiO 2 catalyst was prepared. The Rh-Mn-Ir-Li/SiO 2 catalyst (7 ml) and the Fe/SiO 2 catalyst (5 ml) prepared in Example 1 were filled into the upper and lower layers of the reaction tube of a high-pressure flow reactor. Activity tests were conducted in a similar manner. The results are shown in Table 1. Comparative Example 1 Rh-Mn/SiO 2 catalyst prepared in Example 1 (10
ml) was filled into a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 2 The Rh-Mn-Li/SiO 2 catalyst (10 ml) prepared in Example 2 was filled into a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1.
The results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 ロジウム及びマンガンを担体担持してなる触
媒と、鉄を担体担持してなる触媒との存在下、一
酸化炭素と水素とを反応させることからなる、エ
タノールの製造方法。 2 ロジウム、マンガン、イリジウム及び/又は
リチウムを担体担持してなる触媒と、鉄を担体担
持してなる触媒との存在下、一酸化炭素と水素と
を反応させることからなる、エタノールの製造方
法。
[Claims] 1. A method for producing ethanol, which comprises reacting carbon monoxide and hydrogen in the presence of a catalyst comprising rhodium and manganese supported on a carrier and a catalyst comprising iron supported on a support. 2. A method for producing ethanol, which comprises reacting carbon monoxide and hydrogen in the presence of a catalyst comprising rhodium, manganese, iridium and/or lithium supported on a carrier, and a catalyst comprising iron supported on a support.
JP60017721A 1985-02-02 1985-02-02 Production of ethanol Granted JPS61191632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60017721A JPS61191632A (en) 1985-02-02 1985-02-02 Production of ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60017721A JPS61191632A (en) 1985-02-02 1985-02-02 Production of ethanol

Publications (2)

Publication Number Publication Date
JPS61191632A JPS61191632A (en) 1986-08-26
JPS6238333B2 true JPS6238333B2 (en) 1987-08-17

Family

ID=11951610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60017721A Granted JPS61191632A (en) 1985-02-02 1985-02-02 Production of ethanol

Country Status (1)

Country Link
JP (1) JPS61191632A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032732A (en) * 1983-08-03 1985-02-19 Agency Of Ind Science & Technol Production of oxygen-containing compound composed mainly of ethanol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032732A (en) * 1983-08-03 1985-02-19 Agency Of Ind Science & Technol Production of oxygen-containing compound composed mainly of ethanol

Also Published As

Publication number Publication date
JPS61191632A (en) 1986-08-26

Similar Documents

Publication Publication Date Title
JPS6049617B2 (en) Method for producing oxygenated compounds such as ethanol
JPS6341373B2 (en)
JPS6238335B2 (en)
JPS6238333B2 (en)
JPS63412B2 (en)
JPS63413B2 (en)
JPS6238334B2 (en)
JPS6353169B2 (en)
JPS6210486B2 (en)
JPS6119608B2 (en)
JPS6049615B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS6353168B2 (en)
JPS6238343B2 (en)
JPS6049616B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS6119611B2 (en)
JPS6238336B2 (en)
JPS643857B2 (en)
JPS6238337B2 (en)
JPS63416B2 (en)
JPS63414B2 (en)
JPS6238340B2 (en)
JPS6238339B2 (en)
JPS6238341B2 (en)
JPS6218530B2 (en)
JPS6119610B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term