JPS6353168B2 - - Google Patents

Info

Publication number
JPS6353168B2
JPS6353168B2 JP61307852A JP30785286A JPS6353168B2 JP S6353168 B2 JPS6353168 B2 JP S6353168B2 JP 61307852 A JP61307852 A JP 61307852A JP 30785286 A JP30785286 A JP 30785286A JP S6353168 B2 JPS6353168 B2 JP S6353168B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
sio
rhodium
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61307852A
Other languages
Japanese (ja)
Other versions
JPS63162637A (en
Inventor
Satoshi Arimitsu
Koichi Shikakura
Toshihiro Saito
Kazuaki Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61307852A priority Critical patent/JPS63162637A/en
Publication of JPS63162637A publication Critical patent/JPS63162637A/en
Publication of JPS6353168B2 publication Critical patent/JPS6353168B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエタノールの製造方法に関する。更に
詳しくは、(イ)ロジウム及び銅を担体担持してなる
触媒、(ロ)ロジウム、銅及びリチウム又はマンガン
を担体担持してなる触媒、(ハ)ロジウム、銅、マン
ガン、イリジウム及び/又はリチウムを担体担持
してなる触媒のいずれかと(ニ)銅、亜鉛及び/又は
クロムからなる触媒との存在下、一酸化炭素と水
素とを反応させることからなる、エタノールの製
造方法に関する。 〔従来の技術及び発明が解決しようとする問題
点〕 エタノール、アセトアルデヒド等の炭素数2の
含酸素化合物は従来ナフサを原料とする石油化学
的方法によつて製造されてきた。しかし、近年の
原油の急激な価格変動や供給不安、およびその資
源量の有限性を考慮すれば代替炭素資源の開発の
必要性が生じている。 一方、豊富で且つ安価に入手可能な一酸化炭素
及び水素の混合ガスより炭素数2の含酸素化合物
を製造する方法が種々検討されている。即ち、一
酸化炭素と水素の混合ガスを、ロジウムを主成分
とし、マンガン、チタン、ジルコニウム、タング
ステンなどの金属もしくは金属酸化物より成る触
媒の存在下に反応させて、炭素数2の含酸素化合
物を選択的に製造する方法は公知である。 しかしながら、かかる方法も副生する炭化水
素、例えばメタン等の量が多く、含酸素化合物の
選択率が低いものや含酸素化合物の選択率が高い
場合には主生成物の選択性が低いものであつた。
更に高価な貴金属であるロジウムあたりの目的化
合物の生成量がまだまだ少く、経済的にもプロセ
ス的にも完成された技術が提供されていないのが
実情である。 更に炭素数2の含酸素化合物を高収量で高選択
的に製造することを目的としたロジウムにマンガ
ンを添加した触媒及びその改良法(特開昭52―
14706、56―8333,56―8334号)が提案されてい
るが、いずれの方法もアセトアルデヒド、酢酸を
主生成物とするものであり、エタノールの収率、
選択性などは著しく低い欠点を有している。 最近、上述したアセトアルデヒドや酢酸製造用
触媒として知られているロジウム系触媒と鉄及
び/又はモリブデンとロジウム、パラジウム、イ
リジウムなどを含む触媒を組合わせることにより
エタノールを選択的に合成する方法(特開昭61―
178935、特開昭―61―191633、特開昭61―
191634、特開昭61―191635号)が見い出されてい
るが、エタノールの選択率は実用化プロセスとし
て満足できる結果ではない。 また、銅、ロジウム、アルカリ金属などを含む
5成分系からなる触媒を用いる合成ガスからのア
ルコール合成プロセス(USP4537909)が公知で
あるが、エタノール選択率は低く、メタノールや
プロパノールの副生割合が高い。 以上述べた如く、一酸化炭素及び水素を含有す
る気体よりエタノールを主成分とする含酸素化合
物を効率よく経済性よく製造する方法は提供され
ていない。 本発明者らは一酸化炭素及び水素を含有する気
体より、含酸素化合物を製造する際に、上記炭素
数2の含酸素化合物の選択を改良しつつ、該反応
より生成される炭素数2の含酸素化合物中の分布
をエタノールに移動させ、かつ炭化水素の生成を
最小とすることを可能にした触媒系を開示するも
のであり、多数の助触媒成分の組合せ試験につ
き、鋭意検討を重ねた結果、上記(イ),(ロ),(ハ)のい
ずれかの触媒と銅、亜鉛及び/又はクロムからな
る触媒とを組合わせることにより予期し得ない効
果が発現し、エタノールが好ましい収量と高選択
性で得られることを見い出し、本発明を完成する
に至つた。 〔問題点を解決するための手段〕 本発明は前記した如く(イ)〜(ハ)のいずれかの触媒
と、(ニ)の触媒との存在下、一酸化炭素及び水素を
反応させエタノールを製造するものである。 以下、本発明を順次詳述する。 本発明において用いられる触媒は前述の如く、
(イ)〜(ハ)のいずれかの触媒と、(ニ)の触媒とからなる
二者の触媒を主たる構成成分とする。両者の触媒
は各々別途に調製したものを使用することが必要
であり、使用に際しては混合あるいは(イ)〜(ハ)の触
媒を上層に(ニ)の触媒を下層に充填して使用するこ
とができる。触媒の調製にあたつては通常、貴金
属触媒において行われる如く、担持上に上記の成
分を分散させた触媒を用いる。 本発明において用いられる触媒は貴金属常法を
用いて調製することができる。例えば含浸法、浸
漬法、イオン交換法、共沈法、混練法等によつて
調製できる。 前記触媒を構成する諸成分の原料化合物として
は、酸化物、塩化物、硝酸塩、炭酸塩等の無機
塩、酢酸塩、シユウ酸塩、アセチルアセトナート
塩、ジメチルグリオキシム塩、エチレンジアミン
酢酸塩等有機塩又はキレート化物、カルボニル化
合物、シクロペンタジエニル化合物、アンミン錯
体、金属アルコキシド化合物、アルキル金属化合
物等、通常の貴金属触媒を調製する際に用いられ
る化合物を使用することができる。 以下に含浸法を例にとり触媒の調製法を説明す
る。 上記の金属化合物を水、メタノール、エタノー
ル、テトラヒドロフラン、ジオキサン、ヘキサ
ン、ベンゼン、トルエン等の溶媒に溶解し、その
溶液に担体を加え浸漬し、溶媒を留去、乾燥し、
必要とあれば加熱等の処理を行い、担体に金属化
合物を担持する。 担持の手法としては、原料化合物を同一溶媒に
同時に溶解した混合溶液を作り、担体に同時に担
持する方法、各成分を遂次的に担体に担持する方
法、あるいは各成分を必要に応じて還元、熱処理
等の処理を行いながら遂次的、段階的に担持する
方法などの各手法を用いることができる。尚、前
記した如く二者の触媒はそれぞれ別個にこれらの
手法を用いて調製する。 その他の調製法、例えば担体のイオン交換能を
利用したイオン交換によつて金属を担持する方
法、共沈法によつて触媒を調製する方法なども本
発明方法に用いられる触媒の調製手法として採用
できる。 上述の手法によつて調製された触媒は通常還元
処理を行うことにより活性化し次いで反応に供せ
られる。還元を行うには水素を含有する気体によ
り昇温下で行うことが簡便であつて好ましい。こ
の際還元温度として、ロジウムの還元される温
度、即ち100℃程度・温度条件下でも還元処理が
できるのであるが、好ましくは200℃〜600℃の温
度下で還元処理を行う。この際触媒の各成分の分
散を十分に行わせる目的で低温より徐々にあるい
は段階的に昇温しながら水素還元を行つてもよ
い。また還元剤を用いて、化学的に還元を行うこ
ともできる。たとえば、一酸化炭素と水を用いた
り、ヒドラジン、水素化ホウ素化合物、水素化ア
ルミニウム化合物などの還元剤を用いた還元処理
を行つてもよい。 本発明において用いられる担体は好ましくは比
表面積10〜1000m2/g、細孔径10Å以上を有する
ものであれば通常担体として知られているものを
使用することができる。具体的な担体としては、
シリカ、珪酸塩、シリカゲル、モレキユラーシー
ブ、ケイソウ土等のシリカ系担体、アルミナ、活
性炭などがあげられるがシリカ系の担体が好まし
い。(イ)〜(ハ)触媒いずれの場合も触媒中の各成分の
濃度と組成比は広い範囲でかえることができる。 ロジウムの担体に対するの比率は、担体の比表
面積を考慮して重量比で0.0001〜0.5、好ましく
は0.001〜0.3である。また、(イ)〜(ハ)の触媒におい
て、助触媒金属の比率はロジウムに対して原子比
で各々0.0001〜10、好ましくは0.005〜3の範囲
である。更に(ニ)触媒において、亜鉛及びクロムの
比率は銅に対し原子比で各々0.01〜50、好ましく
は0.1〜10の範囲である。(ニ)触媒は共沈法や担体
担持法により調製される。 本発明は、たとえば固定床の流通式反応装置に
適用することができる。すなわち反応器内に触媒
を充填し、原料ガスを送入して反応を行わせる。
又、(イ)〜(ハ)の触媒と(ニ)の触媒は、同一反応管に充
填しても又は別々の反応管に充填して結合しても
よい。生成物は分離し、未反応の原料ガスは精製
したのちに循環再使用することも可能である。 また、本発明は流動床式の反応装置にも適用で
きる。すなわち原料ガスと流動化した触媒を同伴
させて反応を行わせることもできる。更には本発
明は溶媒中に触媒を分散させ、原料ガスを送入し
反応を行うことからなる液相不均一反応にも適用
できる。 本発明を実施するに際しては採用される条件
は、エタノールを主成分とする含酸素化合物を高
収率・高選択率で製造することを目的として種々
の反応条件の因子を有機的に組合せて選択され
る。反応圧力は常圧(すなわち0Kg/cm2ゲージ)
でも当該目的化合物を高選択率・高収率で製造で
きるのであるが、空時収率を高める目的で加圧下
において反応を行うことができる。 従つて反応圧力としては0Kg/cm2ゲージ〜350
Kg/cm2ゲージ、好ましくは0Kg/cm2ゲージ〜250
Kg/cm2ゲージの圧力下で行う。反応温度は150℃
〜450℃、好ましくは180℃〜350℃である。反応
温度は触媒(イ)〜(ハ)と(ニ)で同一でもよいが、高いエ
タノール選択率および生成活性を得るために異な
る反応温度に設定することが好ましい。反応温度
が高い場合には、炭化水素の副生量が増加するた
め原料の送入速度を早くする必要がある。従つ
て、空間速度(原料ガス送入量×触媒容積)は、
標準状態(0℃、1気圧)換算で10h-1〜106h-1
の範囲より、反応圧力と反応温度、原料ガス組成
との関係より適宜選択される。 当該原料ガスの組成は、主として一酸化炭素と
水素を含有しているガスであつて、窒素、アルゴ
ン、ヘリウム、メタン等の不活性ガスあるいは反
応条件下において気体の状態であれば炭化水素や
炭酸ガスや水を含有していてもよい。一酸化炭素
と水素の混合比はCO/H2比で0.1〜10、好ましく
は0.2〜4(容積比)である。 以下実施例によつて本発明を更に詳細に説明す
る。尚、反応生成物の中で、炭酸ガスは経時的に
著しく減少することを認めたので、生成物選択率
の計算に際してその生成量を除外した。 実施例 1 塩化ロジウム(RhC13・3H2O)0.480g
(1.82mmol)、塩化第二銅(CuCl2・2H2O)0.006
g(0.037mmol)を溶解させたエタノール溶液中
に、予め300℃で2時間高真空下で焼成脱気した
シリカゲル(Davison#57,Davison社製)3.7g
(10ml)を加え浸漬した。次いでロータリーエバ
ポレーターを用いてエタノールを留去し乾固した
後、更に真空乾燥した。その後、パイレツクス反
応管に充填し、常圧で水素及び窒素の混合ガス
(H2:20ml/分,N2:20ml/分)の通気下、450
℃で4時間活性化処理を行い、Rh―Cu/SiO2
媒を調製した。次いで、硝酸銅(Cu(NO32
3H3O)0.895g、硝酸亜鉛(Zn(NO32・6H2O)
1.085gを溶解させた水溶液中に焼成脱気したシ
リカゲル3.7g(10ml)を加え浸漬した。上記と
同様の方法で乾燥した後、空気中350℃で3時間
焼成した。その後、常圧で水素及び窒素の混合ガ
ス(H2:2ml/分,N2:50ml/分)の通気下、
350℃で3時間活性化処理を行い、Cu―Zu/SiO2
触媒を調製した。このようにして得られたRh―
Cu/SiO2触媒(触媒2ml)、Cu―Zn/SiO2触媒
(0.5ml)を高圧流通式反応装置の反応管(チタン
製)に上層、下層になる様に充填し、常圧水素ガ
スの流通下(200ml/分)、200℃で2時間程度再
還元処理した後、一酸化炭素と水素の混合ガスを
送入し、所定の反応条件下で反応を行つた。反応
生成物の分析は、液状生成物については水に溶解
し捕集し、気体生成物については直接ガス採取
し、ガスクロ分析を行い、定性及び定量分析し、
生成物の分布を求めた。結果を表1に示した。 実施例 2 塩化ロジウム0.480g、塩化第二銅0.006g、塩
化リチウム(LiCl・H2O)0.022gを溶解させた
エタノール溶液及び硝酸塩銅1.763g、硝酸クロ
ム(Cr(NO3)・9H2O)2.189gを溶解させたエタ
ノール溶液を300℃焼成脱気したシリカゲル10ml
に各々の溶液を浸漬した後、実施例1と同様の処
理によりRh―Cu―Li/SiO2,Cu―Cr/SiO2
媒を調製した。Rh―Cu―Li/SiO2触媒(2ml)、
Cu―Cr/SiO2触媒(0.5ml)を高圧流通式反応装
置の反応管に上層、下層に充填し、実施例1と同
様の方法で活性試験を行つた。結果を表1に示し
た。 実施例 3 塩化ロジウム0.480g、塩化第二銅0.006g、塩
化マンガン(MnCl2・4H2O)0.018gを溶解させ
たエタノール溶液を300℃焼成脱気したシリカ10
mlに浸漬した。他方、硝酸銅1.763g、硝亜鉛
1.085gを溶解させた水溶液を300℃焼成脱気した
シリカ10mlに浸漬した。各々を実施例1と同様の
処理により、Rh―Cu―Mn/SiO2,Cu―Zu/
SiO2を調製した。Rn―Cu―Mn/SiO2触媒(2
ml)とCu―Zu/SiO2(3ml)を高圧流通式反応装
置の反応管に上層、下層に充填し、実施例1と同
様の方法で活性試験を行つた。結果を表1に示し
た。 実施例 4 塩化ロジウム0.480g、塩化第二銅0.006g、塩
化マンガン0.011g、塩化リチウム0.033gを溶解
させたエタノール溶液を300℃焼成脱気したシリ
カゲル10mlに浸漬した後、実施例1と同様の処理
により、Rh―Cu―Mn―Li/SiO2触媒を調製し
た。Rh―Cu―Mn―Li/SiO2触媒(2ml)、実施
例3で調製したCu―Zu/SiO2触媒(3ml)を高
圧流通式反応装置の反応管に上層、下層に充填
し、Rh―Cu―Mn―Li触媒の反応温度を265℃、
Cu―Zu触媒の反応温度を275℃に設定し、実施例
1と同様の方法で活性試験を行つた。結果を表1
に示した。 実施例 5 実施例4で調製したRh―Cu―Mn―Li/SiO2
触媒(2ml)と実施例2で調製したCn―Zn/
SiO2触媒(3ml)を高圧流通式反応装置の反応
管に上層、下層に充填し、実施例1と同様の方法
で活性試験を行つた。結果を表1に示した。 実施例 6 塩化ロジウム0.480g、塩化第二銅0.006g、塩
化マンガン0.011g、塩化イリジウム(IrCl4
H2O)0.064g、塩化リチウム0.033gを溶解させ
たエタノール溶液を300℃焼成脱気したシリカゲ
ル10mlに浸漬した。他方、硝酸銅1.763g、硝酸
亜鉛1.085g、硝酸クロム1.460gを溶解させた水
溶液をシリカ10mlに浸漬した。実施例1と同様の
処理によりRh―Cu―Mn―Ir―Li/SiO2,Cu―
Zn―Cr―SiO2触媒を調製した。Rh―Cu―Mn―
Ir―Li/SiO2触媒(2ml)とCu―Zn―Cr/SiO2
触媒(3ml)を高圧流通式反応装置の反応管に上
層、下層に充填し実施例1と同様の方法で活性試
験を行つた。結果を表1に示した。 比較例 1 実施例1で調製したRh―Cu/SiO2触媒(2
ml)を高圧流通式反応装置の反応管に充填し、実
施例1と同様の方法で活性試験を行つた。結果を
表1に示した。 比較例 2 実施例2で調製したRh―Cu―Li/SiO2触媒
(2ml)を高圧流通式反応装置の反応管に充填し、
実施例1と同様の方法で活性試験を行つた。結果
を表1に示した。 比較例 3 実施例4で調製したRh―Cu―Mn―Li/SiO2
触媒(2ml)を高圧流通式反応装置の反応管に充
填し、実施例1と同様の方法で活性試験を行つ
た。結果を表1に示した。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing ethanol. More specifically, (a) a catalyst comprising rhodium and copper supported on a carrier, (rho) a catalyst comprising rhodium, copper and lithium or manganese supported on a support, and (c) rhodium, copper, manganese, iridium and/or lithium. This invention relates to a method for producing ethanol, which comprises reacting carbon monoxide and hydrogen in the presence of any of the catalysts supported on a carrier and (iv) a catalyst consisting of copper, zinc and/or chromium. [Prior Art and Problems to be Solved by the Invention] Oxygen-containing compounds having two carbon atoms, such as ethanol and acetaldehyde, have conventionally been produced by a petrochemical method using naphtha as a raw material. However, considering the rapid price fluctuations and supply instability of crude oil in recent years, and the limited amount of crude oil resources, there is a need to develop alternative carbon resources. On the other hand, various methods of producing an oxygen-containing compound having 2 carbon atoms from a mixed gas of carbon monoxide and hydrogen, which is available in abundance and at low cost, have been studied. That is, by reacting a mixed gas of carbon monoxide and hydrogen in the presence of a catalyst containing rhodium as a main component and consisting of a metal or metal oxide such as manganese, titanium, zirconium, or tungsten, an oxygen-containing compound having two carbon atoms is produced. Methods for selectively producing are known. However, this method also produces a large amount of by-product hydrocarbons such as methane, and when the selectivity of oxygen-containing compounds is low or the selectivity of oxygen-containing compounds is high, the selectivity of the main product is low. It was hot.
The reality is that the amount of the target compound produced based on rhodium, which is an expensive noble metal, is still small, and a technology that has been completed economically and process-wise has not been provided. Furthermore, a catalyst in which manganese is added to rhodium and an improved method thereof (Japanese Patent Application Laid-Open No. 1989-1999
No. 14706, No. 56-8333, No. 56-8334) have been proposed, but all of these methods mainly produce acetaldehyde and acetic acid, and the yield of ethanol and
It has the disadvantage of extremely low selectivity. Recently, a method for selectively synthesizing ethanol by combining the above-mentioned rhodium-based catalyst known as a catalyst for producing acetaldehyde and acetic acid with a catalyst containing iron and/or molybdenum and rhodium, palladium, iridium, etc. Showa 61-
178935, JP-A-61-191633, JP-A-61-
191634, JP-A-61-191635), the selectivity of ethanol is not a satisfactory result for a practical process. In addition, an alcohol synthesis process from synthesis gas using a five-component catalyst containing copper, rhodium, alkali metals, etc. is known (USP4537909), but the ethanol selectivity is low and the by-product ratio of methanol and propanol is high. . As described above, no method has been provided for efficiently and economically producing an oxygen-containing compound containing ethanol as a main component from a gas containing carbon monoxide and hydrogen. When producing an oxygen-containing compound from a gas containing carbon monoxide and hydrogen, the present inventors have improved the selection of the above-mentioned oxygen-containing compound having 2 carbon atoms and This paper discloses a catalyst system that makes it possible to shift the distribution of oxygen-containing compounds to ethanol and minimize the production of hydrocarbons, and has conducted intensive studies on combination tests of numerous co-catalyst components. As a result, by combining any of the catalysts (a), (b), and (c) above with a catalyst consisting of copper, zinc, and/or chromium, an unexpected effect appears, and ethanol has a preferable yield. The present inventors have discovered that it can be obtained with high selectivity and have completed the present invention. [Means for Solving the Problems] As described above, the present invention involves reacting carbon monoxide and hydrogen in the presence of any one of the catalysts (a) to (c) and the catalyst (d) to produce ethanol. It is manufactured. The present invention will be explained in detail below. As mentioned above, the catalyst used in the present invention is
Two catalysts consisting of one of the catalysts (a) to (c) and the catalyst (d) are the main constituents. Both catalysts must be prepared separately, and when used, they should be mixed or used by filling the catalysts (a) to (c) in the upper layer and the catalyst in (d) in the lower layer. I can do it. In the preparation of the catalyst, a catalyst in which the above-mentioned components are dispersed on a support is usually used, as is done for noble metal catalysts. The catalyst used in the present invention can be prepared using conventional noble metal methods. For example, it can be prepared by an impregnation method, a dipping method, an ion exchange method, a coprecipitation method, a kneading method, etc. The raw material compounds for the various components constituting the catalyst include inorganic salts such as oxides, chlorides, nitrates, and carbonates; organic salts such as acetates, oxalates, acetylacetonate salts, dimethylglyoxime salts, and ethylenediamine acetate; Compounds commonly used in preparing noble metal catalysts can be used, such as salts or chelates, carbonyl compounds, cyclopentadienyl compounds, ammine complexes, metal alkoxide compounds, and alkyl metal compounds. The method for preparing the catalyst will be explained below using the impregnation method as an example. The above metal compound is dissolved in a solvent such as water, methanol, ethanol, tetrahydrofuran, dioxane, hexane, benzene, toluene, etc., a carrier is added and immersed in the solution, the solvent is distilled off, and the mixture is dried.
If necessary, treatment such as heating is performed to support the metal compound on the carrier. Supporting methods include preparing a mixed solution in which the raw material compounds are simultaneously dissolved in the same solvent and supporting them on the carrier at the same time, supporting each component on the carrier sequentially, or reducing each component as necessary. Various methods can be used, such as a method of supporting the material sequentially or stepwise while performing treatments such as heat treatment. Incidentally, as described above, the two catalysts are prepared separately using these methods. Other preparation methods, such as a method in which metals are supported by ion exchange using the ion exchange ability of a carrier, and a method in which a catalyst is prepared by a coprecipitation method, are also adopted as methods for preparing the catalyst used in the method of the present invention. can. The catalyst prepared by the above-mentioned method is usually activated by reduction treatment and then subjected to reaction. It is convenient and preferable to carry out the reduction using a hydrogen-containing gas at an elevated temperature. At this time, the reduction treatment can be carried out at the temperature at which rhodium is reduced, that is, about 100°C, but preferably the reduction treatment is carried out at a temperature of 200°C to 600°C. At this time, hydrogen reduction may be carried out while raising the temperature gradually or stepwise from a low temperature in order to sufficiently disperse each component of the catalyst. Further, reduction can also be carried out chemically using a reducing agent. For example, reduction treatment may be performed using carbon monoxide and water, or using a reducing agent such as hydrazine, a borohydride compound, or an aluminum hydride compound. The carrier used in the present invention preferably has a specific surface area of 10 to 1000 m 2 /g and a pore diameter of 10 Å or more, which is commonly known as a carrier. As a specific carrier,
Examples include silica-based carriers such as silica, silicates, silica gel, molecular sieves, and diatomaceous earth, alumina, and activated carbon, with silica-based carriers being preferred. In any of the catalysts (a) to (c), the concentration and composition ratio of each component in the catalyst can be varied within a wide range. The ratio of rhodium to the carrier is 0.0001 to 0.5, preferably 0.001 to 0.3 by weight, taking into account the specific surface area of the carrier. Further, in the catalysts (a) to (c), the ratio of the promoter metal to rhodium is in the range of 0.0001 to 10, preferably 0.005 to 3, respectively, in terms of atomic ratio. Furthermore, in the catalyst (d), the ratio of zinc and chromium to copper is each in the range of 0.01 to 50, preferably 0.1 to 10, in terms of atomic ratio. (d) The catalyst is prepared by coprecipitation method or carrier loading method. The present invention can be applied to, for example, a fixed bed flow reactor. That is, a reactor is filled with a catalyst, and a raw material gas is introduced to cause a reaction.
Further, the catalysts (a) to (c) and the catalyst (d) may be packed in the same reaction tube or may be packed in separate reaction tubes and combined. It is also possible to separate the product and purify the unreacted raw material gas, which can then be recycled and reused. Further, the present invention can also be applied to a fluidized bed type reactor. That is, the reaction can also be carried out by bringing the raw material gas and the fluidized catalyst together. Furthermore, the present invention can also be applied to a liquid phase heterogeneous reaction in which a catalyst is dispersed in a solvent and a raw material gas is introduced to carry out the reaction. The conditions adopted in carrying out the present invention are selected by organically combining various reaction condition factors with the aim of producing oxygen-containing compounds containing ethanol as the main component with high yield and high selectivity. be done. The reaction pressure is normal pressure (i.e. 0Kg/cm 2 gauge)
However, the target compound can be produced with high selectivity and high yield, but the reaction can be carried out under pressure in order to increase the space-time yield. Therefore, the reaction pressure is 0Kg/cm 2 gauge ~ 350
Kg/cm 2 gauge, preferably 0Kg/cm 2 gauge ~ 250
Perform under pressure of Kg/cm 2 gauge. Reaction temperature is 150℃
-450°C, preferably 180°C - 350°C. Although the reaction temperature may be the same for catalysts (a) to (c) and (d), it is preferable to set them to different reaction temperatures in order to obtain high ethanol selectivity and production activity. When the reaction temperature is high, the amount of hydrocarbon by-product increases, so it is necessary to increase the feed rate of the raw material. Therefore, the space velocity (raw material gas feed rate x catalyst volume) is:
10 h -1 to 10 6 h -1 in standard conditions (0°C, 1 atm)
It is selected as appropriate from the range of the relationship between the reaction pressure, reaction temperature, and raw material gas composition. The composition of the raw material gas is mainly a gas containing carbon monoxide and hydrogen, and inert gases such as nitrogen, argon, helium, and methane, or hydrocarbons and carbonic acid if they are in a gaseous state under the reaction conditions. It may contain gas or water. The mixing ratio of carbon monoxide and hydrogen is CO/ H2 ratio of 0.1 to 10, preferably 0.2 to 4 (volume ratio). The present invention will be explained in more detail below using Examples. It should be noted that among the reaction products, it was recognized that carbon dioxide gas decreased significantly over time, so the amount of carbon dioxide gas produced was excluded when calculating the product selectivity. Example 1 Rhodium chloride (RhC1 3.3H 2 O) 0.480g
(1.82mmol), cupric chloride (CuCl 2 2H 2 O) 0.006
3.7 g of silica gel (Davison #57, manufactured by Davison), which had been previously calcined and degassed under high vacuum at 300°C for 2 hours in an ethanol solution in which 0.037 mmol of silica gel was dissolved
(10 ml) was added and immersed. Next, ethanol was distilled off using a rotary evaporator to dryness, followed by further vacuum drying. After that, it was filled into a Pyrex reaction tube and heated at 450 mL under atmospheric pressure with a mixed gas of hydrogen and nitrogen (H 2 : 20 ml/min, N 2 : 20 ml/min).
Activation treatment was performed at ℃ for 4 hours to prepare a Rh-Cu/SiO 2 catalyst. Next, copper nitrate (Cu(NO 3 ) 2 .
3H 3 O) 0.895g, zinc nitrate (Zn(NO 3 ) 2・6H 2 O)
3.7 g (10 ml) of calcined and degassed silica gel was added and immersed in an aqueous solution in which 1.085 g of silica gel was dissolved. After drying in the same manner as above, it was fired in air at 350°C for 3 hours. Then, under atmospheric pressure and aeration with a mixed gas of hydrogen and nitrogen (H 2 : 2 ml/min, N 2 : 50 ml/min),
After activation treatment at 350℃ for 3 hours, Cu-Zu/SiO 2
A catalyst was prepared. Rh obtained in this way
Cu/SiO 2 catalyst (catalyst 2 ml) and Cu-Zn/SiO 2 catalyst (0.5 ml) were filled into the reaction tube (made of titanium) of a high-pressure flow reactor so as to form the upper and lower layers, and the mixture was heated with atmospheric hydrogen gas. After re-reduction treatment at 200° C. for about 2 hours under flow (200 ml/min), a mixed gas of carbon monoxide and hydrogen was introduced to carry out the reaction under predetermined reaction conditions. For analysis of reaction products, liquid products are dissolved in water and collected, gaseous products are directly collected, gas chromatography is performed, qualitative and quantitative analysis is carried out,
The product distribution was determined. The results are shown in Table 1. Example 2 An ethanol solution containing 0.480 g of rhodium chloride, 0.006 g of cupric chloride, and 0.022 g of lithium chloride (LiCl・H 2 O), 1.763 g of copper nitrate, and chromium nitrate (Cr(NO 3 )・9H 2 O) ) 10ml of silica gel in which 2.189g of ethanol solution was calcined at 300℃ and degassed.
After immersing each solution in the solution, Rh-Cu-Li/SiO 2 and Cu-Cr/SiO 2 catalysts were prepared in the same manner as in Example 1. Rh-Cu-Li/SiO 2 catalyst (2ml),
A reaction tube of a high-pressure flow reactor was filled with Cu-Cr/SiO 2 catalyst (0.5 ml) in the upper and lower layers, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. Example 3 Silica 10 was prepared by baking and degassing an ethanol solution containing 0.480 g of rhodium chloride, 0.006 g of cupric chloride, and 0.018 g of manganese chloride (MnCl 2 4H 2 O) at 300°C.
immersed in ml. On the other hand, copper nitrate 1.763g, zinc nitrate
An aqueous solution in which 1.085 g was dissolved was immersed in 10 ml of degassed silica calcined at 300°C. Rh-Cu-Mn/SiO 2 , Cu-Zu/
SiO2 was prepared. Rn-Cu-Mn/SiO 2 catalyst (2
ml) and Cu-Zu/SiO 2 (3 ml) were filled into the upper and lower layers of a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. Example 4 An ethanol solution containing 0.480 g of rhodium chloride, 0.006 g of cupric chloride, 0.011 g of manganese chloride, and 0.033 g of lithium chloride was immersed in 10 ml of silica gel that had been calcined at 300°C and degassed. Through the treatment, Rh-Cu-Mn-Li/SiO 2 catalyst was prepared. Rh--Cu--Mn--Li/SiO 2 catalyst (2 ml) and Cu--Zu/SiO 2 catalyst (3 ml) prepared in Example 3 were filled into the upper and lower layers of the reaction tube of a high-pressure flow reactor. The reaction temperature of Cu-Mn-Li catalyst is 265℃,
The reaction temperature of the Cu--Zu catalyst was set at 275°C, and an activity test was conducted in the same manner as in Example 1. Table 1 shows the results.
It was shown to. Example 5 Rh-Cu-Mn-Li/SiO 2 prepared in Example 4
Catalyst (2 ml) and Cn-Zn/ prepared in Example 2
SiO 2 catalyst (3 ml) was filled in the upper and lower layers of a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. Example 6 Rhodium chloride 0.480g, cupric chloride 0.006g, manganese chloride 0.011g, iridium chloride ( IrCl4 .
An ethanol solution in which 0.064 g of H 2 O) and 0.033 g of lithium chloride were dissolved was immersed in 10 ml of silica gel that had been calcined at 300°C and degassed. On the other hand, 10 ml of silica was immersed in an aqueous solution in which 1.763 g of copper nitrate, 1.085 g of zinc nitrate, and 1.460 g of chromium nitrate were dissolved. Rh-Cu-Mn-Ir-Li/SiO 2 , Cu-
A Zn-Cr- SiO2 catalyst was prepared. Rh―Cu―Mn―
Ir-Li/SiO 2 catalyst (2 ml) and Cu-Zn-Cr/SiO 2
The catalyst (3 ml) was filled in the upper and lower layers of a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 1 Rh-Cu/SiO 2 catalyst prepared in Example 1 (2
ml) was filled into a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 2 The Rh-Cu-Li/SiO 2 catalyst (2 ml) prepared in Example 2 was filled into a reaction tube of a high-pressure flow reactor.
An activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 3 Rh-Cu-Mn-Li/SiO 2 prepared in Example 4
A reaction tube of a high-pressure flow reactor was filled with the catalyst (2 ml), and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 ロジウム及び銅を担体担持してなる触媒と、
銅、亜鉛及び/又はクロムからなる触媒との存在
下、一酸化炭素と水素とを反応させることからな
る、エタノールの製造法。 2 ロジウム、銅及びリチウム又はマンガンを担
体担持してなる触媒と、銅、亜鉛及び/又はクロ
ムからなる触媒との存在下、一酸化炭素と水素と
を反応させることからなる、エタノールの製造
法。 3 ロジウム、銅、マンガン、イリジウム及び/
又はリチウムを担体担持してなる触媒と、銅、亜
鉛及び/又はクロムからなる触媒の存在下、一酸
化炭素と水素とを反応させることからなる、エタ
ノールの製造法。
[Claims] 1. A catalyst comprising rhodium and copper supported on a carrier;
A process for the production of ethanol, comprising reacting carbon monoxide and hydrogen in the presence of a catalyst consisting of copper, zinc and/or chromium. 2. A method for producing ethanol, which comprises reacting carbon monoxide and hydrogen in the presence of a catalyst comprising rhodium, copper and lithium or manganese supported on a carrier, and a catalyst comprising copper, zinc and/or chromium. 3 Rhodium, copper, manganese, iridium and/or
Or a method for producing ethanol, which comprises reacting carbon monoxide and hydrogen in the presence of a catalyst comprising lithium supported on a carrier and a catalyst comprising copper, zinc and/or chromium.
JP61307852A 1986-12-25 1986-12-25 Production of ethanol Granted JPS63162637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61307852A JPS63162637A (en) 1986-12-25 1986-12-25 Production of ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61307852A JPS63162637A (en) 1986-12-25 1986-12-25 Production of ethanol

Publications (2)

Publication Number Publication Date
JPS63162637A JPS63162637A (en) 1988-07-06
JPS6353168B2 true JPS6353168B2 (en) 1988-10-21

Family

ID=17973952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61307852A Granted JPS63162637A (en) 1986-12-25 1986-12-25 Production of ethanol

Country Status (1)

Country Link
JP (1) JPS63162637A (en)

Also Published As

Publication number Publication date
JPS63162637A (en) 1988-07-06

Similar Documents

Publication Publication Date Title
JPS6049617B2 (en) Method for producing oxygenated compounds such as ethanol
JPS6341373B2 (en)
JPS63412B2 (en)
JPS6353168B2 (en)
JPS6353169B2 (en)
JPS6119608B2 (en)
JPS643857B2 (en)
JPS6238335B2 (en)
JPS63413B2 (en)
JPS63414B2 (en)
JPS6238333B2 (en)
JPS63416B2 (en)
JPS6210486B2 (en)
JPS6238343B2 (en)
JPS6119611B2 (en)
JPS6238334B2 (en)
JPS6238336B2 (en)
JPS6049616B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS6238337B2 (en)
JPS6049615B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS6238340B2 (en)
JPS6238339B2 (en)
JPS6238341B2 (en)
JPS63415B2 (en)
JPS6218530B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term