JPS63413B2 - - Google Patents

Info

Publication number
JPS63413B2
JPS63413B2 JP60197790A JP19779085A JPS63413B2 JP S63413 B2 JPS63413 B2 JP S63413B2 JP 60197790 A JP60197790 A JP 60197790A JP 19779085 A JP19779085 A JP 19779085A JP S63413 B2 JPS63413 B2 JP S63413B2
Authority
JP
Japan
Prior art keywords
catalyst
carrier
rhodium
sio
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60197790A
Other languages
Japanese (ja)
Other versions
JPS6259228A (en
Inventor
Satoshi Arimitsu
Katsumi Yanagi
Hitomi Hosono
Toshihiro Saito
Kazuaki Tanaka
Kazuo Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60197790A priority Critical patent/JPS6259228A/en
Publication of JPS6259228A publication Critical patent/JPS6259228A/en
Publication of JPS63413B2 publication Critical patent/JPS63413B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はエタノールの製造方法に関する。更に
詳しくは、(イ)ロジウムを担体担持してなる触媒、
(ロ)ロジウム及びリチウム又はマンガンを担体担持
してなる触媒、(ハ)ロジウム、マンガン、イリジウ
ム及び/又はリチウムを担体担持してなる触媒の
いずれかと、(ニ)銅触媒との存在下、一酸化炭素と
水素とを反応させ、エタノールを製造する方法に
関する。 〔従来の技術及び発明が解決しようとする問題
点〕 エタノール、アセトアルデヒド等の炭素数2の
含酸素化合物は従来ナフサを原料とする石油化学
的方法によつて製造されてきた。しかし、近年の
原油の高騰により、製造価格の著しい上昇が起こ
り、原料転換の必要性が生じている。 一方、豊富で且つ安価に入手可能な一酸化炭素
及び水素の混合ガスより炭素数2の含酸素化合物
を製造する方法が種々検討されている。即ち、一
酸化炭素と水素の混合ガスを、ロジウムを主成分
とし、マンガン、チタン、ジルコニウム、タング
ステンなどの金属もしくは金属酸化物より成る触
媒の存在下に反応させて、炭素数2の含酸素化合
物を選択的に製造する方法は公知である。 しかしながら、かかる方法も副生する炭化水
素、例えばメタン等の量が多く、含酸素化合物の
選択率が低いものや含酸素化合物の選択率が高い
場合には主生成物の選択性が低いものであつた。
更に高価な貴金属であるロジウムあたりの目的化
合物の生成量がまだまだ少く、経済的にもプロセ
ス的にも完成された技術が提供されていないのが
実情である。 更に炭素数2の含酸素化合物を高収量で高選択
的に製造することを目的としたロジウムにマンガ
ンを添加した触媒及びその改良法(特開昭52−
14706、56−8333、56−8334号)が提案されてい
るが、いずれの方法もアセトアルデヒド、酢酸を
主生成物とするものであり、エタノールの収率、
選択性などは著しく低い欠点を有している。 以上述べた如く、一酸化炭素及び水素を含有す
る気体よりエタノールを主成分とする含酸素化合
物を効率よく経済性よく製造する方法は提供され
ていない。 本発明者らはエタノールを選択的に製造する方
法について鋭意検討を重ねた結果、前述した如く
アセトアルデヒドや酢酸の製造用触媒として知ら
れていたロジウム系触媒と銅触媒とを組合わせる
ことによりエタノールを高選択的に製造できるこ
とを見出し本発明を完成した。 〔問題点を解決するための手段〕 本発明は前記した如く(イ)〜(ハ)のいずれかの触媒
と、(ニ)の触媒との存在下、一酸化炭素及び水素を
反応させエタノールを製造するものである。 以下、本発明を順次詳述する。 本発明において用いられる触媒は前述の如く、
(イ)〜(ハ)のいずれかの触媒と、(ニ)の触媒とからなる
二者の触媒を主たる構成成分とする。両者の触媒
は各々別途に調製したものを使用することが必要
であり、使用に際しては混合あるいは(イ)〜(ハ)のい
ずれかの触媒を上層に(ニ)の触媒を下層に充填して
使用することができる。触媒の調製にあたつては
通常、貴金属触媒において行われる如く、担体上
に上記の成分を分散させた触媒を用いる。 本発明において用いられる触媒は貴金属常法を
用いて調製することができる。例えば含浸法、浸
漬法、イオン交換法、共沈法、混練法等によつて
調製できる。 前記触媒を構成する諸成分の原料化合物として
は、酸化物、塩化物、硝酸塩、炭酸塩等の無機
塩、酢酸塩、シユウ酸塩、アセチルアセトナート
塩、ジメチルグリオキシム塩、エチレンジアミン
酢酸塩等有機塩又はキレート化物、カルボニル化
合物、シクロペンタジエニル化合物、アンミン錯
体、金属アルコキシド化合物、アルキル金属化合
物等通常貴金属触媒を調製する際に用いられる化
合物を使用することができる。 以下に含浸法に例をとり触媒の調製法を説明す
る。 上記の金属化合物を水、メタノール、エタノー
ル、テトラヒドロフラン、ジオキサン、ヘキサ
ン、ベンゼン、トルエン等の溶媒に溶解し、その
溶液に担体を加え浸漬し、溶媒を留去、乾燥し、
必要とあれば加熱等の処理を行い、担体に金属化
合物を担持する。 担持の手法としては、原料化合物を同一溶媒に
同時に溶解した混合溶液を作り、担体に同時に担
持する方法、各成分を遂次的に担体に担持する方
法、あるいは各成分を必要に応じて還元、熱処理
等の処理を行いながら遂次的、段階的に担持する
方法などの各手法を用いることができる。尚、前
記した如く二者の触媒はそれぞれ別個にこれらの
手法を用いて調製する。 その他の調製法、例えば担体のイオン交換能を
利用したイオン交換によつて金属を担持する方
法、共沈法によつて触媒を調製する方法なども本
発明方法に用いられる触媒の調製手法として採用
できる。 上述の手法によつて調製された触媒は通常還元
処理を行うことにより活性化し次いで反応に供せ
られる。還元を行うには水素を含有する気体によ
り昇温下で行うことが簡便であつて好ましい。こ
の際還元温度として、ロジウムの還元される温
度、即ち100℃程度の温度条件下でも還元処理が
できるのであるが、好ましくは200℃〜600℃の温
度下で還元処理を行う。この際触媒の各成分の分
散を十分に行わせる目的で低温より徐々にあるい
は段階的に昇温しながら水素還元を行つてもよ
い。また還元剤を用いて、化学的に還元を行うこ
ともできる。たとえば、一酸化炭素と水を用いた
り、ヒドラジン、水素化ホウ素化合物、水素化ア
ルミニウム化合物などの還元剤を用いた還元処理
を行つてもよい。 本発明において用いられる担体は好ましくは比
表面積10〜1000m2/g、細孔径10Å以上を有する
ものであれば通常担体として知られているものを
使用することができる。具体的な担体としては、
シリカ、珪酸塩、シリカゲル、モレキユラーシー
ブ、ケイソウ土等のシリカ系担体、アルミナ、活
性炭などがあげられるがシリカ系の担体が好まし
い。(イ)〜(ハ)触媒いずれの場合も触媒中の各成分の
濃度と組成比は広い範囲でかえることができる。 (イ)〜(ハ)触媒においてロジウムの担体に対するの
比率は、担体の比表面積を考慮して重量比で
0.0001〜0.5、好ましくは0.001〜0.3である。ま
た、助触媒金属の比率はロジウムに対して原子比
で各々0.001〜10、好ましくは0.01〜5の範囲で
ある。更に(ニ)触媒において、銅は多孔性の塊状の
ものや担体に担体したものが使用できる。担持触
媒では銅の担体に対する比率は担体の比表面積を
考慮して重量比で0.0001〜0.5、好ましくは0.0001
〜0.3の範囲である。 本発明は、たとえば固定床の流通式反応装置に
適用することができる。すなわち反応器内に触媒
を充填し、原料ガスを送入して反応を行わせる。
生成物は分離し、未反応の原料ガスは精製したの
ちに循環再使用することも可能である。 また、本発明は流動床式の反応装置にも適用で
きる。すなわち原料ガスと流動化した触媒を同伴
させて反応を行わせることもできる。更には本発
明は溶媒中に触媒を分散させ、原料ガスを送入し
反応を行うことからなる液相不均一反応にも適用
できる。 本発明を実施するに際して採用される条件は、
エタノールを主成分とする含酸素化合物を高収
率・高選択率で製造することを目的として種々の
反応条件の因子を有機的に組合せて選択される。
反応圧力は常圧(すなわち0Kg/cm2ゲージ)でも
当該目的化合物を高選択率・高収率で製造できる
のであるが、空時収率を高める目的で加圧下にお
いて反応を行うことができる。 従つて反応圧力としては0Kg/cm2ゲージ〜350
Kg/cm2ゲージ、好ましくは0Kg/cm2ゲージ〜250
Kg/cm2ゲージの圧力下で行う。反応温度は150℃
〜450℃、好ましくは180℃〜350℃である。反応
温度が高い場合には、炭化水素の副生量が増加す
るため原料の送入速度を早くする必要がある。従
つて、空間速度(原料ガス送入量×触媒容積)
は、標準状態(0℃、1気圧)換算で10h-1
106h-1の範囲より、反応圧力と反応温度、原料ガ
ス組成との関係より適宜選択される。 当該原料ガスの組成は、主として一酸化炭素と
水素を含有しているガスであつて、窒素、アルゴ
ン、ヘリウム、メタン等の不活性ガスあるいは反
応条件下において気体の状態であれば炭化水素や
炭酸ガスや水を含有していてもよい。一酸化炭素
と水素の混合比はCO/H2比で0.1〜10、好ましく
は0.2〜4(容積比)である。 以下実施例によつて本発明を更に詳細に説明す
る。 実施例 1 塩化ロジウム(RhCl3・3H2O)0.480g(1.82
mmol)を溶解させたエタノール溶液中に、予め
300℃で2時間高真空下で焼成脱気したシリカゲ
ル(Davison#57、Davison社製)3.7g(10ml)
を加え浸漬した。次いでロータリーエバポレータ
ーを用いてエタノールを留去し乾固した後、更に
真空乾燥した。その後、パイレツクス反応管に充
填し、常圧で水素及び窒素の混合ガス(H2:60
ml/分、N2:60ml/分)の通気下、400℃で4時
間活性化処理を行い、Rh/SiO2触媒を調製した。
次いで、硝酸銅(Cu(NO32・3H2O)0.881gを
溶解させた水溶液中に焼成脱気したシリカゲル
3.7g(10ml)を加え浸漬した。上記と同様の調
製法及び活性化処理を用いてCu/SiO2触媒を調
製した。このようにして得られたRh/SiO2触媒
(触媒8ml)、Cu/SiO2触媒(2ml)を高圧流通
式反応装置の反応管(チタン製)に上層、下層に
なる様に充填し、常圧水素ガスの流通下(2000
ml/分)、300℃で2時間程度再還元処理した後、
一酸化炭素と水素の混合ガスを送入し、所定の反
応条件下で反応を行つた。反応生成物の分析は、
液状生成物については水に溶解し捕集し、気体生
成物については直接ガス採取し、ガスクロ分析を
行い、定性及び定量分析し、生成物の分布を求め
た。結果を表1に示した。 実施例 2 塩化ロジウム0.480g、塩化リチウム(LiCl・
H2O)0.022gを溶解させたエタノール溶液を300
℃焼成脱気したシリカゲル10mlに浸漬した後、実
施例1と同様の処理によりRh/Li/SiO2触媒を
調製した。Rh−Li/SiO2触媒(2ml)、Cu触媒
(多孔性銅粒0.5ml)を高圧流通式反応装置の反応
管に上層、下層に充填し、実施例1と同様の方法
で活性試験を行つた。結果を表1に示した。 実施例 3 塩化ロジウム0.480g、塩化マンガン
(MnCl2・4H2O)0.180gを溶解させたエタノー
ル溶液を300℃焼成脱気したシリカ10mlに浸漬し
た。他方、硝酸銅1.895gを溶解させた水溶液を
300℃焼成脱気したシリカ10mlに浸漬した。各々
を実施例1と同様の処理により、Rh−Mn/
SiO2、Cu/SiO2を調製した。Rh−Mn/SiO2
媒(2ml)とCu/SiO2(2ml)を高圧流通式反応
装置の反応管に上層、下層に充填し、実施例1と
同様の方法で活性試験を行つた。結果を表1に示
した。 実施例 4 塩化ロジウム0.480g、塩化マンガン0.011g、
塩化リチウム0.033gを溶解させたエタノール溶
液を300℃焼成脱気したシリカゲル10mlに浸漬し
た後、実施例1と同様の処理により、Rh−Mn−
Li/SiO2触媒を調製したRh−Mn−Li−SiO2
媒(2ml)、実施例3で調製したCu/SiO2触媒
(2ml)を高圧流通式反応装置の反応管に上層、
下層に充填し、実施例1と同様の方法で活性試験
を行つた。結果を表1に示した。 実施例 5 塩化ロジウム0.480g、塩化マンガン0.011g、
塩化イリジウム(IrCl4・H2O)0.321g、塩化リ
チウム0.033gを溶解させたエタノール溶液を300
℃焼成脱気したシリカゲル10mlに浸漬した。実施
例1と同様の処理によりRh−Mn−Ir−Li/SiO2
触媒を調製した。Rh−Mn−Ir−Li/SiO2触媒
(2ml)と実施例3で調製したCu/SiO2触媒(2
ml)を高圧流通式反応装置の反応管に上層、下層
に充填し実施例1と同様の方法で活性試験を行つ
た。結果を表1に示した。 比較例 1 実施例1で調製したRh/SiO2触媒(10ml)を
高圧流通式反応装置の反応管に充填し、実施例1
と同様の方法で活性試験を行つた。結果を表1に
示した。 比較例 2 実施例2で調製したRh−Li/SiO2触媒(2ml)
を高圧流通式反応装置の反応管に充填し、実施例
1と同様の方法で活性試験を行つた結果を表1に
示した。 比較例 3 実施例4で調製したRh−Mn−Li/SiO2触媒
(2ml)を高圧流通式反応装置の反応管に充填し、
実施例1と同様の方法で活性試験を行つた。結果
を表1に示した。
[Industrial Field of Application] The present invention relates to a method for producing ethanol. More specifically, (a) a catalyst comprising rhodium supported on a carrier;
In the presence of (b) a catalyst comprising rhodium and lithium or manganese supported on a carrier, (c) a catalyst comprising rhodium, manganese, iridium and/or lithium supported on a support, and (d) a copper catalyst, This invention relates to a method for producing ethanol by reacting carbon oxide and hydrogen. [Prior Art and Problems to be Solved by the Invention] Oxygen-containing compounds having two carbon atoms, such as ethanol and acetaldehyde, have conventionally been produced by a petrochemical method using naphtha as a raw material. However, due to the recent rise in the price of crude oil, manufacturing prices have risen significantly, creating the need to switch raw materials. On the other hand, various methods of producing an oxygen-containing compound having 2 carbon atoms from a mixed gas of carbon monoxide and hydrogen, which is available in abundance and at low cost, have been studied. That is, by reacting a mixed gas of carbon monoxide and hydrogen in the presence of a catalyst containing rhodium as a main component and consisting of a metal or metal oxide such as manganese, titanium, zirconium, or tungsten, an oxygen-containing compound having two carbon atoms is produced. Methods for selectively producing are known. However, this method also produces a large amount of by-product hydrocarbons such as methane, and when the selectivity of oxygen-containing compounds is low or the selectivity of oxygen-containing compounds is high, the selectivity of the main product is low. It was hot.
The reality is that the amount of the target compound produced based on rhodium, which is an expensive noble metal, is still small, and a technology that has been completed economically and process-wise has not been provided. Furthermore, a catalyst in which manganese is added to rhodium and an improved method thereof (Japanese Patent Application Laid-Open No. 1989-1999
Nos. 14706, 56-8333, and 56-8334) have been proposed, but all of these methods mainly produce acetaldehyde and acetic acid, and the yield of ethanol and
It has the disadvantage of extremely low selectivity. As described above, no method has been provided for efficiently and economically producing an oxygen-containing compound containing ethanol as a main component from a gas containing carbon monoxide and hydrogen. The inventors of the present invention have conducted extensive studies on a method for selectively producing ethanol, and as a result of combining a rhodium-based catalyst and a copper catalyst, which are known as catalysts for producing acetaldehyde and acetic acid, as mentioned above, ethanol can be produced. The present invention was completed by discovering that it can be produced with high selectivity. [Means for Solving the Problems] As described above, the present invention involves reacting carbon monoxide and hydrogen in the presence of any one of the catalysts (a) to (c) and the catalyst (d) to produce ethanol. It is manufactured. The present invention will be explained in detail below. As mentioned above, the catalyst used in the present invention is
Two catalysts consisting of one of the catalysts (a) to (c) and the catalyst (d) are the main constituents. It is necessary to use both catalysts prepared separately, and when using them, either mix them or fill one of the catalysts (a) to (c) in the upper layer and the catalyst in (d) in the lower layer. can be used. In preparing the catalyst, a catalyst in which the above-mentioned components are dispersed on a carrier is usually used, as is done for noble metal catalysts. The catalyst used in the present invention can be prepared using conventional noble metal methods. For example, it can be prepared by an impregnation method, a dipping method, an ion exchange method, a coprecipitation method, a kneading method, etc. The raw material compounds for the various components constituting the catalyst include inorganic salts such as oxides, chlorides, nitrates, and carbonates; organic salts such as acetates, oxalates, acetylacetonate salts, dimethylglyoxime salts, and ethylenediamine acetate; Compounds commonly used in preparing noble metal catalysts can be used, such as salts or chelates, carbonyl compounds, cyclopentadienyl compounds, ammine complexes, metal alkoxide compounds, and alkyl metal compounds. The method for preparing the catalyst will be explained below by taking the impregnation method as an example. The above metal compound is dissolved in a solvent such as water, methanol, ethanol, tetrahydrofuran, dioxane, hexane, benzene, toluene, etc., a carrier is added and immersed in the solution, the solvent is distilled off, and the mixture is dried.
If necessary, treatment such as heating is performed to support the metal compound on the carrier. Supporting methods include preparing a mixed solution in which the raw material compounds are simultaneously dissolved in the same solvent and supporting them on the carrier at the same time, supporting each component on the carrier sequentially, or reducing each component as necessary. Various methods can be used, such as a method of supporting the material sequentially or stepwise while performing treatments such as heat treatment. Incidentally, as described above, the two catalysts are prepared separately using these methods. Other preparation methods, such as a method in which metals are supported by ion exchange using the ion exchange ability of a carrier, and a method in which a catalyst is prepared by a coprecipitation method, are also adopted as methods for preparing the catalyst used in the method of the present invention. can. The catalyst prepared by the above-mentioned method is usually activated by reduction treatment and then subjected to reaction. It is convenient and preferable to carry out the reduction using a hydrogen-containing gas at an elevated temperature. At this time, the reduction treatment can be carried out at the temperature at which rhodium is reduced, that is, about 100°C, but preferably the reduction treatment is carried out at a temperature of 200°C to 600°C. At this time, hydrogen reduction may be carried out while raising the temperature gradually or stepwise from a low temperature in order to sufficiently disperse each component of the catalyst. Further, reduction can also be carried out chemically using a reducing agent. For example, reduction treatment may be performed using carbon monoxide and water, or using a reducing agent such as hydrazine, a boron hydride compound, or an aluminum hydride compound. The carrier used in the present invention preferably has a specific surface area of 10 to 1000 m 2 /g and a pore diameter of 10 Å or more, which is commonly known as a carrier. As a specific carrier,
Examples include silica-based carriers such as silica, silicates, silica gel, molecular sieves, and diatomaceous earth, alumina, and activated carbon, with silica-based carriers being preferred. In any of the catalysts (a) to (c), the concentration and composition ratio of each component in the catalyst can be varied within a wide range. In (a) to (c) catalysts, the ratio of rhodium to the carrier is determined by weight, taking into account the specific surface area of the carrier.
It is 0.0001-0.5, preferably 0.001-0.3. Further, the ratio of the promoter metal to rhodium is in the range of 0.001 to 10, preferably 0.01 to 5, respectively, in terms of atomic ratio. Furthermore, in (d) the catalyst, copper can be used in the form of a porous lump or supported on a carrier. In the supported catalyst, the ratio of copper to the carrier is 0.0001 to 0.5 by weight, preferably 0.0001, considering the specific surface area of the carrier.
~0.3 range. The present invention can be applied to, for example, a fixed bed flow reactor. That is, a reactor is filled with a catalyst, and a raw material gas is introduced to cause a reaction.
It is also possible to separate the product and purify the unreacted raw material gas, which can then be recycled and reused. Further, the present invention can also be applied to a fluidized bed type reactor. That is, the reaction can also be carried out by bringing the raw material gas and the fluidized catalyst together. Furthermore, the present invention can also be applied to a liquid phase heterogeneous reaction in which a catalyst is dispersed in a solvent and a raw material gas is introduced to carry out the reaction. The conditions to be adopted in carrying out the present invention are:
It is selected by organically combining various reaction condition factors with the aim of producing an oxygen-containing compound containing ethanol as a main component with high yield and high selectivity.
Although the target compound can be produced with high selectivity and high yield even at normal pressure (ie, 0 kg/cm 2 gauge), the reaction can be carried out under pressure in order to increase the space-time yield. Therefore, the reaction pressure is 0Kg/cm 2 gauge ~ 350
Kg/cm 2 gauge, preferably 0Kg/cm 2 gauge ~ 250
Perform under pressure of Kg/cm 2 gauge. Reaction temperature is 150℃
-450°C, preferably 180°C - 350°C. When the reaction temperature is high, the amount of hydrocarbon by-product increases, so it is necessary to increase the feed rate of the raw material. Therefore, space velocity (raw material gas feed amount x catalyst volume)
is 10h -1 in standard conditions (0℃, 1 atm)
It is appropriately selected from the range of 10 6 h -1 depending on the relationship between the reaction pressure, reaction temperature, and raw material gas composition. The composition of the raw material gas is mainly a gas containing carbon monoxide and hydrogen, and inert gases such as nitrogen, argon, helium, and methane, or hydrocarbons and carbonic acid if they are in a gaseous state under the reaction conditions. It may contain gas or water. The mixing ratio of carbon monoxide and hydrogen is CO/ H2 ratio of 0.1 to 10, preferably 0.2 to 4 (volume ratio). The present invention will be explained in more detail below using Examples. Example 1 Rhodium chloride (RhCl 3.3H 2 O) 0.480g (1.82
mmol) in an ethanol solution in advance.
3.7 g (10 ml) of silica gel (Davison #57, manufactured by Davison), calcined and degassed under high vacuum at 300°C for 2 hours.
was added and soaked. Next, ethanol was distilled off using a rotary evaporator to dryness, followed by further vacuum drying. After that, the Pyrex reaction tube was filled with a mixed gas of hydrogen and nitrogen (H 2 :60
ml/min, N2 : 60 ml/min), activation treatment was performed at 400° C. for 4 hours to prepare a Rh/SiO 2 catalyst.
Next, silica gel was calcined and degassed in an aqueous solution in which 0.881 g of copper nitrate (Cu(NO 3 ) 2.3H 2 O) was dissolved.
3.7g (10ml) was added and immersed. A Cu/SiO 2 catalyst was prepared using the same preparation method and activation treatment as above. The Rh/SiO 2 catalyst (catalyst 8 ml) and Cu/SiO 2 catalyst (2 ml) thus obtained were filled into a reaction tube (made of titanium) of a high-pressure flow reactor so as to form the upper and lower layers. Under pressure hydrogen gas flow (2000
ml/min), after re-reduction treatment at 300℃ for about 2 hours,
A mixed gas of carbon monoxide and hydrogen was introduced to carry out the reaction under predetermined reaction conditions. Analysis of reaction products is
The liquid products were dissolved in water and collected, and the gaseous products were collected directly and subjected to gas chromatography analysis, qualitative and quantitative analysis, and the distribution of the products was determined. The results are shown in Table 1. Example 2 Rhodium chloride 0.480g, lithium chloride (LiCl・
Add 300 ml of ethanol solution containing 0.022 g of H 2 O)
A Rh/Li/SiO 2 catalyst was prepared by the same treatment as in Example 1 after being immersed in 10 ml of degassed silica gel calcined at °C. Rh-Li/SiO 2 catalyst (2 ml) and Cu catalyst (porous copper grains 0.5 ml) were filled in the upper and lower layers of the reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. Ivy. The results are shown in Table 1. Example 3 An ethanol solution in which 0.480 g of rhodium chloride and 0.180 g of manganese chloride (MnCl 2 .4H 2 O) were dissolved was immersed in 10 ml of degassed silica calcined at 300°C. On the other hand, an aqueous solution in which 1.895 g of copper nitrate was dissolved
It was immersed in 10 ml of degassed silica calcined at 300°C. Rh-Mn/
SiO 2 and Cu/SiO 2 were prepared. Rh-Mn/SiO 2 catalyst (2 ml) and Cu/SiO 2 (2 ml) were filled in the upper and lower layers of a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. Example 4 Rhodium chloride 0.480g, manganese chloride 0.011g,
Rh-Mn-
The Rh-Mn-Li-SiO 2 catalyst (2 ml) prepared as a Li/SiO 2 catalyst and the Cu/SiO 2 catalyst (2 ml) prepared in Example 3 were placed in the reaction tube of a high-pressure flow reactor in an upper layer.
It was filled in the lower layer and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. Example 5 Rhodium chloride 0.480g, manganese chloride 0.011g,
An ethanol solution containing 0.321 g of iridium chloride (IrCl 4 H 2 O) and 0.033 g of lithium chloride was added to the
It was immersed in 10 ml of degassed silica gel calcined at °C. Rh-Mn-Ir-Li/ SiO2 by the same treatment as in Example 1
A catalyst was prepared. Rh-Mn-Ir-Li/SiO 2 catalyst (2 ml) and Cu/SiO 2 catalyst prepared in Example 3 (2 ml) were used.
ml) was filled into the upper and lower layers of a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 1 The Rh/SiO 2 catalyst (10 ml) prepared in Example 1 was filled into a reaction tube of a high-pressure flow reactor, and
The activity test was conducted in the same manner as above. The results are shown in Table 1. Comparative Example 2 Rh-Li/SiO 2 catalyst prepared in Example 2 (2 ml)
was filled into a reaction tube of a high-pressure flow reactor, and an activity test was conducted in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 3 The Rh-Mn-Li/SiO 2 catalyst (2 ml) prepared in Example 4 was filled into a reaction tube of a high-pressure flow reactor.
An activity test was conducted in the same manner as in Example 1. The results are shown in Table 1.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ロジウムを担体担持してなる触媒と、銅触媒
との存在下、一酸化炭素と水素とを反応させるこ
とからなる、エタノールの製造方法。 2 ロジウム及びリチウム又はマンガンを担体担
持してなる触媒と、銅触媒との存在下、一酸化炭
素と水素とを反応させることからなる、エタノー
ルの製造方法。 3 ロジウム、マンガン、イリジウム及び/又は
リチウムを担体担持してなる触媒と、銅触媒との
存在下、一酸化炭素と水素とを反応させることか
らなる、エタノールの製造方法。
[Scope of Claims] 1. A method for producing ethanol, which comprises reacting carbon monoxide and hydrogen in the presence of a catalyst comprising rhodium supported on a carrier and a copper catalyst. 2. A method for producing ethanol, which comprises reacting carbon monoxide and hydrogen in the presence of a catalyst comprising rhodium and lithium or manganese supported on a carrier and a copper catalyst. 3. A method for producing ethanol, which comprises reacting carbon monoxide and hydrogen in the presence of a catalyst comprising rhodium, manganese, iridium and/or lithium supported on a carrier, and a copper catalyst.
JP60197790A 1985-09-09 1985-09-09 Production of ethanol Granted JPS6259228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60197790A JPS6259228A (en) 1985-09-09 1985-09-09 Production of ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60197790A JPS6259228A (en) 1985-09-09 1985-09-09 Production of ethanol

Publications (2)

Publication Number Publication Date
JPS6259228A JPS6259228A (en) 1987-03-14
JPS63413B2 true JPS63413B2 (en) 1988-01-07

Family

ID=16380393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60197790A Granted JPS6259228A (en) 1985-09-09 1985-09-09 Production of ethanol

Country Status (1)

Country Link
JP (1) JPS6259228A (en)

Also Published As

Publication number Publication date
JPS6259228A (en) 1987-03-14

Similar Documents

Publication Publication Date Title
JPS6049617B2 (en) Method for producing oxygenated compounds such as ethanol
JPS6341373B2 (en)
JPS63412B2 (en)
JPS63413B2 (en)
JPS6238335B2 (en)
JPS6238333B2 (en)
JPS6119608B2 (en)
JPS6353169B2 (en)
JPS6210486B2 (en)
JPS6238334B2 (en)
JPS6049615B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS6238343B2 (en)
JPS6119611B2 (en)
JPS6049616B2 (en) Method for producing oxygen-containing compounds containing ethanol as the main component
JPS6353168B2 (en)
JPS6238337B2 (en)
JPS6238336B2 (en)
JPS63414B2 (en)
JPS63416B2 (en)
JPS643857B2 (en)
JPS6218530B2 (en)
JPS6238341B2 (en)
JPS6119610B2 (en)
JPS6238340B2 (en)
JPS6238339B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term